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FOREWORD

It gives me great pleasure to write the Foreword for this book because it covers a
subject very dear to me and is written by someone whose work I have followed
with interest for many years.

Research and development in electric power systems analysis and control
has been an area of significant activity for decades. However, because of the
increasing complexity of present-day power systems, this activity has increased
in recent years and continues to do so because of the great economic significance
of this field in the evolving scenario of a restructured electric power industry.
I cannot think of a more qualified person than Professor Fabio Saccomanno
to write on this subject. He has worked at the leading edge of developments
in power system analysis and control for more than three decades. In addition
to his extensive industrial and academic experience, he has made significant
contributions to this area through his participation in the activities of international
technical organizations, such as CIGRE, IEEE, IFAC, and PSCC.

This book covers a wide range of topics related to the design, operation, and
control of power systems that are usually treated separately. Various issues are
treated in depth with analytical rigor and practical insight. The subject matter is
presented in a very interesting and unique perspective. It combines, in a structured
way, control theory, characteristics and modeling of individual elements, and
analysis of different aspects of power system performance.

While the book naturally covers topics presented in many other books on
the subject, it includes many important original contributions based on pio-
neering work by the author, in particular, in analysis and control of electrome-
chanical oscillations, nonlinear stability analysis, dynamic modeling and experi-
mental identification, reactive compensation, emergency control, and generation
scheduling. The comprehensive and rigorous coverage of all aspects of the sub-
ject was accompanied by the search for simplification and practical applications
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x FOREWORD

using intuition and common sense. The original Italian edition of this book was
published in 1992 by UTET, Turin (Italy). It is not surprising that the original
edition received the Galileo Ferraris Award from the Associazione Elettrotecnica
ed Elettronica Italiana (AEI) in 1994. I am pleased to have been involved in
editing the English translation of the original publication, along with Professor
Stefano Massucco, Dr. Lei Wang, and Mr. G. K. Morison.

This book will be an invaluable source of reference for teachers and students
of power engineering courses as well as practicing engineers in an area of major
significance to the electric power industry.

DR. PRABHA KUNDUR

President & CEO
Powertech Labs, Inc.

Surrey, British Columbia, Canada
December, 2002



PREFACE

Some years ago, before I started to write this book, I already had an idea about
how to structure the Preface. It was to be organized essentially as a “Preface-
diary,” to assist and encourage me in my work by recording the difficulties
encountered along the way, the choices made and the subsequent changes, which
often required rearranging the entire order of the subjects and rewriting complete
parts of the book.

Now that the book is written, such a Preface would make no sense, not even
to me. With the work finished, a strange feeling is aroused in me, a mixture of
pride and perplexity, mainly when thinking about the courage and the tenacity I
have had.

Drawing from the results of a long personal experience–technical, scientific,
and teaching–which has been intensively matured in industrial and academic
fields, I have tried to put together whatever I thought was necessary to achieve
an up-to-date, organized, and coherent treatise; quite a challenging project which
I have been thinking about for a long time.

The typical topics of electric power area (and related areas such as hydro and
thermal power plants) are discussed here according to a “system approach” in
order to allow, according to the most recent theories and methods, a global and
right vision of the different problems involved. Special attention is dedicated to
operational scheduling, control, and modelling of phenomena (essential, by the
way, for simulations), and to the interpretation of the phenomena themselves, to
make them more understandable to the reader and to ensure a sufficient mastery
of the problems.

On the whole, the aim of this book is to be critical and constructive, not
only for the ability to “do” but, before that, for “knowledge.” It expresses the
constant desire to clarify concepts and justify simplifications, so to maintain the
human being at the core of problems. Therefore, this book is intended as a

xi



xii PREFACE

basic and up-to-date text, both for students and for anyone concerned, working
in universities, industries or consulting. I hope that the presence of commonly
separated topics will offer, for the homogenity of the treatment, interesting com-
parisons, useful correlations, and a deeper and wider knowledge for specialists
in different branches.

I cited at the beginning, pride and perplexity; it seems to me that what has
been said could justify such feelings, at least for the variety of contents and
ambitious intention. The attempt of assembling (consistently) so many topics
may appear successful, but such an effort has required, apart from a sort of
cultural “challenge,” a continuous and tiring research of the most effective way
of presentation, to avoid lack of uniformity in style and emphasis; it is difficult
for me to evaluate the result.

I am also aware of having, perhaps, “invaded” too many fields, with the risk
of appearing sometimes superficial to specialists, but I hope they can forgive me
by considering this invasion an obliged (and possibly discreet) choice and by still
appreciating the outcome of the work and the intention that has driven me.

Just before closing, I wish to thank everybody who contributed to my prepa-
ration, and the ones who shared, in different ways, more or less directly, the
discomforts originating from my work.

FABIO SACCOMANNO

Genoa, Italy
December, 2002
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CHAPTER 1

INTRODUCTION TO THE PROBLEMS
OF ANALYSIS AND CONTROL
OF ELECTRIC POWER SYSTEMS

1.1. PRELIMINARIES

1.1.1 Electric power can be easily and efficiently transported to locations far
from production centers and converted into desired forms (e.g., mechanical, ther-
mal, light, or chemical).

Therefore, electric power can satisfy the requirements of a variety of users
(e.g., factories, houses, offices, public lighting, traction, agriculture), widely
spread around the intended territory.

On the other hand, it is generally convenient to concentrate electric power gen-
eration into a few appropriately sized generating plants. Moreover, generating
plants must be located according to both technical and economic considera-
tions. For example, the availability of water is obviously of primary concern to
hydroelectric power plants as well as the availability of fuels and cooling water
to thermoelectric power plants. General requirements — about primary energy
sources to be used, area development planning, and other constraints, e.g., of
ecological type — must also be considered.

Consequently, the network for electric power transportation must present a
branched configuration, and it can be required to cover large distances between
generation and end-users. Moreover, the possible unavailability of some gen-
erating units or interconnection lines could force electric power flows to be
routed through longer paths, possibly causing current overloads on interconnec-
tion lines.

These considerations make it preferable to have a network configuration suf-
ficiently meshed to allow greater flexibility in system operation (as an adequate

1



2 CHAPTER 1 PROBLEMS OF ANALYSIS AND CONTROL OF ELECTRIC POWER SYSTEMS

rerouting when encountering partial outages) thus avoiding excessive current
flows in each line and limiting voltage dips and power losses to acceptable
levels.

1.1.2 As it is widely known, electric power is produced, almost entirely, by
means of synchronous three-phase generators (i.e., alternators) driven by steam
or water turbines. Power is transported through a three-phase alternating current
(ac) system operated by transformers at different voltage levels.

More precisely:

• Transportation that involves larger amounts of power and/or longer distances
is carried out by the “transmission” system, which consists of a meshed
network and operates at a very high voltage level (relative to generator and
end-user voltages). This system ensures that at the same transmitted powers
the corresponding currents are reduced, thereby reducing voltage dips and
power losses(1).

• Power transportation is accomplished through the “distribution” system,
which also includes small networks of radial configuration and voltages
stepped down to end-user levels.

The use of ac, when compared with direct current (dc), offers several advantages, including:

• transformers that permit high-voltage transmission and drastically reduces losses;

• ac electrical machines that do not require rotating commutators;

• interruption of ac currents that can be accomplished in an easier way.

Moreover, the three-phase system is preferable when compared with the single-phase
system because of its superior operating characteristics (rotating field) and possible savings
of conductive materials at the same power and voltage levels.

For an ac three-phase system, reactive power flows become particularly impor-
tant. Consequently, it is also important that transmission and distribution net-
works be equipped with devices to generate or absorb (predominantly) reactive
power. These devices enable networks to adequately equalize the reactive power
absorbed or generated by lines, transformers, and loads to a larger degree than
synchronous machines are able.

These devices can be static (e.g., inductive reactors, capacitors, static
compensators) or rotating (synchronous compensators, which can be viewed as

(1) Moreover, an improvement in stability can be obtained, at the same transmitted powers, due to
reduced angular shifts between synchronous machine emfs, resulting in a smoother synchronism
between machines.
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synchronous generators without their turbines or as synchronous motors without
mechanical loads).

Furthermore, interconnection between different systems — each taking
advantage of coordinated operation — is another important factor. The electrical
network of the resulting system can become very extensive, possibly covering
an entire continent.

1.1.3 The basic elements of a power system are shown in Figure 1.1. Each of
the elements is equipped with devices for maneuvering, measurement, protection,
and control.

The nominal frequency value is typically 50 Hz (in Europe) or 60 Hz (in the
United States); the maximum nominal voltage ranges 20–25 kV (line-to-line volt-
age) at synchronous machine terminals; other voltage levels present much larger
values (up to 1000 kV) for transmission networks, then decrease for distribution
networks as depicted in Figure 1.1.

Generation is predominantly accomplished by thermal power plants equipped
with steam turbines using “traditional” fuel (coal, oil, gas, etc.) or nuclear fuel,
and/or hydroelectric plants (with reservoir or basin, or fluent-water type). Gener-
ation also can be accomplished by thermal plants with gas turbines or diesel
engines, geothermal power plants (equipped with steam turbines), and other
sources (e.g., wind, solar, tidal, chemical plants, etc.) whose actual capabilities
are still under study or experimentation.

The transmission system includes an extensive, relatively meshed network.
A single generic line can, for example, carry hundreds or even thousands of
megawatts (possibly in both directions, according to its operating conditions),

possible
INTERCONNECTIONS

TRANSMISSION

EHV

HV

step-up
transformer

step-down transformer

generator

turbine
supply system

and valves

excitation
system

GENERATION DISTRIBUTION USERS

LV

MV

HV

examples of nominal
line-to-line voltages

EHV TRANSMISSION

HV DISTRIBUTION (or
SUBTRANSMISSION)

MV DISTRIBUTION

LV DISTRIBUTION

HV TRANSMISSION 380 kV
220 kV

150 kV
132 kV
60 kV

30 kV
20 kV
15 kV
10 kV

380 kV
220 kV

Figure 1.1. Basic elements of an electric power system (EHV, HV, MV, LV
mean, respectively, extra-high, high, medium, and low voltage).
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covering a more or less great distance, e.g., from 10 km to 1500 km and over. The
long lines might present large values of shunt capacitance and series inductance,
which can be, at least partially, compensated by adding respectively shunt (induc-
tive) reactors and series capacitors.

The task of each generic distribution network at high voltage (HV), often
called a “subtransmission” network, is to carry power toward a single load area,
more or less geographically extended according to its user density (e.g., a whole
region or a large urban and/or industrial area). The power transmitted by each
line may range from a few megawatts to tens of megawatts.

Electric power is then carried to each user by means of medium voltage (MV)
distribution networks, each line capable of carrying, for example, about one
megawatt of power, and by low voltage (LV) distribution networks. To reduce
the total amount of reactive power absorbed, the addition of shunt capacitors
might be helpful (“power factor correction”).

Reactor and capacitor types can be fixed or adjustable (through the use of
switching devices); the adjustment increases the networks’ operation flexibility
and may be realized before (“no-load”) or even during operation (“under-load”,
or “on-load”).

To further improve system behavior, controlled compensators (synchronous
and/or static ones) may be added in a shunt configuration at proper busbars
of HV (transmission and subtransmission) networks. Tap-changing transformers,
which are controllable under load, are also adopted, mostly at the HV to MV
transformation, sometimes between HV transformations. While at the MV/LV
transformation, the use of tap-changing transformers, set up at no load, can be
sufficient.

Moreover, some transmission lines are equipped with series “regulating”
transformers, by which a range of voltage variations (both in magnitude and
phase) — particularly useful to control line power flows — can be achieved.

More recently, the so-called FACTS (Flexible AC Transmission Systems) have
also emerged; these equipments recall and integrate the above-cited functions,
providing controlled injections of active and reactive powers, through the use of
high-performance electronic devices.

The possibility of adopting direct current links, by using controlled converters
(i.e., rectifiers and inverters) at line terminals, also must be discussed. This is
particularly helpful with very long distances and/or with cable connections (e.g.,
sea-crossing connections); that is, when the ac option would prevent voltage vari-
ations within given ranges at the different locations or the synchronism between
connected networks.

Finally, the interconnections between very large systems (e.g., neighboring
countries) are generally developed between their transmission networks. Similar
situations involving a smaller amount of power can occur, even at the distribution
level, in the case of “self-generating users” (e.g., traction systems, large chemical
or steel processing plants, etc.), which include not only loads in the strict sense
but also generators and networks.
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1.2. THE EQUILIBRIUM OPERATION

1.2.1 A proper definition of the generic steady-state (or equilibrium) operating
condition (i.e., the “working point” at which the system may be required to
operate) refers to a well-defined mathematical model of the system itself, as
discussed in detail in the following chapters. The present section is limited to a
general definition at this preliminary stage.

Let us assume that the “configuration”(2) and the system parameters are con-
stant, as well as the external variables which define, together with parameters
concerning users, each load requirement (e.g., braking torques externally applied
to electromechanical users). Let us also assume that the three-phase electrical
part of the system is “physically symmetrical.” Moreover, we may assume that
the electrical part of the system is linear with regard to the relationships between
phase voltages and currents, thus allowing sinusoidal operations of phase vari-
ables without waveform distortions or production of harmonics.

Note however that, in this concern, the presence of nonlinearities also may be assumed,
provided they can be simply translated into nonlinear time-invariant relationships between
(voltage and current) Park’s vectors, as specified in Section 5.6.1.

We will say that the system is in equilibrium operation if (and only if):

• excitation voltages of synchronous machines are constant;
• all synchronous machine shafts rotate at the same electrical speed (“syn-

chronous” operation), so that electrical angular shifts among rotors are
constant;

• such speed is constant.

Under the above-mentioned conditions, each three-phase set of the emfs app-
lied to the electrical part of the system results in a positive sequence sinusoidal set,
at a frequency equal to the electrical speed of the synchronous machines; the same
applies for voltages and currents at any generic point inside the electrical network.
More precisely, the frequency of these sets, which comes from the synchronous
motion of the machines, can be given the name of “network” frequency because
of its common value at every point of the network.

The following important consequences apply:

• by using the Park’s transformation (see Appendix 2) with a “synchronous”
reference (i.e., rotating at synchronous speed), both voltages and currents
at any generic point of the network are represented by constant vectors;

(2) By the term configuration we imply both the system “composition” (i.e., the whole set of operating
components) and its “structure” (i.e., the connection among such components).
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• active and reactive powers at any point of the network are constant, as well
as active powers generated by alternators; consequently, the driving powers
also must be constant, otherwise a variation in machines’ speeds would
result(3).

The definition of the steady-state condition is both useful and appropriate, as
it can be transformed, by means of the Park’s transformation, into an operat-
ing condition characterized by constant values. The definition also has practical
aspects, as the synchronous operation at a given speed can be viewed (at ideal
operating conditions and once stability conditions(4) are satisfied) as a result of
the “synchronizing” actions between the machines and the frequency regulation
(see also Sections 1.3 and 1.6).

The generic equilibrium operation is determined by:

• system configuration and parameters,
• load requirements,
• network frequency,
• synchronous machine excitation voltages,
• synchronous machine (electrical) angular shifts.

Note that, once all the N excitation voltages and the (N − 1) angular shifts
are known (where N is the number of synchronous machines), the N vectors
corresponding, through the Park’s transformation, to the synchronous machine
emfs in equilibrium conditions, can be directly deduced, both in magnitude and
phase, by assuming an arbitrary reference phase.

However, for a better characterization of the steady-state, one could specify
the value of other (2N − 1) scalar variables, as detailed in Chapter 2.

For example, instead of excitation voltages, it is usually preferable to specify
the terminal voltage values (magnitude) of all synchronous machines, as these
values are of paramount importance for the system operation (and are under the
so-called “v/Q control”; see Section 1.3).

(3) The driving power of each generating unit is obviously limited between minimum and maximum
values, which are dependent (at the given speed) upon the characteristics of the supply system and
the turbine. At the steady-state, each generated active power matches the corresponding net driving
power and is subjected to the same limitations. The maximum real power made available by all
the operating plants at the steady-state, which is called “rotating power,” must be large enough to
supply — with an adequate margin, named “rotating reserve” or “spinning reserve” — the total active
load and network losses (we obviously imply that possible powers generated by nonmechanical
sources have been previously subtracted from the total load).
(4) The stability properties can vary according to the considered operating point, due to nonlinearities
in the equations relating active and reactive powers, magnitude and phase of voltage vectors, etc.
Moreover, stability is particularly related to synchronizing phenomena which govern the relative
motion between the machines, and to actions (possibly having stabilizing effects) through the control
devices; as a consequence, the stability analysis may use some schematic approaches, such as those
presented in Section 1.8.
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Similarly, it is preferable to specify, instead of angular shifts:

• all active powers of generating plants except one, that is, the active power
generation dispatching: this distribution is, in fact, important for system
operation (and is related, with frequency regulation, to the “f/P control”;
see Section 1.3);

• mechanical powers generated by synchronous motors and compensators;
powers can be considered known for motors based on actual loading con-
ditions, whereas powers for compensators can be neglected, as their value
is only equal to mechanical losses at the given speed.

1.2.2 Nevertheless, the equilibrium operation previously defined corresponds
to, with regard to voltage and current behavior, an ideal situation which in practice
can be only approximately achieved.

Regarding the above-mentioned hypotheses (and assuming that stability holds),
the most important reasons for deviation from the ideal behavior are:

• network configuration variations, in proximity to loads : for example, fre-
quent inserting and disconnecting operations of loads, or opening and closing
operations of distribution networks due to local requirements or operation
of protection systems (e.g., with stormy weather);

• load variations: for example, those caused by intermittent operating cycles
(traction systems, rolling mills, tooling machines, excavators, welding
machines, etc.);

• the physical dissymmetries of the electrical part of the system: for example,
in lines, transformers, and mostly in loads (as single-phase loads), which
can be amplified by anomalous connections (e.g., the disconnection of a
phase or an unsymmetrical short-circuit);

• the nonlinearities of the electrical part, with reference to the instantaneous
values of voltages, currents, magnetic fluxes, etc.: for example, saturations
and magnetic hystereses, and “granular” effects due to winding distribu-
tion and slots in the machines; electrical characteristics of arc furnaces,
fluorescent lights, thyristor controlled converters, static compensators, etc.

As far as network configuration variations and/or load variations are con-
cerned, they can be treated, in terms of a real quasi-steady-state operating condi-
tion, similar to small, random “load fluctuations” (both active and reactive) with
a zero mean value, whose fastest variations can only be partially compensated by
control devices(5). In practice, these fluctuations can significantly affect voltage
and current behavior, particularly in proximity of loads, where filtering actions

(5) Here, we are not considering significant and typically deterministic perturbations (e.g., the opening
of a major connection in the transmission network, the outage of a generator or a significant load
rejection, etc.), in which case the role of control actions becomes essential; see Section 1.7.
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might be recommended. On the contrary, the effects on machines’ speeds and
network frequency are generally modest, because of the filtering actions of the
machines’ inertias.

Physical dissymmetries generate voltage and current components of negative
or zero sequence; however, such components usually can be kept within accept-
able limits by properly equalizing loads connected at each phase (see Section 6.1)
and by avoiding (with the help of protective devices) permanent anomalous con-
nections. Furthermore, the presence of zero-sequence components can be limited
to a particular section of the network near the element that caused them, by
proper transformer winding connections (delta or wye) and neutral conductor
connection of the wye windings.

Nonlinearities, instead, are responsible for current and voltage waveform dis-
tortion and can generate harmonic components that might produce undesired
disturbances to telephonic and data transmission systems. Harmonic effects can
be reduced by introducing filtering actions close to those components responsible
for harmonic generation. Often, a significant filtering is already provided by the
same reactive elements adopted to equalize reactive power flows in the network.

In the following — except when differently specified — all previously men-
tioned phenomena will be considered within acceptable limits. Consequently, at
the considered operating condition (synchronous and at constant speed), both volt-
age and current Park’s vectors and active and reactive powers will be considered
constant as above specified.

1.3. OPERATING REQUIREMENTS

1.3.1 Different operating requirements can be classified according to the fol-
lowing fundamental aspects: quality, economy, and security.

Quality of operation must be evaluated by considering:

• load supply conditions, which should not be much different from contrac-
tual ones;

• operating conditions of each system’s equipment, which should not deviate
much from optimal design conditions, in both performances or life duration.

Economy implies evaluation of the overall operating cost necessary to provide
service to users, with specific reference to:

• availability and costs of energy sources;
• maintenance costs, personnel costs, and so forth, which are relatively depen-

dent on the “operational scheduling” of each equipment.

Security of operation(6) implies the warranty, from a probabilistic point of
view, of continuity in system operation (particularly of continuity in supplying

(6) Obviously, here reference is not made to equipment or human safety, which is rather demanded
of protection devices, according to considerations developed in Section 1.4.
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load), when faced with significant perturbations. The equilibrium stability, for
“small” variations, can be viewed as requirement for both quality and security
aspects.

Fundamental requirements concerning the quality of the generic equilibrium
operation are(7):

• network frequency should be at its “nominal” value (the choice of the
nominal value is a technical and economic compromise among design and
operating characteristics of main components, with specific regard to gen-
erators, transformers, lines, and motors);

• voltage magnitudes (positive sequence) should match their nominal values,
within a range, e.g., of ±5% or ±10% at each network busbar, particularly
at some given load busbars.

One should note that, in a pure transmission line, the voltage support at values
near nominal voltage also may be important to guarantee satisfactory voltages
at the line terminals and avoid a reduction in transmittable active power (see
Section 1.5.).

The fulfillment of these requirements should comply with “admissibility” lim-
its of each equipment piece (see Section 1.4): for example, it is necessary to
avoid, at any network location, excessive current amplitudes which may cause
tripping of protective devices.

Moreover, the agreed power supply to users should be respected as well as
the agreed exchanges of power (or energy) with other utilities, in the case of
interconnected systems.

As far as the quasi–steady-state operating condition described in Section 1.2 is concerned,
voltage waveform deviations, nonpositive sequence components, and effects of small
and unavoidable zero-mean random load fluctuations are required to be negligible. For
instance, voltage flicker on lighting and on television apparatus must be limited to avoid
disturbances to human eyes (e.g., for voltage variations greater than approximately 1.5%
at a frequency of 10 Hz).

Problems related to system operation economy will be discussed in Chap-
ter 2. One can anticipate that, once the system configuration and load demand
are given(8) (as well as possible interconnection power exchanges), economy

(7) There are exceptions to these requirements, such as the case of a small system temporarily
operating in island conditions, for which out-of-range frequency deviations may be accepted, or a
system with lack of sufficient generating capacity (for technical, human, or other reasons) for which
the requirements of spinning reserve may suggest reduction of active power absorbed by loads by
lowering the voltage profile of the network.
(8) One should note that if load voltages are imposed, load currents — and consequently active and
reactive powers — are only related to parameters and external variables which define the loads
themselves. For instance, the knowledge of the resistance and reactance values of a generic user
which can be represented by an equivalent shunt branch allows the definition of load demand
directly in terms of absorbed active and reactive powers.
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requirements dictate the most adequate dispatching of total power generated
among plants in steady-state conditions.

Finally, security requirements have a strong effect (detailed later in Chap-
ter 2) on the system configuration choice and can suggest further limitations on
electrical line currents. If, for instance, the spinning reserve is increased and
adequately distributed throughout the system, and if power flows and network
voltages are adjusted, there can be a reduced risk that perturbations might cause
(see Section 1.7):

• instability conditions;
• unacceptable current redistributions that might cause line tripping (due

to overcurrent protective devices) leading to a nonsecure network con-
figuration.

1.3.2 To match all operating requirements, the system configuration and work-
ing point must be adequately scheduled.

Scheduling is performed by considering situations preevaluated (“previsional”
scheduling) or measured during system operation (“real-time” scheduling), with
emphasis on load demand and equipment availability.

According to Section 1.2.1 and Chapter 2, we can assume that the degrees
of freedom in choosing the working point for any system configuration are
given by:

• the excitation voltages (or the terminal voltages) of the synchronous
machines;

• the dispatching of generated active power (whose amount matches the total
load demand and system losses);

• the values of adjustable parameters of system devices, such as reactors,
capacitors, static compensators, tap-changing transformers, regulating trans-
formers (some of these values are actually adjusted by control systems,
whereas the other ones are chosen before the device operation and kept
constant).

It should be noted that actual ranges for the preceding degrees of freedom are
limited.

Furthermore, facing the effects of perturbations, particularly of those lasting
longer, and keeping the system at satisfactory steady-state conditions can be done
with two fundamental controls:

• frequency and active power control (in short named f/P control ), which
acts on control valves of prime movers (except for plants generating power
at fixed rate), to regulate frequency (and exchanged active powers in case
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of interconnected operation) and dispatch active powers generated by each
plant(9).

• voltages and reactive power control (v/Q control ), which acts on the exci-
tation circuit of synchronous machines and on adjustable devices (e.g.,
reactors, capacitors, static compensators, underload tap-changing transform-
ers), to achieve acceptable voltage profiles with adequate power flows in
the network.

It should be noted that f/P and v/Q control problems substantially differ for
the following reasons:

• Regulated frequency is common to the whole system and can be affected by
all the driving powers. Therefore, the f/P control must be considered with
respect to the whole system, as the result of different contributions (to be
suitably shared between generating plants). In other words, the f/P control
must present a “hierarchical” structure in which local controls (also named
“primary” controls) on each turbine are coordinated through a control at the
system level (named “secondary” control).

• Regulated voltages are instead distinct from each other (as they are related to
different network points), and each control predominantly acts on voltages
of the nearest nodes. Consequently, the v/Q control problem can be divided
into more primary control problems (of the local type), which may be coor-
dinated by a secondary control (at the system level) or simply coordinated
at the scheduling stage.

The control systems should also be provided (see Section 1.5) with sufficient
margin for actions. This can be accomplished during real-time scheduling by per-
forming “adaptive”-type actions on system configuration, adjustable parameters,
parameters and “set-points” of the f/P and v/Q controls, etc. Adaptive actions

(9) Frequency regulation implies the modulation of driving powers which must match, at steady-state
conditions, the total active load (apart from some deviations due to mechanical and electrical losses,
or contributions from nonmechanical energy sources). One should note that, after a perturbation, the
task of frequency regulation is not only to make net driving powers and generated active powers
coincide but, moreover, to return frequency to the desired value. Therefore, even the regulation itself
must cause transient unbalances between the powers until the frequency error returns to zero.

As a final remark, transient frequency errors, integrated over the time, cause a “phase error” which
affects time keeping by electric clocks operating on the basis of network frequency; such an error can
be reset to zero by forcing the system — using the f/P control, for instance, at night — to operate
with frequency errors of the opposite sign for an adequate time duration (“phase” regulation). In
an analogous way, one may compensate the transient errors which arise in the exchanged power
regulation, thus returning to agreed values of the energy exchange at interconnections (“energy”
regulation).
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can also be suggested by a timely “diagnosis” of the perturbed system operation
(see Section 1.7.2.).

1.3.3 Before concluding, it is worth emphasizing the advantages that may be
offered by interconnections, with reference to quality, economy, and security.
The following observations can be made:

• Quality. The voltage profile in the transmission network is better sup-
ported and distribution networks benefit because more generators provide
their contribution to it, with an increased total capability (more specifi-
cally, an increased “short-circuit power” is obtained, at the busbars which
are influenced by interconnections; see also Section 5.7.2). The same con-
siderations apply to improved frequency behavior, with respect to any
deterministic active power perturbation of given amplitude and to random
perturbations. Random perturbations increase but, due to a partial statis-
tical compensation, to an extent less than proportional to the total active
power (i.e., in practice, to the total inertia of units and to the total driv-
ing power available for regulation purposes), so their relative influence is
reduced.

• Economy. Different from isolated systems, it is possible to reduce the total
set of generating plants and, consequently, operational and investment costs.
This can result from the diminished influence of load perturbations and (for
analogous reasons) errors on total load forecasting (thus allowing the reduc-
tion of the total spinning reserve), and time “compensation” of individual
system load diagrams. Moreover, operational (including plant start-ups and
shutdowns) and generation scheduling of units can be more economically
coordinated by exploiting the flexibility offered by interconnections and by
optimizing the scheduling of exchanged powers.

• Security. The chances of rerouting transmitted power flows in response to
perturbations are increased and, more specifically, each system can benefit
from the help of others even when spinning reserves were not sufficient for
isolated operation.

1.4. ADMISSIBILITY LIMITS FOR SINGLE COMPONENTS

1.4.1 Each equipment of the power system (including generation, transmission,
distribution, and utilization) is required to operate within limits expressed in terms
of related variable ranges.

Some limits are intrinsic, as they are directly derived from the physical
characteristics of the equipment. Examples are limits on excitation voltages of
synchronous machines or the maximum allowable opening limit of turbine valves,
which may be translated (at given conditions of the motive fluid and of speed)
into a limit for the available motive power (see Section 1.2, footnote(3)).
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On the contrary, other limits are related to operating ranges(10), according to
different requirements, specifically:

(1) necessity of avoiding, for each equipment, anomalous or nonacceptable
operations from the technical and economical points of view (then also
considering efficiencies, duty, etc.); corresponding limits are: minimum
and maximum values of voltage (and frequency) for the electrical auxiliary
systems of power plants and, more generally, for users; the minimum
technical value of generated power for steam units; maximum load currents
related to contractual agreements; and so on;

(2) necessity of avoiding equipment damage and any possible consequent
damage: for example, insulation damage due to excessive voltage; mechan-
ical damage due to overspeed or to electrodynamic stresses between con-
ductors by overcurrents; damage to insulating and conducting materials
due to overtemperatures (which are, in turn, related to overcurrents);

(3) necessity of avoiding situations which do not respect quality and security
requirements, also reducing instability risks (by limiting, for instance, the
generator underexcitation to avoid unstable operating points)(11).

The fulfillment of requirements (1), (2), and (3) can be made easier through an
appropriate system configuration and steady-state operating point. Control and,
if necessary, protection actions are then integrative during operation.

1.4.2 Without much detail about functional requirements of protection devices
(e.g., response speed, reliability, selectivity, etc.), the following remarks can
be made:

• Many protective devices refer to local variables that are not directly under
control or on which no significant effect may be expected through control
actions (especially in short times). The case of short-circuit currents and fast
overvoltages caused by external perturbations at a generic network location
(usually with dissymmetric effects) is one such example. In fact, these sit-
uations are particularly vulnerable, and protection actions may be the only
way to address them. On the other hand, the role of control actions becomes

(10) Such limits may depend on particular conditions and on the duration of the considered phenom-
ena. For instance, limits on currents set to avoid excessive overtemperatures can vary according to
local temperature and must account for overcurrent duration.
(11) For given values of voltage and frequency, the operating limits of a generator (see Section 2.2.1)
can be expressed, in terms of delivered active power P and reactive power Q, by the maximum and
minimum values for P , and by two curves that define the over- and underexcitation limits (i.e., the
maximum and minimum Q values, at each value of P ). Curiously, these four limits can be viewed
as excellent examples of the four above-mentioned motivations, respectively; in fact, the maximum
limit on P can be considered an intrinsic limit, and the minimum limit on P can be considered as
a type (1) limit, whereas the overexcitation limit is type (2) and the underexcitation limit is often
related to stability constraints, and hence a type (3).
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essential to overcome even more severe phenomena, such as relatively slow
voltages and frequency variations, due to large generator tripping or other
causes. In these cases, the protection system is required to operate only “in
extremis”, i.e., once the control has not succeeded in its action.

• Some protective equipment (e.g., surge arresters) consists of limiting devices
that address external cause by eliminating its undesired effect through a
nonlinear behavior which does not alter the system structure. Many other
protections, as in the typical case of short-circuit current protection, dis-
connect the faulted equipment (connecting it again in case of temporary
fault), causing a structural change. Therefore, in this occasion (and apart
from cases of extreme intervention, when control action is too late), the
control also must address the subsequent (and sometimes severe) effects of
structural changes caused by the protection system itself.

Setting protection devices is usually done according to “local” criteria, which
are not strictly related to control requirements of the whole system(12).

Therefore, the interaction between control and protection systems can be seen
as quite a critical problem (which can be made worse, for example, by protection
out-of-settings); some examples will be given (see Sections 1.7 and 7.3), with
reference to typical situations in the dynamic behavior of the system.

1.5. TYPICAL EXAMPLES OF NONEXISTENCE
OF THE EQUILIBRIUM OPERATION

The system configuration must particularly:

(1) allow the set-up of the desired steady-state condition or, at least, of a
condition meeting the operating requirements;

(2) guarantee a sufficient margin for control actions.

Even to fulfill condition (1) at the adopted configuration, it may be not enough
to have several variables available. In fact, their limitations in variation ranges,
and the nonlinearities of the system equations may be prohibitive.

More precisely, let us assume that some system variables properly chosen (e.g.,
voltages at specific busbars of the network), are set at the desired values, and
their number is as large as possible. If the system configuration is not properly
chosen, it may result that the “static” model of the system, and particularly the
equations relating active and reactive powers, voltages, etc.:

(12) On the other hand, network protection coordination implies specific difficulties, in both selectiv-
ity requirements (in order to correctly identify the location of the original fault) and convenience of
arranging the most appropriate intervention sequences, even if device settings are choosen indepen-
dent of the system’s general operating conditions.
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• admit one solution (or more than one, because of nonlinearities), but with
some variables assuming undesired (e.g., voltage far from nominal value at
some location) or unacceptable values, i.e., so as to cause protection device
intervention (e.g., excessive current flow in a line);

• admit no solution at all.

These considerations also involve condition (2), which states that control
systems must work with a sufficient margin of action. In fact, if control sys-
tems were programmed to work around a steady-state point close to the limits
of solution existence (or to the limits of protection intervention), they might
be ineffective or even cause instability, even in response to relatively small
perturbations.

The following are meaningful, although simple(13), examples that illustrate:

• typical operating limits that are dependent on system configuration and can
be responsible for the nonexistence of the desired solution (such limits can
be considered intrinsic, in addition to those related to each equipment, as
mentioned in Section 1.4.1);

• different instability situations that may occur when conditions cannot pro-
duce the desired solution.

Example 1
Let us consider the system illustrated by obvious notations in Figure 1.2a,b,
where(14):

• the block (G) includes the generating system, constituted by more plants
and represented by a single equivalent unit, with emf ea (vector) behind a
series reactance Xa; more precisely, the amplitude ea of the emf depends
on the excitation voltage of the equivalent generating unit, whereas its
phase is the (electrical) angular position of the rotor, apart from a dif-
ference by a constant value depending on the Park’s transformation angular
reference;

• the block (M) includes a static compensator of adjustable susceptance B;
• the block (L) represents a connection link of reactance X, given by more

parallel lines; therefore, the value of X depends on the actual set of operating
lines;

• finally, the block (U) represents the utilization system, defined as a resistance
R, the value of which depends on the actual set of users.

(13) Generally, to keep the examples related to practical cases, the block (U) in Figure 1.2a can include
a reactance in series to the resistance R; nevertheless, the resulting conclusions are analogous to
those presented afterward (see also Chapter 6).
(14) Vectors are defined according to the Park’s transformation (see Appendix 2), and impedances are
intended as evaluated at nominal frequency. (See Chapters 4 and 5 for more details and to evaluate
the adopted approximations.)
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Figure 1.2. Some elementary examples (see text): (a) Reference diagram;
(b) Example 1, with static compensator; (c) Example 2, with synchronous
compensator (or generator).

(For the sake of simplicity, no transformer is included, although one could
account for it in an obvious way).

To achieve the desired values of the voltages va and vc (amplitudes), let us
assume that the control of va is performed by means of ea , and the control of vc
through the adjustment of B.

It should be specifically noted that, by imposing va = vc, it results Qa = Qb, which is to
say that a reactive power equal to half of what is absorbed by the link (L) (and varying
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in accordance to the Pa to be transmitted) must be injected at each end of the line. This
condition is obviously not related to the rest of the system and therefore can be extended
to the following Example 2.

It should be noted that:

• at each given B, both voltages va and vc are proportional to ea;
• on the other hand, the ratio vc/va depends only on B, according to the

equation: (
vc

va

)2

= R2

R2(1 − BX)2 + X2

and cannot be larger than R/X (see Fig. 1.3); consequently, the desired
voltage profile can be obtained only if the ratio R/X is large enough.

In other words (and not considering the variation limits for ea and B) the
desired value for va can always be achieved by acting on ea , while the desired
value of vc can be achieved only if it is not larger than Rva/X, which can
then be defined as “supportability limit” of the voltage vc; the considered case
also implies a limitation on the power Pc that can be transmitted to the load, as
given by:

Pc = v2
c

R
≤ Rv2

a

X2

By assuming that the regulation of vc is of the “integral” type, with dB/dt pro-
portional to the regulation error (vcdes − vc) (so that B and vc may vary according
to the arrows reported in Fig. 1.3), the value vc = vcdes can be achieved only if
vcdes is below the supportability limit. Otherwise, the regulation error remains

Figure 1.3. Dependence of voltage vc (amplitude) on susceptance B, and varia-
tions due to control actions as per Figure 1.2b.
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positive and B continues to increase, leading to an instability phenomenon, volt-
age instability, which results in the “collapse” of voltage vc

(15).
It is therefore necessary to guarantee relatively large values of R/X, which

is equivalent to maintaining a sufficient set of lines in the link (L), so to have a
reactance X small enough, and to reduce the risk of R/X below its critical value,
in case of line tripping (resulting in larger X) and/or load increase (resulting in
smaller R)(16).

Moreover, if the desired voltage profile can be achieved (vcdes < Rva/X),
it is also necessary that the turbines can supply the driving power required to
operate at the given constant value of frequency. Specifically, it is necessary to
maintain an adequate number of units to guarantee a sufficient “spinning reserve”,
reducing the risk that a tripped generating unit would cause frequency instability
and collapse of the frequency itself.

Example 2
Consider the system of Figure 1.2a and c, which differ from that in the previous
example only in block (M), which now includes a synchronous compensator (or
other generators, still considered an equivalent unit) with an emf eb (vector) behind
a series reactance Xb. The magnitude and phase of eb have analogous meanings as
per ea; in particular, the phase difference between vectors ea and eb is the (electrical)
angular shift between the rotors of the equivalent machines in (G) and (M).

By not limiting the variability of ea and eb, both the desired values of va and
vc can be achieved (by just acting on ea and eb), so that no limitation on Pc

applies (contrary to the previous example).
However, opposite to this, a limit on Pa arises since, if α is the angular shift

between va and vc:
Pa = vavc

X
sinα

so that Pa cannot be larger than vavc/X, which is the “transmissibility limit”
of the active power through the link (L); while the power Pb, given by Pb =
Pc − Pa , cannot be lower than Pc − vavc/X.

Therefore, if the reactance X is not small enough, the link (L) might become
an unacceptable “bottleneck” for active power transmission.

To run the operation at the desired frequency, it is not enough that the total
rotating power matches the load demand Pc with an acceptable margin. In fact,
it is now necessary to consider the above-mentioned limits on Pa and Pb:

(15) The regulation of vc is then coresponsible for the described phenomenon. In real cases, B is
increased up to its maximum value, i.e., the regulation is upper limited, and the voltage collapse may
be avoided. Similar situations can be reached even with nonintegral regulation, provided the “static
gain” of the regulator is large enough, as generally required by the vc regulation. The phenomenon
can be more complex because of interactions with the regulation of va (more specifically: va can
also decrease if ea reaches its maximum limit and/or its regulation is not fast enough), protection
intervention (due to low voltage or increased line and generator currents), and other factors.
(16) Similar results are obtained in a system with no capacitor and in which block (L) presents at its
terminal, at the load side, a tap-changing transformer used to regulate vc .
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• by properly sharing the rotating power between (G) and (M);

• by maintaining an acceptable line set in the link (L), thus providing a suffi-
ciently high transmissibility limit, also considering the risk of line outages.

This last measure can become essential when the units in (M) are of small
or even zero rotating power, with the latter being the case of a synchronous
compensator.

In fact, in the opposite case (i.e., if the total rotating power is enough but the
rotating power in (M) is below Pc − vavc/X), the generating set (M) lacks driving
power and slows down, so that the desired steady-state cannot be achieved. Par-
ticularly, it can be seen that at specific conditions concerning driving powers the
synchronism between (G) and (M) might be achieved but at a frequency progres-
sively lower (collapse); otherwise, if the total driving powers in (G) and (M) were
equal to Pc, according to the power balance necessary for frequency regulation,
the lack of power for the unit (M) would result in a surplus of power for the unit
(G), causing the latter to accelerate. The final consequence would be another insta-
bility, known as loss of synchronism between (G) and (M) (see also Section 1.6).

1.6. SYNCHRONIZING ACTIONS BETWEEN MACHINES

Synchronous machines have the property, which is fundamentally important to
the steady-state operation of the system, of spontaneously synchronizing with
one another under proper operating conditions. In other words, if these machines
present initial (electrical) speeds different from one another, the variations in
their reciprocal angular shifts cause subsequent variations in active generated
powers. These variations usually slow down the faster rotors and speed up the
slower rotors, until — obviously if no further perturbation is applied — the speed
deviations are reduced to zero.

This synchronizing phenomenon is generally characterized by damped oscilla-
tions (called “electromechanical” oscillations). However, the oscillations might
degenerate into the so-called “loss of synchronism” between one or more machines
and the remaining ones, following particular perturbations of relative severity.

To qualitatively ascertain these phenomena, consider the simple system in
Figure 1.2c, which includes only two machines.

By denoting Pma and Pmb as the driving powers of the two units and Ωa and
Ωb as the electrical speeds of their rotors, the motion of the units (considering
only their inertias) can be estimated with the following equations:



Pma − Pa = Ma

dΩa

dt

Pmb − Pb = Mb

dΩb

dt

with Ma and Mb constant.
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If a “static” model for the electrical part(17) of the system is assumed, the
electrical powers Pa and Pb are only dependent on the magnitudes ea and eb of
the emfs and on the angular shift δab between the emfs themselves.

Specifically, by developing the relations between emfs and currents, the fol-
lowing equations can be derived:

{
Pa = A sin δab + B cos δab + Ca

Pb = −A sin δab + B cos δab + Cb

where A, B, Ca and Cb are functions of ea and eb, according to(18):




A � R2

R2 + X′2
eaeb

Xa +X + Xb

B � RX′

R2 +X′2
eaeb

Xa + X +Xb

Ca � R

R2 + X′2

(
eaXb

Xa + X + Xb

)2

Cb � R

R2 + X′2

(
eb(Xa +X)

Xa + X +Xb

)2

where, for the sake of simplicity,

X′ � (Xa + X)Xb

Xa + X +Xb

Moreover, the angular shift δab is equal to the electrical angular shift between
the rotors of the two units, so that the following equation holds:

dδab

dt
= Ωa − Ωb � Ωab

The previous equations can be depicted by Figure 1.4a. Specifically, the
relative motion of the rotors is defined, according to the block diagram of

(17) More precisely (see Section 3.1.1), Ma and Mb should be considered respectively proportional to
Ωa and Ωb, but the assumption of constant Ma and Mb may be accepted due to the negligible speed
variations that can occur. Besides that, a more rigorous description of the system should account for
the dependence of ea and eb on speeds and more generally for the actual dynamic behavior of the
electrical part of the machines and network. In particular, the reactances Xa , X, Xb are calculated
at the nominal frequency as if the speeds Ωa and Ωb were equal to each other and to the nominal
network frequency; for more details, see Chapters 4 and 5.
(18) Other network variables, particularly va and vb, are related to ea , eb, δab . If “ideal” voltage
regulations are assumed (i.e., with ea and eb to keep va and vb exactly constant), ea and eb would
become functions of δab . The same would happen for A, B, Ca , Cb, and the dependence of Pa , Pb
on δab would no longer be sinusoidal.
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Figure 1.4. Block diagram for the system of Figure 1.2c: (a) motion of the two
machines; (b) relative motion between the two machines.

Figure 1.4b, by:




dδab

dt
= Ωab

dΩab

dt
= Pma − Pa

Ma

− Pmb − Pb

Mb

= Pma(b) − Pa(b)

Mab

[1.6.1]

in which: 


Pma(b) � Pma − Ma(Pma + Pmb)

Ma + Mb

Pa(b) � Pa − Ma(Pa + Pb)

Ma +Mb

Mab � MaMb

Ma + Mb
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where, in accordance to the above:

Pa(b) = A sin δab + Mb − Ma

Ma + Mb

B cos δab + MbCa −MaCb

Ma + Mb

Let us now assume, for simplicity, that Pma(b) remains constant (because, for
instance, Pma and Pmb are constant, or even variable due to the f/P control but
proportionally to Ma and Mb, respectively). Let us also assume that ea and eb
are constant (not considering the regulation of va and vc), so that the power Pa(b)

is dependent only on δab as shown in Figure 1.5(19).
The equilibrium of the relative motion (i.e., the synchronous operation) is

defined by the following conditions:




0 = dδab

dt

0 = dΩab

dt

from which the steady-state values of δab and Ωab can be deduced.
Specifically, Ωab = 0, i.e. Ωa = Ωb, can be deduced from the first condition,

while the second condition gives Pa(b) = Pma(b) from which the two solutions δoab ,
δLab result, as generically shown in Figure 1.5, apart from the periodical repetition
every 360◦ with respect to δab

(20).
The solution δab = δoab , where Pab is an increasing function of δab , corresponds

to a stable equilibrium point around which electromechanical oscillations may
occur. The solution δab = δLab corresponds to an unstable equilibrium point.

To verify this, let us assume that the shift δab and the slip Ωab had the initial
values δiab = δ′

ab , Ωi
ab = 0 (the superscript “i” stands for initial value), with

(19) One should note that if one of the two units had an infinite inertia (e.g., Mb = ∞), it would simply
result Ωb = constant. Moreover, Pma(b) = Pma , Pa(b) = Pa , Mab = Ma . Furthermore, if Mb = ∞
and Xb = 0, which is equivalent to considering the node at voltage vc as an “infinite busbar,” the
following (simpler) result would be obtained:

B = Ca = 0, Pa(b) = Pa = A sin δab = eaeb

Xa + X
sin δab

The treatment can be viewed as a generalization of such simple cases, nevertheless with no formal
difference. It could be also extended in an analogous way to the case of “ideal” voltage regulations,
by considering the dependence (again of the “static” type) of Pa(b) on δab , according to what is stated
in footnote(18). However, this is not recommended for practical purposes, because the actual behavior
of regulations increases the system dynamic order and might lead to instabilities not revealed by this
analysis (see Section 7.2.2).

(20) It is assumed that Pma(b) is within the minimum and maximum values of Pa(b), otherwise no
solution would exist and the “loss of synchronism” between the two units would certainly result (see
Section 1.5, Example 2).
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Figure 1.5. Active power versus angular shift curve, used to analyze the relative
motion between machines, as in Figure 1.2c.

δ′
ab < δoab as in Figure 1.5(21). Under such assumptions, it follows that P i

a(b) <

Pma(b) and (dΩab/dt)i > 0, so that the slip Ωab = dδab/dt becomes positive
and the shift δab increases. Then Pa(b) becomes larger, dΩab/dt diminishes (it
goes to zero at δab = δoab and becomes negative for δab > δoab), and Ωab reaches
its maximum value (ΩabM ) at δab = δoab and subsequently decreases by again
crossing zero (under the following conditions) at a given value δab = δ′′

ab .
Specifically, from Equations [1.6.1] it follows that:

(Pa(b) − Pma(b))dδab + MabΩabdΩab = 0

and consequently:

V (δab,Ωab) � W(δab) + MabΩ
2
ab

2
= constant = W(δiab) + Mab(Ω

i
ab)

2

2
= V i

[1.6.2]

(21) Such a situation may occur if, for example, the system is initially in equilibrium condition with
Pma(b) = Pa(b), Ωab = 0 and one of the lines connecting the two units is tripped, causing a sudden
variation of the curve (Pa(b), δab) to that in Figure 1.5. On the contrary, generic values of δiab ,
Ωi

ab 
= 0 can be the consequence of a multiple perturbation, such as an opening-closing after a
short-circuit fault or other situations.
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in which(22):

W(δab) �
∫ δab

δoab

(Pa(b) − Pma(b))dδab

Therefore, the values ΩabM , δ′′
ab must satisfy the following conditions:



MabΩ

2
abM

2
= V i

W(δ′′
ab) = V i

where V i = W(δ′
ab) is known.

The equation ΩabM = √
2V i/Mab can be derived, while δ′′

ab can be obtained
according to Figure 1.5, where the two dotted areas — respectively equal to
W(δ′

ab) and W(δ′′
ab)— are both equal to V i with δ′′

ab ∈ (δ0
ab, δ

L
ab) (“equal area”

criterion). It should be noted that W(δ′′
ab) cannot be larger than the “limiting”

value V L as defined in Figure 1.6 (the area limited by the bold line). Conse-
quently, the solution at δ′′

ab exists if and only if V i ≤ V L, where V L is the value
of the function V (δab,Ωab) at the second equilibrium point (δab = δLab,Ωab = 0),
i.e., V L � V (δLab, 0).

Figure 1.6. Typical behaviors of angular shift between machines for the system
of Figure 1.2c.

(22) Actually, in the definition of W(δab), the lower integration limit may be arbitrarily chosen or
even different from δoab . One should note that the function V (δab ,Ωab) is (independent from the
possibility of assigning to it any particular physical meaning in terms of energy) a Lyapunov function,
used to analyze stability properties of the system (see Section 8.3).
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At the limit case V i = V L, it is easy to see that the system would settle itself
at the second equilibrium point, indefinitely.

When V i < V L (obviously is the most interesting case from the practical
point of view), the transient of Ωab , δab continues to oscillate. Starting from
the point at which δab = δ′′

ab , the system behaves similarly to what is described
above, but with Ωab negative and δab decreasing, until Ωab (after having reached
its minimum −ΩabM at δab = δoab) again crosses zero at δab = δ′

ab . Then Ωab

and δab again vary as described above, through persistent oscillations around the
equilibrium point δab = δoab , Ωab = 0. One should note that, contrary to possible
expectations, the resistance R in Figure 1.2c has effect only on the function
Pa(b)(δab), without leading to any damping of oscillations.(23)

On the other hand, if V i > V L, Ωab remains positive and δab always increases, leading to a
loss of synchronism because of the lack of synchronizing actions. The loss of synchronism
then can happen not only because of the lack of equilibrium points (see footnote(20) and
Section 1.5), but also in the presence of a stable equilibrium point, if the initial point is
“too far,” i.e., with V i > V L, from it.

During the increase of δab at the loss of synchronism, currents and voltages in Figure 1.2c
experience unacceptable transients, which actually cause the intervention of protective
actions, with the disconnection of the two units. By simply assuming, for instance, Xb = 0,
vc = eb, one can say that, for δab = 180◦:

• the current in the link between the two units reaches its maximum value (ea + eb)/

(Xa + X);

• the voltage va (amplitude) reaches its minimum value (Xaeb − Xea)/(Xa + X);

• the voltage becomes zero (as if a short-circuit occurred) at an intermediate point
of the branch connecting ea and eb (this point, also named “electrical center,” is
defined by the pair of reactances X1 (from the ea side) and X2 (from the eb side),
with X1 + X2 = Xa +X, ea/X1 = eb/X2).

In conclusion, the oscillations discussed above depend only on the value V i

of the function V (δab,Ωab) at the initial instant. Therefore, they also may occur
starting from δiab = δ′′

ab , Ωi
ab = 0 or, more generally, from any pair of initial

values δiab ∈ (δ′
ab, δ

′′
ab), Ω

i
ab 
= 0 that provides the same value of V i .(24)

(23) Under the adopted assumptions, the oscillations are persistent and the equilibrium is “weakly”
stable. Nevertheless, in a real two-machine system, oscillations are generally damped because of
the dynamic behavior of different components (particularly because of the effect of rotor circuits
of machines). However, such damping may be negative (e.g., because of dynamic interactions with
voltage regulators; see also footnote(19)), if proper stabilizing actions are not provided through control
systems (see Section 7.2.2).
(24) For “small” variations (i.e., when δiab → δoab , Ωi

ab → 0) the oscillations of δab , Ωab tend to
become sinusoidal, with amplitudes (δ′′

ab − δ′
ab)/2 → √

2V i /K (where K � (dPa(b)/dδab)
o) and

ΩabM = √
2V i /Mab respectively, and at frequency ΩabM/((δ′′

ab − δ′
ab)/2) → √

K/Mab , as it also
can be deduced by “linearizing” the system of Figure 1.4b.
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The only condition for the existence of oscillations (for generic initial condi-
tions δiab , Ωi

ab) is then:
V i < V L

whereas, when V i > V L, the loss of synchronism results, as shown in Figure 1.6.
Additionally, it is easy to determine, under analogous considerations, that the
equilibrium point (δLab, 0) is unstable, because any generic deviation from it would
cause oscillations around (δoab, 0) or loss of synchronism.

All the phenomena described here can be accounted for more concisely by
considering (see Fig. 1.7) the possible “trajectories” on the (δab,Ωab) plane. Each
trajectory is, as shown, characterized by a constant value of V (δab,Ωab) and is
described in the direction indicated by arrows. Then, the knowledge of the initial
point (δiab,Ω

i
ab) immediately permits the subsequent evolution of the angular

shift δab and slip Ωab , thus confirming what is stated above.
Finally, similar phenomena occur in the more general (and more realistic)

case of n machines, with n > 2. In such situations, (n − 1) angular shifts and
(n − 1) slips must be considered, i.e., (n − 1) possible oscillatory modes, which
interact according to system nonlinearities. Unstable situations may occur both
“in the small” (e.g., due to negative damping) and “in the large” (with loss of
synchronism), or because of the lack of equilibrium points (and subsequent loss
of synchronism).(25)

Figure 1.7. Trajectories on the (δab,Ωab) plane, for the system of Figure 1.2c.

(25) In the usual practice, with a more or less “formal” correctness, these three types of instability are
named, respectively, “dynamic,” “transient,” and “static” instability. The transient instability is also
called “first swing” instability, with a clear reference to the undamped two-machine case considered
above (on the contrary, when considering more general cases, loss of synchronism also may occur
after some oscillations).
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The analysis of such phenomena generally requires the use of simulations,
except with indicative analyses (see Section 8.3) based upon a simplified dynamic
model similar to that considered here(26).

1.7. THE PERTURBED OPERATION

1.7.1 As in Section 1.2, the steady-state is actually a limit situation with super-
imposed unavoidable small, zero average, “load fluctuations,” whose effects can
be considered predominantly local and, consequently, moderately important to the
whole system. In this section, such fluctuations will not be addressed; instead,
more relevant perturbations (see also Section 1.2, footnote(5)) will be considered
because of their influence on the whole system with possible risk for its operation.

With these problems, the combination of cases is complex but can be summa-
rized as follows (under the hypothesis of significant perturbations):

(1) perturbations altering only the system configuration and only in a transient
way: for instance, a short-circuit from a nonpersistent cause, cleared by
protective devices temporarily disconnecting the faulty equipment;

(2) perturbations not altering the system configuration (with regard to gener-
ation, transmission, and the most important distribution links), but forcing
the system to leave its original steady-state: for instance, a “gradual” load
variation;

(3) perturbations permanently altering the system configuration: for instance,
a short-circuit from a permanent cause and subsequent disconnection of
the affected equipment by protective devices; with more detail, it can
happen that:
(3a) the resulting system is still connected: for instance, because of a

tripped network with alternative routings (Fig. 1.8a), a generating
plant outage (Fig. 1.8b), or the loss of a user group (Fig. 1.8c)(27);

(3b) the system is separated into two parts, each including generators,
transmission, and distribution systems, and loads: for instance, as a
result of a tripped (single) interconnection line (Fig. 1.8d).

(26) In the above example, due to the adopted assumptions, the loss of synchronism phenomenon
occurs in a definitive way, i.e., without any chance to restore synchronism.

In real systems, the combined effects of the different damping actions — due, for instance, to
machine rotor circuits and control systems — also might permit this restoration (cases of temporary
loss of synchronism), provided that the links between the units are not disconnected by tripping from
overcurrent protections.
(27) Actually, the cases of Figures 1.8b,c also imply a disconnection of the original system and might
be treated as limit cases of type (3b).
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Figure 1.8. Examples of perturbations that permanently alter the system config-
uration: (a) internal line trip; (b) generating plant outage; (c) loss of a user group;
(d) (single) interconnection line trip.

In addition, other perturbations, such as the outage of control system parts,
cannot be excluded.

In case (1), the system is required to return to its original (stable) steady-state.
In the other cases, above all, the system — or each of the two resulting parts in
the case (3b) — is required to settle in a stable steady-state. Furthermore, when
this occurs, it should meet all operating requirements. To verify all requirements
are satisfied, a telemetering data report must be collected about the system’s
steady-state.

An accurate estimation of the operating state can be evaluated by using system equations
(termed “state estimation”; see Section 2.5).

In fact, based on collected data and verification, the steady-state could be mod-
ified using available variables and acting on control parameters and “setpoints.”

Additionally, it might be worth modifying the system configuration: adjusting
it to the new load conditions in case (2), and restoring the original configura-
tion, or achieving a new one, in cases (3a) and (3b). However, “restoration” of
the original configuration is not possible if the outaged equipment is affected
by permanent faults. The change to a new configuration must involve rec-
tifying any critical situations; for example, adding generators or connecting
new links.
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Nevertheless, the operations required to put into service an equipment also may
require special attention and/or long times, particularly with long lines, specific
users, and steam-turbine power plants (the case is much easier for hydroelectric
or gas-turbine power plants, which can be seen as a type of “quick reserve”; see
also Section 2.4.2a).

1.7.2 The perturbed operation may become more complex and critical because
of one of the following reasons:

(1) during the transient itself (approaching the stable steady-state condition),
protection system action (e.g., due to excessive transient overcurrent in
some line) causes new perturbations;

(2) instability situations arise, specifically:

• equilibrium points exist but are unstable(28): for instance, with unstable
electromechanical oscillations;

• the final configuration (as in cases (3a), (3b)) does not permit equilib-
rium points, thus leading, e.g., to voltage or frequency instability or loss
of synchronism (see Section 1.5);

• stable equilibrium points exist but are not reachable from the initial sys-
tem “state”: see the simple system in Figure 1.2b, when (even assuming
vcdes < Rva/X) the susceptance B is initially larger than the value BL

reported in Figure 1.3, so that the result is again voltage instability; alter-
natively, refer to cases of loss of synchronism illustrated in Section 1.6
with V i > V L.

Instability situations also may result in protective actions of generator or load
disconnections, or line tripping, which could be due to excessive currents and/or
voltage or frequency dips.

Therefore, the subsequent behavior of the system, eventually split into more
parts, must be examined in its new operating conditions.

In most real cases, system operation might not be disrupted, with the exception
of local outages: for example, the trip of a load with a voltage instability (to
remove the instability itself) or the disconnection of a relatively small unit with
a loss of synchronism.

Nevertheless, much more severe situations may occur, i.e., emergency situa-
tions capable of leading the system to a total outage (blackout). This may happen
in case of a cascade tripping caused by overcurrent protections because of the
progressive weakening of the network configuration. It also can occur when the
rotating power becomes insufficient, causing a frequency collapse; this can be

(28) This might happen even when considering the case (2), for which the configuration is not altered.
One should not be surprised because, due to the nonlinearities of the system, the stability properties
can change with the equilibrium point.
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worsened by further power plant disconnections because of protective actions in
auxiliary systems.

To some extent, all these risks may be considered in operation scheduling, by
imposing security checks on the generic steady-state. However, it is important
to conduct an up-to-date diagnosis of the system during the perturbed operation
itself, considering the results of preventive analyses, possibly synthesized in terms
of stability “indices” or similar measures which can be quickly evaluated in
real-time.(29)

If the diagnosis reveals an emergency situation as described above, then it
is necessary to modify the system with new controls to avoid possible outages.
An example would be operating the forced disconnection of some loads (load-
shedding) to eliminate rotating power deficiencies (see Section 3.5) or prevent, or
stop, cascade protection interventions (“cascading outages”). When outages are
unavoidable it is also important to initiate actions that make easier and quicker
the subsequent restoring operations: for instance, “isolating” thermal power plants
from the network before a unit trip occurs, allowing operation via their auxiliary
systems (load-rejection) and local loads, to be ready for reconnection to the
network.

1.8. DYNAMIC PHENOMENA AND THEIR CLASSIFICATION

1.8.1 Dynamic relations among variables that characterize the generic system
can be summarized as in the block diagram of Figure 1.9, where it can be seen:

• subsystem (a) of a predominantly mechanical type, consisting of generat-
ing unit rotating parts (specifically, inertias) and supply systems (thermal,
hydraulic, etc.);

• subsystem (b) of a predominantly electrical type(30), consisting of the re-
maining parts, i.e., generator electrical circuits, transmission, and distribu-
tion systems, and users (and possible energy sources of the nonmechan-
ical type), with the latter possibly assimilated with electrical equivalent
circuits(31).

(29) In particular, the diagnosis may be organized by considering the above-described cases, specifi-
cally the type of perturbations and the possible phenomena of the type (a) or (b).
(30) Subsystem (b) includes mechanical rotating parts of synchronous compensators and electrome-
chanical loads. The mechanical parts of synchronous compensators and of synchronous motors — the
latter including their loads — can be considered, if worthy, in subsystem (a) without any particular
difficulties (but see footnote(31)).
(31) The equivalence must account for the dynamic behavior of loads, as “seen” from the network.
However, with regard to the overall system behavior, strong approximations, which are unavoidable
during the analysis stage, can be accepted (above all in the case of loads composed, in an aggregation
difficult to determine, by a number of users different in type and with modest unitary power).
Equivalent circuits may be used for whole load areas, including in them the MV and LV distribution
networks or even subtransmission networks (see Fig. 1.1).
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Figure 1.9. Broad block diagram of a generic system.

The input variables of the system composed by (a) and (b) are essentially
(apart from structural perturbations):

• openings of prime mover valves, which “enter” into subsystem (a), affecting
driving powers (at given operating conditions of the supply systems, e.g.,
set points of the boiler controls, water stored in reservoirs);

• excitation voltages of synchronous machines, which “enter” into subsystem
(b), affecting the amplitude of emfs applied to the three-phase electrical
system;

• different parameters that can be adjusted for control purposes (specifically,
for the v/Q control): capacitances and inductances of reactive components
(of the static type), transformer ratios of underload tap-changing transform-
ers, etc.;

• load conditions dictated by users, which are further inputs for the subsystem
(b), in terms of equivalent resistances (and inductances) or in terms of
absorbed mechanical powers, etc.(32).

(32) The power produced by nonmechanical sources can be accounted for in an analogous way as a
further input to subsystem (b). For simplicity, the modulation of these powers for the f/P control
is not considered here.
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Figure 1.10. Typical time intervals for analysis and control of the most important
dynamic phenomena.

According to Figure 1.9, the f/P control is achieved by acting on valves’
opening, while the v/Q control is achieved by acting on excitation voltages and
the adjustable parameters mentioned above. The load conditions instead constitute
“disturbance” inputs for both types of control.

Subsystems (a) and (b) interact with each other, specifically through:

• generated active powers;
• electrical speeds of generating units (or, more generally, of synchronous

machines; see footnote(30)) and (electrical) shifts between their rotors.

In fact, generated active powers clearly behave as resistant powers (opposed
to driving powers) on each unit shaft. Consequently, they affect rotor speeds and
relative angular shifts; the speed and angular shifts, vice versa, influence the emf
vectors and thus the active powers produced by generating units (besides the other
variables of the three-phase electrical system). These phenomena cause, under
normal operating conditions, the previously mentioned synchronizing actions.
Through electromechanically damped oscillations these actions usually permit
the recovery of synchronism; only in the presence of large disturbances, might
they be unsuccessful in preventing loss of synchronism.

1.8.2 Regarding response times (see Fig. 1.10), it is important to emphasize
that subsystem (a) generally presents much slower “dynamics” than subsystem
(b)(33), primarily because of the effects of rotor inertias, limits on driving power
rate of change, and delay times by which (because of the dynamic characteristics
of supply systems) driving powers match opening variations of the valves.

(33) Except with torsional phenomena on turbine-generator shafts, which are quite fast (see
Section 4.1.4).
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This fact supports many simplifications, which are particularly useful in iden-
tifying the most significant and characterizing factors of phenomena, performing
dynamic analyses with reasonable approximation, and selecting the criteria and
implementing the significant variables on which the real-time system operation
(control, protection, supervision, etc.) should be based.

According to this order of reasoning, dynamic phenomena can be structured
into one of the following categories:

• “predominantly mechanical” phenomena, caused by perturbations in sub-
system (a) and in f/P control, which are slow enough to allow rough
estimates on the transient response of subsystem (b), up to the adoption of
a purely “static” model (an example is the case of phenomena related to
frequency regulation);

• “predominantly electrical” phenomena, caused by perturbations in subsys-
tem (b) and in v/Q control, which are fast enough that machine speeds
can be assumed constant (for instance, the initial part of voltage and cur-
rent transients following a sudden perturbation in the network) or which
are such to produce negligible variations in active powers, again without
involving the response of subsystem (a) (for instance, phenomena related
to voltage regulation, in case of almost purely reactive load);

• “strictly electromechanical” phenomena, for which interaction between
subsystems (a) and (b) is essential, but it looks acceptable to simplify
the dynamic models of components according to the frequencies of the
most important electromechanical oscillations (e.g., phenomena related to
a single-machine oscillation against the rest of the system, when the latter
may be represented as an equivalent connection line and an “infinite power”
network; see Chapter 7).

However, when analyzing more complex cases for which simplifications may
not seem acceptable, computer simulations can become necessary.

ANNOTATED REFERENCES

Among the works of more general interest, the following may be quoted: 5, 11, 21, 25,
30, 37, 46, 50, 53, 54, 231, 337.

Moreover, as far as dynamic and control problems are concerned: 6, 28, 32, 38, 39,
40, 48, 57, 104, 210, 234, 246, 323, 330, and more specifically:

• with reference to terminology: 227, 263;

• with reference to voltage instability: 55, 59, 229, 259, 286;

• with reference to the perturbed (and emergency) operation: 199, 207, 226, 250, 308.

As far as the most peculiar aspects of power engineering are concerned: 24 (especially
for what concerns harmonics), 60.



CHAPTER 2

CONFIGURATION AND WORKING
POINT

2.1. PRELIMINARIES

2.1.1. Basic Assumptions

The definition of the generic steady-state working point primarily requires,
according to Section 1.2.1, that:

• the system configuration and parameters are constant;

• load demands are constant;

• the three-phase electrical part is physically symmetrical with linear behavior.

If one would account for what actually happens in distribution and utilization
systems,

• an enormous amount of data, difficult (or practically impossible) to be col-
lected and subjected to significant uncertainties, would have to be known;

• the overall system model would be excessively overburdened possibly in
an unjustifiable way, because many details may actually have effects that
are predominantly local;

• the previously mentioned hypotheses could appear unrealistic (remember
what was already pointed out in Section 1.2.2).

However, such inconveniences are of minor importance in the overall behavior
of the system; so it appears reasonable (and convenient) that distribution and uti-
lization systems be considered only for behavior as “seen” from the transmission

34
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network, by treating them as equivalent circuits (more or less approximately)
consisting of:

• “equivalent loads,” directly fed by the transmission network through nodes
(called “load nodes”) to which distribution networks are connected;

• connections among these nodes, to account for interactions (e.g., at the
subtransmission level) between distribution networks.

(In a more detailed analysis, some subtransmission networks can be kept with
the transmission system.)

Each “equivalent load” may be defined, more simply, by absorbed powers
(active and reactive) that are constant or slowly varying, apart from disconti-
nuities — such as due to the disconnection of important loads — which actually
are significant at the corresponding load node. On the other hand, prearranged
actions on the network (e.g., voltage regulations and local filtering) and statistical
user compensation can practically allow such approximation.

The (quasi) constancy of absorbed powers enables their identification during
the operation, which can prove a valuable asset in real-time system operation.
Additionally, these approximations can be particularly reasonable in previsional
scheduling, where load forecasting is more reliable when the user sets they refer
to are wider.

Figure 2.1 may be helpful in representing a generic system; this figure shows
the block named “network” defined within types of “terminal” nodes, which can
be classified as follows:

• generation nodes, which correspond to the synchronous generator terminals
(i.e., at the primary side terminals of step-up transformers);

boundary nodes

GENERATION

load
nodes

possible
“equivalent connections”

equivalent
loads

step-up transformers and
TRANSMISSION

NETWORK
(and possible sub-

transmission networks)

REACTIVE
COMPENSATION

generation
nodes

reactive
compensation

nodes

NETWORK
(passive elements)

(possible interconnections)

Figure 2.1. Schematic representation of a generic system.
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• reactive compensation nodes, which correspond in an analogous way to
synchronous and static compensator terminals;

• load nodes, i.e., nodes supplying the equivalent loads;

• possible boundary nodes, for connection with external systems.

Adjustable shunt reactors and condensers may be considered similar to compensators.
Additionally, adjustable series equipment (e.g., tap-changing transformers, regulating
transformers) may be viewed as external components, considering the relationships
between voltages and currents (or powers) at their terminals; the same may be said for
dc links (see Section 5.5), as seen by the ac side of the converters.

Moreover, within block “network” are only “passive” elements, i.e., lines
and transformers of the transmission network (and possibly subtransmission net-
works), step-up transformers, reactors, condensers, etc., in addition to equivalent
connections between load nodes, as above specified. These elements are pre-
dominantly “reactive,” and this fact leads to important properties which will be
discussed later in this book.

2.1.2. Network Representation

In the generic steady-state, under conditions specified in Section 1.2, phase volt-
ages and currents are, at any given network point, sinusoidal, of positive sequence,
and at a “network” frequency equal to the electrical speed of the synchronous
machines. Also, at any given point, active and reactive powers are constant.
Specifically, by applying the Park’s transformation with a “synchronous” refer-
ence (i.e., rotating at the same electrical speed as the synchronous machines), the
following holds:

• each set of phase voltages or currents transforms into a constant vector;

• the characteristics of the (passive) elements of the network and the relation-
ships between the mentioned vectors are defined by the corresponding pos-
itive sequence equivalent circuits, both passive and linear, with impedances
(or admittances) evaluated at the network frequency, and “phase-shifters” in
the case of transformers with complex ratio (see Sections 5.2, 5.3, and 5.4).

(For simplicity, we could also assume as negligible the inductive coupling
between lines close to each other, the variation of parameters, e.g., resistances,
with the temperature, that is with local temperature and current, etc.)

Therefore, the whole network is represented by a passive and linear circuit,
with “nodes” connected through “branches”. More precisely, apart from the “ref-
erence” node for voltage vectors, the following node types can be identified:

• terminal nodes (see Section 2.1.1), through which an outside “injection” of
current or power is generally performed;
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• internal nodes, which refer only to network elements and do not allow any
outside injection.

The set of internal nodes may include particular nodes to be retained (e.g.,
intermediate nodes of a given line, the sections of which are seen as different
elements connected in series); furthermore, it may depend on the type of equiv-
alent circuits adopted for network elements (e.g., a T equivalent circuit leads to
a further intermediate node).

A generic branch may be:

• a series branch, if it connects a pair of the above-mentioned nodes (terminal
and/or internal);

• a shunt branch, if it connects one of the above-mentioned nodes with the
voltage reference node.

Both the set of branches and internal nodes depend on the detail of repre-
sentation of the network as well as the single equivalent circuits adopted (e.g.,
capacitive shunt branches must be considered in the equivalent circuit of a rela-
tively long line).

Furthermore, a shunt branch corresponding to an adjustable reactive element,
which is connected at an internal node, must not be considered part of the network
if, as already specified, it is to be retained (and the corresponding node becomes
a “terminal,” reactive compensation node).

Note that, for a generic transformer with turns proportionate to nominal volt-
ages, it is possible to identify a simple (with no shunt branch) equivalent circuit,
if magnetizing current and iron losses are neglected (as usually acceptable), and
provided that the quantities are expressed in “per unit” values (see Section 5.3).

2.1.3. Network Equations Between Node Voltages
and Branch Currents

With N equal to the total number of nodes (terminal and internal), the currents
(and powers) of the network in Figure 2.1 can be easily determined if the val-
ues, constant in magnitude and phase, of node voltage vectors v1, . . . , vN are
known.

In fact, when no “phase-shifter” is present, let us assume (Fig. 2.2) that the
generic node h is connected:

• to the reference node: through a branch or parallel branches having a com-
bined admittance yho ;

• to the generic node k, with k �= h: through a branch or parallel branches
having a combined admittance yhk .
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Figure 2.2. Admittances corresponding to a generic node (with no phase-shifters).

Knowing the values of vh, vk enables immediate identification of the currents
ıho , ıhk which are defined in Figure 2.1, as it results:

ıho = yhovh

ıhk = yhk (vh − vk)

}
[2.1.1]

from which active and reactive powers can also be determined. Similarly, it is
possible to obtain the current in each branch and the power at its terminals.

The following sequence can be used to determine the currents in each branch:

• branches are numbered (from 1 to L, if L is the number of branches) and the
diagonal matrix Y

L
, named “branch admittance” matrix, is determined by putting

the admittances of the branches on the diagonal, in the assumed order;

• nodes are numbered (from 1 to N) and the matrix C, named “connection” matrix
(with L rows and N columns) is determined, where the nonzero elements are defined
as follows:

• if the generic branch l(l = 1, . . . , L) is of the series type and connects nodes h

and k, with h < k: Clh = −1, Clk = +1;

• if, instead, the branch is a shunt branch between the reference node and the node
k: Clk = +1;

• the column matrix (L,1) of the “branch voltages” u1, . . . , uL — assuming, with pre-
vious notations, that ul = vk − vh if the branch l is of the series type, and ul = vk

if it is a shunt branch — is then given by:

u = CV

where V is the column matrix (N ,1) of node voltages;
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• finally, the column matrix (L,1) of the “branch currents” f 1, . . . , f L — evaluated,
with previous notations, from node k (of higher index) to node h for a series branch,
and from node k to the reference node for a shunt branch — is given by:

f = Y
L
u = Y

L
CV

Terminal currents for any generic network component can be easily identified.
For instance, in a component represented by an equivalent Π circuit for which
the terminals are the generic nodes h and k, the following equations can be
developed, using Figure 2.3 as a model:

ı ′ = y ′
ovh + ys(vh − vk), ı′′ = ys(vh − vk) − y ′′

ovk

Note that y ′
o differs from the admittance yho defined in Figure 2.2 if other shunt

branches are present at node h; similarly, ys may be different from yhk , and so
on. Moreover, currents ı ′ and ı′′ are usually different from each other and from
the ıhk of Figure 2.2.

This treatment must be modified if series branches include phase-shifters,
incorporated because of the presence of complex ratio transformers in the net-
work (i.e., see Section 5.3, transformers with different type of connections at the
different windings, such as wye-delta or vice versa; or “quadrature-regulating”
transformers). The effect of phase-shifters can be determined by observing that,
for the generic series branch reported in Figure 2.4, it results in:

ı ′s = ı ′′s ε
jβ = ys(vh − vkε

jβ)

and consequently:
ı′s = ysvh − (ysε

jβ)vk

ı′′s = (ysε
−jβ)vh − ysvk

}
[2.1.2]

NETWORK ELEMENT

NODE h NODE k

Figure 2.3. Representation for a generic network element (in the absence of
phase-shifters).
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PHASE-SHIFTER

Figure 2.4. Series branch with phase-shifter.

Without phase-shifter it would be, more simply:

ı′s = ı ′′s = ys(vh − vk)

2.1.4. Network Equations Between Node Voltages
and Injected Currents

Knowing the values of currents in different branches enables the immediate eval-
uation of the currents ı1, . . . , ıN injected (by the external systems) at different
nodes as well as the corresponding powers, because the generic current ıh injected
at the node h is the sum of the currents that flow into the branches connected to
it. Actually, the currents injected at the internal nodes must be null; this will be
accounted for at the end of this section.

Since the network is represented by a passive linear circuit, it is easy to
see that the node-injected currents and voltages are related through a matrix
equation:

J = Y V [2.1.3]

where:

• J , V are column matrices (N ,1), respectively, constituted by vectors ıh,
vh that correspond to all the N nodes (both terminal and internal) of the
network (h = 1, . . . , N );

• Y is a square matrix (N ,N ), called “nodal admittance matrix” or simply
“admittance” matrix.

Diagonal elements Y hh are called “self-admittances” or “driving admittances,”
and off-diagonal elements are called “mutual admittances” or “transfer admit-
tances.”

When no phase-shifter is present, it holds (see Fig. 2.2 and Equations [2.1.1])
that:

ıh = ıho +
N∑
1

k �=hıhk = yhovh +
N∑
1

k �=hyhk (vh − vk) (h = 1, . . . , N) [2.1.4]
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Consequently, the elements of the Y matrix are defined by:

Y hh = yho +
N∑
1

k �=hyhk

Y hk = −yhk (k �= h)


 [2.1.5]

(h, k = 1, . . . , N ).
From this, Y hk = Y kh , so that (when no phase-shifter is present) the Y matrix

is symmetrical.
However, in a general case that includes phase-shifters, the symmetry of Y

is not verified. To determine this, one must refer to Equations [2.1.2], noting
that the contribution to the mutual admittance Y hk due to the generic branch of
Figure 2.4 is (−yse

jβ ), while the contribution to Y kh is (−yse
−jβ), and they are

different.

However, a symmetrical matrix-based treatment may usually be adopted, because the
effect of phase-shifters can be accounted for separately. This is the case for transform-
ers equipped with windings connected differently (as in the case of step-up transformers
having their primary windings, from the generator side, delta connected and with their
secondary windings wye connected) and linking two “subnetworks”. Such a link system-
atically introduces (see Section 5.3) a 30◦ lead shift in all voltage and current vectors
pertaining to one of the two subnetworks. It is possible to treat the system as if no phase-
shifter were present, by applying a variable transformation (of the type v′

h = vhe
−j30◦

,
ı ′

h = ıhe
−j30◦

) to these vectors.

The situation differs when quadrature-regulating transformers are present, because they
produce angular shifts on single branches (only some degrees, however not negligible with
respect to angular shifts between voltages). Therefore, the mesh equations are modified,
with effects on the network steady-state and, more specifically (see Section 2.1.5a), on
active power flows. However, these angular shifts are usually small compared with the
branch admittances’ phases, so the resulting dissymmetry in the admittance matrix may
be disregarded.

The admittance matrix Y can be easily determined, starting from the network
configuration and from each branch parameters. For instance, assuming there are
no phase-shifters or they can be disregarded as explained above, the matrix Y
can be evaluated according to:

Y = CT Y
L
C

where Y
L

and C are the matrices already defined in Section 2.1.3, while CT

is the transposed matrix of C. In fact, the column matrix J (of the injected
currents) is related to the column matrix f of the branch currents according
to the equation J = CT f , where f = Y

L
CV . It then follows J = Y V , with

Y = CT Y
L
C.
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From the matrix Equations [2.1.3] one may also derive:

V = Z J [2.1.6]

where Z is the square matrix (N ,N ), called “nodal impedance matrix” or simply
“impedance” matrix, defined by Z � Y −1. Diagonal elements Z hh are called
“self-impedances” and off-diagonal elements are called “mutual impedances”.
With no phase-shifters, Z is obviously symmetrical, like Y .

The admittance matrix is usually very “sparse,” i.e., with many zero elements,
while the impedance matrix is usually “full”. As a rule of thumb, the number of
nonzero elements in Y is in the order of (4–5)N — instead of N2 — of which
N are diagonal and (3–4)N are off-diagonal. This corresponds to the case for
which each node is, on average, directly connected only to other 3 to 4 nodes.

The determination of the matrix Z is not as easy as that of Y . For instance
(differently from the mutual admittances; see the last of Equations [2.1.5]) the
generic impedance Z hk generally does not depend only on the parameters of the
connection between nodes h and k.

Nevertheless, it is not difficult to account for the modification of such two matrices
when, for instance, a branch of impedance z is added (or a branch of impedance −z is
disconnected; the two actions are obviously equivalent).

The effect on Y is immediately seen, according to previous notes. As far as Z is concerned,
denoting by Z 0 the original matrix, i.e., the one before branch addition, the following can
be observed.

• If a branch of impedance z is added in a shunt connection at the generic node r

(see Fig. 2.5a), it follows that:

vh =
∑
k �=r

Z 0
hk ık + Z 0

hr

(
ır − vr

z

)
=
∑

k

Z 0
hk ık − Z 0

hr

vr

z
(h = 1, . . . , N)

For h = r , an equation is then obtained which identifies vr as a function of ı1, . . . , ıN ;
by substituting it in the previous equation (h = 1, . . . , N), the following can be finally
deduced:

vh =
∑

k

(
Z 0

hk − Z 0
hr Z 0

rk

z + Z 0
rr

)
· ık [2.1.7]

where the coefficient of the generic ık defines the element Z hk of the resulting
matrix Z .

• If the branch of impedance z is instead added between the generic nodes r and s

(see Fig. 2.5b), the following can be written:

vh =
∑
k �=r,s

Z 0
hk ık + Z 0

hr

(
ır − vr − vs

z

)
+ Z 0

hs

(
ıs + vr − vs

z

)

=
∑

k

Z 0
hk ık − (Z 0

hr − Z 0
hs)

vr − vs

z
(h = 1, . . . , N)
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...

impedance matrix

impedance matrix

Figure 2.5. Addition of a branch: (a) shunt branch; (b) series branch.

By subtracting the expressions of vr and vs (respectively obtained for h = r and
h = s), an equation is obtained which evaluates (vr − vs) as a function of ı1, . . . , ıN ;
by substituting it in the previous equation (h = 1, . . . , N), the following can be
finally deduced:

vh =
∑

k

(
Z 0

hk − (Z 0
hr − Z 0

hs)(Z 0
rk − Z 0

sk )

z + Z 0
rr + Z 0

ss − Z 0
rs − Z 0

sr

)
· ık [2.1.8]

where the coefficient of the generic ık still defines (as desired) the element Zhk of
the resulting matrix.

The matrices Y and Z , constituted by complex elements, can be put in the
form of Y = G + jB , Z = R + jX . G is a real element square matrix (N, N ),
called “nodal conductance matrix” or simply “conductance matrix,” constituted
by “self conductances” (on the diagonal) and “mutual conductances” (off the
diagonal). The same can be said for B , R, X , with analogous denominations, by
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respectively substituting the word “conductance” with the words “susceptance,”
“resistance,” and “reactance.”

In particular, if the connection between the generic nodes h, k is through a
single, purely reactive branch of reactance x, it follows (with known notation):

yhk = 1

jx
= − j

x
, Y hk = Y kh = −yhk = + j

x

(see the second part of Equations [2.1.5]), and then Ghk = Gkh = 0, Bhk = Bkh =
+1/x. Instead, if the branch also includes a phase-shifter, as per Figure 2.4, it
then results:

Y hk = −yhk ejβ = j
ejβ

x
, Y kh = −yhk e−jβ = j

e−jβ

x

and thus:

Ghk = −Gkh = −sin β

x
, Bhk = Bkh = cos β

x

i.e. the mutual susceptances between the nodes h, k are still equal to each other,
whereas the mutual conductances are different from zero and have opposite
values.

However, usually, the network elements are predominantly reactive, whereas
the effect of possible phase-shifters can be, as seen, considered separately or
disregarded. Then, as a first-level approximation, it may be assumed Y = jB
and similarly Z = jX (where X = −B−1) with B and X symmetrical matrices.

In the equations developed up to now, it was not considered that currents
injected at the internal nodes of the network are necessarily null. If, when num-
bering network nodes, the terminal nodes are listed before the internal nodes,
Equation [2.1.3] can be rewritten as:

(
ı

0

)
=
(

Y
(tt)

Y
(ti)

Y
(it)

Y
(ii)

)(
v

v(i)

)

where:

• v, v(i) are, respectively, column matrices of the terminal node voltages and
internal node voltages;

• ı is the column matrix of currents injected at the terminal nodes;
• Y

(tt)
, Y

(ti)
, Y

(it)
, and Y

(ii)
are submatrices obtained by partitioning the

matrix Y .

From the above, it can be deduced:

v(i) = −(Y
(ii)

)−1Y
(it)

v [2.1.9]

and furthermore, by defining Y � Y
(tt) − Y

(ti)
(Y

(ii)
)−1Y

(it)
,

ı = Yv [2.1.10]
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Actually, the steady-state behavior of the network is completely determined
once the voltages (vectors) at only the terminal nodes are given, whereas:

• voltages at the remaining nodes (and, consequently, currents in the different
branches, etc.) can be derived from Equation [2.1.9];

• currents injected at the terminal nodes are expressed by Equation [2.1.10].

The matrix Y in Equation [2.1.10] is the admittance matrix corresponding only
to the terminal nodes. It is a square matrix having as many rows and columns as
terminal nodes, and is less sparse than the Y matrix, and even full. Furthermore,
it is symmetrical and/or purely imaginary, if the matrix Y is so.

A passive and linear equivalent circuit, for which the nodes are terminal nodes,
can be associated with Equation [2.1.10]. If Y is symmetrical, the equivalent
branch connecting the generic terminal nodes h, k must have an admittance
(−Y hk ), whereas the equivalent shunt branch at node h has an admittance (Y hh +∑

k �=h Y hk ), i.e.,
∑

h Y hk .
Note that, by eliminating (internal) node N , a (N − 1, N − 1) admittance

matrix Y (N−1) would result, with the generic element:

Y (N−1)

hk = Y hk − Y hN Y Nk

Y NN

A relatively simple way to deduce the matrix Y can be based on the elimination
of the internal nodes, one at a time, by repetitively using expressions analogous
to the previous one.

Finally, by partitioning the matrix Z , Equation [2.1.6] can be rewritten as:

(
v

v(i)

)
=
(

Z
(tt)

Z
(ti)

Z
(it)

Z
(ii)

)(
ı

0

)

thus resulting in equations v = Z
(tt)

ı, v(i) = Z
(it)

ı; i.e., ı = (Z
(tt)

)−1v, v(i) = Z
(it)

(Z
(tt)

)−1v, which are equivalent to Equations [2.1.10] and [2.1.9] respectively, as — due
to Y Z = I(N) — it results (Z

(tt)
)−1 = Y

(tt) − Y
(ti)

(Y
(ii)

)−1Y
(it) = Y , Z

(it)
(Z

(tt)
)−1 =

−(Y
(ii)

)−1Y
(it)

. More importantly, the impedance matrix relative to the terminal nodes
is directly given by Z

(tt)
.

2.1.5. Network Equations Between Node Voltages and Powers

(a) Generalities
As already discussed in Sections 2.1.3 and 2.1.4, knowing the values of node
voltages and different currents entering and leaving the nodes allows an easy
estimation of the corresponding values of the active and reactive powers.
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With reference, for instance, to the simple circuit of Figure 2.3, it is easy to
determine the complex power entering node h:

P ′ + jQ′ = vhı ′∗ = v2
hy ′∗

0 + (v2
h − vhv∗

k)y
∗
s

where the term v2
hy ′∗

0 is the complex power adsorbed by the shunt branch. By
letting vh � vhejαh , vk � vke

jαk , αhk � αh − αk and y � g + jb, the following
equations may be deduced:

{
P ′ = v2

hg′
o + vh(vh − vk cos αhk )gs − vhvk sin αhk bs

Q′ = −v2
hb′

o − vh(vh − vk cos αhk )bs − vhvk sin αhk gs

which define the dependence of P ′ (active power) and Q′ (reactive power) on the
magnitudes of the voltages vh, vk and on the phase shift between them. Similar
relationships may be deduced for node k.

In particular, if the circuit is purely reactive, it follows that, by letting ys =
jbs = −j/x (x being the reactance of the series branch):




P ′ = vhvk

x
sin αhk

Q′ = −v2
hb′

o + vh(vh − vk cos αhk )

x

where P ′ is the active power leaving node k, i.e., it is the active power transmitted
(from h to k) through the circuit.

Furthermore, if such transmission occurs at small phase shift αhk (e.g., 10◦ or
less), so that it may be assumed cos αhk

∼= 1, sin αhk
∼= αhk , the following holds:

P ′ ∼= vhvk

x
αhk

Q′ ∼= −v2
hb′

o + vh(vh − vk)

x


 [2.1.11]

from which it is evident that the phase shift αhk practically influences only the
active power flow, whereas the reactive power Q′ (and similarly, the reactive
power relative to node k) is essentially dependent on the voltage magnitudes vh

and vk .
Under the adopted assumptions, these last conclusions still hold in the presence

of phase-shifting due to quadrature-regulating transformers (see also Section 5.3),
because of the modest value of the considered phase shifts.

Now consider the complex powers P1 + jQ1, . . . , PN + jQN injected (from
the external) at nodes. From Equation [2.1.3] it can be deduced:

Ph + jQh = vhı∗h = vh

∑
k

Y ∗
hk v∗

k

= v2
hY ∗

hh + vh

N∑
1

k �=hY ∗
hkvke

jαhk
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from which the following equations can be obtained:

Ph = v2
hGhh + vh

N∑
1

k �=hvk(Ghk cos αhk + Bhk sin αhk )

Qh = −v2
hBhh + vh

N∑
1

k �=hvk(Ghk sin αhk − Bhk cos αhk )




(h = 1, . . . , N)

[2.1.12]
The above equations define injected active and reactive powers as functions of
the node voltage magnitudes and phase shifts.

Actually, powers injected at the internal nodes must be zero (as well as
currents), whereas internal node voltages depend on terminal node voltages
according to Equation [2.1.9].

To deduce powers injected at terminal nodes as functions of voltages at the
same nodes, one can refer to Equation [2.1.10] (again by assuming that, when
ordering nodes, the terminal nodes are considered first), by directly obtaining a
similar equation:

Ph = v2
hGhh + vh

n∑
1

k �=hvk(Ghk cos αhk + Bhk sin αhk )

Qh = −v2
hBhh + vh

n∑
1

k �=hvk(Ghk sin αhk − Bhk cos αhk )




(h = 1, . . . , n)

[2.1.13]
where n is the number of terminal nodes, and Y hk � Ghk + jBhk is a generic
element of the matrix Y .

It is evident that the generic regime of (both injected and internal) powers can
be determined by assigning the n magnitudes v1, . . . , vn and the (n − 1) phase
shifts α21, . . . , αn1 (from which αhk = αh1 − αk1). Generally, this means that, in
terms of active and reactive powers, voltage magnitudes, and phase shifts, the
number of independent variables is (2n − 1) and not 2n.

In fact, if the phases of all terminal node voltages vh were changed by the same arbitrary
quantity, the same would occur to voltages and currents at any point of the network. Then,
the magnitudes of vectors and their respective phase shifts would remain unchanged,
and the same would happen to active and reactive powers. However, during the system
operation, the value of phases may be significant if “phase” regulation is of concern (see
Section 1.3.2, footnote(9)).

(b) Possible Simplifications
To introduce simplifications acceptable to many applications, it may be useful to
note that, in practical situations:

• the network is predominantly reactive, so that in Equations [2.1.12] and
[2.1.13] the terms including conductances may be disregarded as a first
approximation;
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• the phase shifts αhk are generally small, so that it may be assumed — again
as a first approximation — cos αhk = 1, sin αhk = αhk

(1).

Therefore, from Equations [2.1.12], the following approximate equations may
be developed:

Ph = vh

N∑
1

k �=hvkBhk αhk =
N∑
1

kB ′
hkαhk

Qh = −vh

N∑
1

kBhkvk




[2.1.14]

or, alternatively:

Ph = −Qhαh −
N∑
1

kB ′
hk αk =

N∑
1

kB ′
hk αhk

Qh = −
N∑
1

kB ′
hk = −vh

N∑
1

kBhkvk




(h = 1, . . . , N) [2.1.15]

with:
B ′

hk � vhvkBhk [2.1.16]

(Note that as seen, B must be considered symmetrical, so that B ′
hk = B ′

kh ).
Similarly, (again assuming that nodes 1, . . . , n are the terminal nodes, and

n + 1, . . . , N are the internal nodes) it follows from Equations [2.1.13]:

Ph = −Qhαh −
n∑
1

kB
′
hkαk =

n∑
1

kB
′
hk αhk

Qh = −
n∑
1

kB
′
hk = −vh

n∑
1

kBhkvk




[2.1.17]

with:
B ′

hk � vhvkBhk [2.1.18]

Equations [2.1.17] define powers injected at the terminal nodes as function of
voltages (magnitudes and phase shifts) at such nodes.

(1) Here, we obviously assume that the geographical extension of the network is not too much
wide. On the other hand, even in the case of interconnected systems, the network considered here
corresponds to only a generic member of the pool, as limited by its boundary nodes. Moreover, we
assume that, as already pointed out, the shifts due to possible quadrature regulating transformers
have negligible effects.
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Obviously, these equations also can be obtained starting from Equations [2.1.15] by setting
powers injected at the internal nodes equal to zero. Correspondingly, by partitioning
matrices B and B ′ (with elements Bhk and B ′

hk , respectively), it follows with obvious
notation:

• from the first part of Equations [2.1.15]:

α(i) = −(B ′(ii))−1B ′(it)α [2.1.19]

• from the second part of Equations [2.1.15]:

v(i) = −(B(ii))−1B(it)v [2.1.20]

where v, v(i) (and α, α(i)) are the column matrices constituted by the magnitudes (and
phases) of the terminal node voltages and of the internal node voltages, respectively.

With the adopted approximations, these last equations also can be directly derived from
Equation [2.1.9]. Note that, in the matrix (−(B ′(ii))−1B ′(it)), the sum of the elements of
each row is 1; this means that, as already stressed, the same arbitrary variation for all
phases α1, . . . , αn results in an identical variation for α(n+1), . . . , αN .

From the first part of Equations [2.1.17], for h = 2, . . . , n, the following
matrix equation can be finally developed:

P ′ = C′α′ [2.1.21]

where:

• P ′, α′ are the column matrices (n − 1,1) constituted by P2, . . . , Pn and
α21, . . . , αn1, respectively;

• C′ is the matrix (n − 1, n − 1) defined by:

C′
hh = −Qh − B ′

hh =
n∑
1

r �=hB
′
hr , C′

hk = −B ′
hk (k �= h)

whereas P1 = −(P2 + · · · + Pn).
Equation [2.1.21] also can be used to determine phase shifts, starting from

active powers injected at nodes 2, . . . , n; in fact, the following equation can be
obtained:

α′ = (C′)−1P ′ [2.1.22]

from which, remembering Equation [2.1.19]:

α(i)′ = −(B ′(ii))−1B ′(it)(C′)−1P ′ [2.1.23]
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where α(i)′ is the column matrix constituted by the shifts α(n+1)1, . . . , αN1 (note
that, at reactive compensation nodes, the injected active powers are zero).

Similarly, the second part of Equations [2.1.17] also can be rewritten as:

(Q/v) = −Bv [2.1.24]

where B, v have clear meaning, whereas (Q/v) is the column matrix (n,1) con-
stituted by Q1/v1, . . . , Qn/vn.

The (approximate) Equations [2.1.14] define the so-called “direct current”
model of the network, as:

• active powers P1, . . . , PN injected in the network and node voltage phases
α1, . . . , αN may be respectively interpreted as currents and voltages applied
to the (“direct current”) circuit reported in Figure 2.6a, where the generic
B ′

hk is the conductance of the branch connecting nodes h and k;
• similarly, currents Q1/v1, . . . , QN/vN and voltage magnitudes v1, . . . , vN

may be respectively interpreted as currents and voltages applied to the
(“direct current”) circuit of Figure 2.7, where the branch connecting generic
nodes h, k has a conductance Bhk , whereas the shunt branch at node h has
a conductance (−Bhh −∑N

1 k �=hBhk ).

Figure 2.6. The “direct current” model concerning: (a) active powers and
voltage phases; (b) active powers and voltage phase shifts. In the above circuits,
h, k = 2, . . . , N ; moreover, B ′

hk etc. are the conductances of the respective
branches.
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Figure 2.7. The “direct current” model concerning reactive powers and voltage
magnitudes. In the above circuit, h, k = 1, . . . , N ; moreover, Bhk etc. are the
conductances of the respective branches.

Note that Qh/vh is the reactive current — lagging with respect to voltage —
absorbed by the network through node h; the second part of Equations [2.1.14]
and the equivalent circuit of Figure 2.7, are directly deducible from Equation
[2.1.3], by assuming Y = jB and disregarding the voltage phase shifts.

This treatment confirms the strict relationship between reactive powers and
voltage magnitudes, whereas voltage phase shifts are especially effective on the
active power regime.

Note that the circuit in Figure 2.6a has no shunt branches, so that:

• its structure is simpler than that of the circuit in Figure 2.7 (and of the
network itself);

• it satisfies the condition
∑N

1 hPh = 0, for which (active power) losses are
zero, in agreement with the assumption of a reactive network.

By assuming, for instance, node 1 as the phase-reference node (we assume
that it is a terminal node, with P1 not necessarily zero), the circuit in Figure 2.6a
can be translated into that of Figure 2.6b, which corresponds to the following
equations (see the first part of Equations [2.1.14]):

Ph =
(

N∑
1

k �=hB ′
hk

)
αh1 −

N∑
2

k �=hB ′
hk αk1 (h = 2, . . . , N) [2.1.25]

(while P1 = −∑N
2 hPh).

Since the powers injected at the internal nodes are zero, additional equivalent
circuits also may be determined, in which only the terminal nodes are retained
(“reduced” direct current model). These circuits correspond to Equations [2.1.17].

Specifically, matrices C′, −B are the “conductance” matrices of the circuits
obtained, respectively, from Figures 2.6b and 2.7, by eliminating the internal
nodes.

With the circuits in Figure 2.6, a further reduction can be obtained, by remem-
bering that active powers injected at the reactive compensation nodes equal zero.
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As explained in Section 2.3.1, it is important to determine, using the parame-
ters of Figure 2.6b circuit, active power flow variations in the branches, caused by:

(1) a variation of the injected power at one node 2, . . . , n (and more generally
2, . . . , N ), accompanied by an opposite variation of P1;

(2) a branch opening for given injected powers.

For this purpose, Equation [2.1.25] may be translated into the matrix equation:




α21
...

αN1


 =




T22 · · · T2N

...
...

TN2 · · · TNN






P2
...

PN




where the matrix, with elements Thk (h, k = 2, . . . , N ), is the (symmetrical)
“resistance matrix” of the circuit in Figure 2.6b; additionally, it holds P1 =
−(P2 + · · · + PN). Moreover, for the generic branch l that connects nodes r

and s, the active power flow from r to s is given by:

Fl = B ′
rs(αr1 − αs1)

In case (1), assuming a variation ∆Pi (i = 2, . . . , N ) with ∆P1 = −∆Pi , it
can be immediately determined:

∆Fl = B ′
rs(Tri − Tsi )∆Pi � ali ∆Pi [2.1.26]

where the coefficient ali may be called sensitivity coefficient to an “injection
shifting” from node i to node 1, because the variation ∆Pi at node i is, by
assumption, balanced by an opposite variation at node 1. If r = 1 or s = 1 (i.e.,
if the branch l is connected to node 1), Equation [2.1.26] holds with Tri = 0 or
Tsi = 0, respectively.

In case (2), assuming the opened branch is branch a between nodes p, q (see
Fig. 2.8a), it is evident that for the rest of the circuit this opening is equivalent
to two opposite injections — ±F at p and q — to force the flow in branch a

(from p to q) to vary from the initial value Fa to F , according to Figure 2.8b.
Therefore the following equations can be developed:




∆αp1 = TppF + Tpq(−F) = (Tpp − Tpq)F

(assuming Tpp = Tpq = 0 if p = 1)

∆αq1 = TqpF + Tqq(−F) = (Tqp − Tqq )F

(assuming Tqp = Tqq = 0 if q = 1)
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Figure 2.8. Opening of a branch between two given nodes.

with the condition:

F − Fa = ∆Fa = B ′
pq(∆αp1 − ∆αq1)

from which it follows:

F = 1

1 − B ′
pq(Tpp + Tqq − 2Tpq )

Fa

and finally:

∆Fl = alpF + alq (−F) = alp − alq

1 − B ′
pq(Tpp + Tqq − 2Tpq)

Fa � dlaFa [2.1.27]

where the coefficient dla may be called “branch-to-branch redistribution” coef-
ficient of the active power flow, from branch a to branch l.

Actually, active power losses do not equal zero and, because of the first part
of Equations [2.1.12], they amount to:

p =
N∑
1

hPh =
N∑
1

hv2
hGhh +

N∑
1

hvh

N∑
1

k �=hvkGhk cos αhk

where, because of Equations [2.1.5]:

Ghh = gho −
N∑
1

k �=hGhk

by assuming that gho is the conductance of the shunt branch at node h.
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Here, the network is assumed without phase-shifters, so that matrices G , B are
symmetrical; in the general case, a similar somewhat more complex treatment
can be followed, which leads to similar results.

With the above, the active power losses can be expressed as:

p = po + pu + pα [2.1.28]

with: 


po �
N∑
1

hv2
hgho

pu �
N∑
1

hvh

N∑
1

k �=h(vk − vh)Ghk

pα �
N∑
1

hvh

N∑
1

k �=hvk(cos αhk − 1)Ghk

where po represents the (generally negligible) losses in shunt branches, whereas
(pu + pα) represents the series branch losses. Specifically, pu is the contribution
caused by differences in voltage magnitudes with zero phase shifts, whereas pα

is the further contribution caused by phase shifts.
The term pu may be determined through the following equation:

pu = uT Guu

where, by comparing voltage magnitudes with that of node 1:

• u is the column matrix (N − 1,1) constituted by the differences (vh − v1);

• Gu is the matrix (N − 1, N − 1) defined by:

(Gu)hh � −
N∑
1

r �=hGhr = Ghh − gho, (Gu)hk � Ghk (k �= h)

(h, k = 2, . . . , N ).
Moreover, with an accurate approximation, one may assume cos αhk

∼= 1 −
α2

hk /2 in the expression of pα , so that the following equation can be similarly
developed:

pα = α′′T G′
uα′′

where, by again comparing voltage phases with that at node 1:

• α′′ is the column matrix (N − 1, 1) constituted by phase shifts αh1, i.e., with
already adopted symbols α′′T �

[
α′T α(i)′T

]
;
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• G′
u is the matrix (N − 1, N − 1) defined by:

(G′
u)hh � −

N∑
1

r �=hvhvr Ghr , (G′
u)hk � vhvkGhk (k �= h)

(h, k = 2, . . . , N ). By recalling Equations [2.1.20], [2.1.22], and [2.1.23], the
following equation can be finally written:

pα = P ′T WP ′ [2.1.29]

where W is an easily identified matrix (n − 1, n − 1), which is dependent on
network parameters and magnitudes of terminal node voltages.

By adding up po and pu, losses p can be identified, usually with an absolutely
negligible error, starting from the n magnitudes of the terminal node voltages
and active powers injected at nodes 2, . . . , n. This result will be considered in
Section 2.3.

2.2. CHOICE OF THE WORKING POINT

2.2.1. Constraints on the Working Point

At the scheduling stage, every future working point should be chosen by consid-
ering not only the network equations, but also:

• conditions at the terminal nodes, which are defined by operating character-
istics and admissibility limits of the external equipment connected to the
network itself (e.g., generators, equivalent loads, etc.);

• operating requirements (quality, economy, security);
• admissibility limits for each network equipment.

For more details, see Sections 1.3 and 1.4.
To meet quality requirements in this connection, the network frequency should

be kept at the nominal, e.g., ω = ωnom, whereas node voltages (particularly ter-
minal node voltages) must have magnitudes not far from the nominal values,
according to “inequality” constraints:

v ∈ [vmin, vmax] [2.2.1]

with, for instance, vmin = 0.90–0.95 vnom and vmax = 1.05–1.10 vnom. Further-
more, phase shifts between terminal node voltages, particularly those between
voltages at the generation nodes, should be small, to avoid excessive electrical
shifts between the synchronous machines and, consequently, weak synchroniz-
ing actions (see Section 1.6) which could even result in the instability of the
working point.
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Moreover, at the terminal nodes, further constraints on injected powers must
be evaluated, concerning the characteristics of the equipment external to the
network.

With load nodes, the active power Pc and the reactive power Qc absorbed by
a generic “equivalent load” may be assumed as input data to the problem, so that
“equality” constraints:

P = −Pc

Q = −Qc

}
[2.2.2]

must be set, in which the negative sign is the result of assuming P and Q as the
generic injected powers entering into the network.

Denoting by vc the voltage magnitude at the generic load node, one can assume, for
greater generality, Qc = Qc(vc). Particularly, the relationship Qc = Q0

c + av2
c , with a,

Q0
c given, can be easily evaluated by adding (at the internal side of the network) a shunt

branch with a reactance 1/a at the load node, and considering the load defined by adsorbed
powers P , Q0

c as an equivalent load.

With generation nodes , the capability limits of each generating unit should be
evaluated, with inequality constraints (see Fig. 2.9):

P ∈ [Pmin, Pmax]
Q ∈ [Qmin, Qmax]

}
[2.2.3]

In the above, P and Q are net active and reactive powers injected into the
network, not including powers absorbed by plant auxiliaries (nor electrical losses
inside the plant, which are generally negligible).

At the given operating frequency, the values of Pmin and Pmax for a given
generating unit, depend on the characteristics of the supply system and the turbine
(or, generally, of the prime mover, as assumed in the following). These values

Figure 2.9. Capability limits of a generating unit.
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can be considered as assigned. Instead, Qmin and Qmax depend on the behavior
of the electrical side and are functions of P , v. More precisely:

• Pmin is the so-called “technical minimum,” which, in the case of thermal
generating plants, is essentially conditioned by good operation of the boiler
and auxiliary systems, and may be approximately 10%–30% of the nominal
active power; with hydroelectric plants, this value may be assumed as zero,
with some exceptions related to plants with Kaplan turbines, for which some
minimum limit may be imposed to avoid cavitation phenomena;

• Pmax is determined by the maximum limitation on mechanical power pro-
duced by the turbine;

• Qmin(P, v) is the so-called “underexcitation limit,” imposed to avoid exces-
sive overheating (caused by eddy currents in stator ends) or to avoid unstable
working points with loss of synchronism between the generator and network;

• Qmax(P, v) is the “overexcitation limit,” caused by heating reasons and
related to the maximum tolerable excitation current, apart from further lim-
itations related to iron losses and stator copper losses.

At some generating nodes, the active power P may be considered an input
data because of particular requirements (e.g., flowing water hydroelectric plants,
geothermal plants) or, at least as a first assumption, because of previous schedul-
ing (e.g., hydroelectric plants with storage reservoir or basin), so that the corre-
sponding equality constraint should be considered, in addition to the inequality
constraints on Q and v.

Such a situation occurs at reactive compensation nodes, where P = 0. The
active power absorbed by the generic synchronous compensator is only the result
of electrical and mechanical losses, and may be disregarded.

Analogous situations can be encountered when considering boundary nodes,
where active power P is assigned according to an agreed exchange program.

Finally, admissibility limits for each network equipment must be evaluated,
specifically by means of inequality constraints on currents, like:

i ≤ imax [2.2.4]

as well as economic requirements, which may be translated (as shown in Sections
2.2.5 and 2.3) into further constraints on nonassigned variables at the termi-
nal nodes and, more specifically, on active power dispatching for the different
generating nodes. Security requirements are mostly related to the amount (and
allocation) of rotating power and available reactive compensation, and to the pos-
sibility of equipment overload. Consequently, they may imply further constraints
on the mentioned variables (in addition to possible modifications in system con-
figuration and/or parameters, to avoid precarious situations).

Before concluding, note that:

(1) In previsional scheduling, the working point must be chosen based on
forecasted load conditions.
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(2) In real-time scheduling, the working point to be achieved must be chosen
based on the actual load conditions estimated from field measurements
(typically: P , Q, v values). Thus, more generally, the choice of the desired
working point may be preceded by the estimation of the actual one.

The working point determination also may become necessary when consider-
ing other problems (different from operational scheduling). Examples are:

(3) “Planning” of future system development, for which a solution (e.g.,
adding of power plants, lines, etc.) must be found. This solution must
allow acceptable working points, even for new load conditions foreseen
in the long term (the problem is still of the previsional type, but data are
particularly uncertain and the number of degrees of freedom—i.e., of solu-
tions to be compared—is very large; then, it is reasonable to use suitably
simplified models).

(4) Dynamic analyses and simulations, based on hypothetical situations (as
to perturbations, configurations, parameter values, working points, etc.),
for their validation, a deeper knowledge of the dynamic phenomena, the
derivation of suitable dynamic models, etc.

(5) Reconstruction, via simulation (starting from a working point estimated
from available experimental data), of an event that actually occurred
(including possible outages, etc.) to ultimately identify causes and develop
solutions to be implemented into the existing system.

In the cases (2) and (5), which refer to real situations, the working point
“estimation” does not imply any choice, and the constraints to be considered are
given only by measured data (see Section 2.5.).

2.2.2. Typical Solution Procedure

According to the previous section, the working point constraints are particularly
related to terminal node voltages and (active and reactive) powers injected at such
nodes. Therefore, it is suitable to explicitely consider the relationships between
these quantities.

Generally, active and reactive power flows in the network define, for given
powers injected at load nodes, the so-called “load-flow,” or “power flow;” whereas
the choice of active and reactive powers injected at the remaining nodes constitutes
the so-called “dispatching.”

Equations [2.1.13] must be recalled:

Ph = v2
hGhh + vh

n∑
1

k �=hvk(Ghk cos αhk + Bhk sin αhk )

Qh = −v2
hBhh + vh

n∑
1

k �=hvk(Ghk sin αhk − Bhk cos αhk )




(h = 1, . . . , n)

[2.2.5]
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where n is the number of terminal nodes and:

• Ph, Qh are, respectively, the active and reactive powers injected at node h;
• vh is the magnitude of the voltage at node h;
• αhk is the phase shift between voltage vectors at nodes h, k (i.e., αhk �

αh − αk , where αh, αk are respective phases).

The number of independent variables (for given admittances Ghk and suscep-
tances Bhk ) is equal to (2n − 1).

The equality constraints defined in the previous section only concern active
and reactive powers at load nodes, active power at reactive compensation nodes
(where P = 0) and possibly other nodes, so that the number of such constraints
is less than (2n − 1).

Consequently, there is a certain number of degrees of freedom, which can be
used to determine a working point which:

• satisfies the inequality constraints already described (related to “admissibil-
ity” and “quality,” at terminal nodes and inside the network);

• is sufficiently “secure”;
• is optimal or at least satisfactory from the economical point of view.

One can use further degrees of freedom, as the values of adjustable parameters
and, if necessary, the system configuration itself.

A procedure like that in Figure 2.10 can be adopted. It includes:

(1) “nonrigid” assignments of further voltages and/or powers at the terminal
nodes, up to a total of (2n − 1) equality constraints;

(2) solution of Equations [2.2.5] to obtain all the (4n − 1) variables v1, . . . , vn,
α21, . . . , αn1, P1, . . . , Pn, Q1, . . . , Qn (the resulting working point corre-
sponds to the so-called “nonlimited” load-flow );

(3) checks on such working point, more precisely:
• quality and admissibility checks at the terminal nodes,
• similar checks inside the network,
• security checks,
• economic checks;

with possible corrections of assignments cited at item (1) and consequent
iteration of (2), (3), until the working point checks are satisfactory (see also
Section 2.2.6.)

2.2.3. Nonrigid Assignments at the Terminal Nodes

It is suitable that variables to be assigned at the terminal nodes (in addition to
those already rigidly assigned) are active powers and/or voltage magnitudes. In
fact, the dispatching of all active powers is important from the economic point of
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rigid
assignments
at terminal

nodes

nonrigid
assignments
at terminal

nodes

P, Q at load nodes (PQ nodes)
P = 0 at reactive compensation nodes

P at other (possible) nodes

P at the remaining P   nodes
   at all the P   nodes and at the slack node

solution of
network

equations
(between 

voltages and
powers at
terminal
nodes)

(P
nodes)

configuration
modulating parameters

checks on the working point:
quality and admissibility
at the terminal nodes
idem, inside the network
security
economy

(working point)

Figure 2.10. Schematic diagram for the choice of the working point.

view, as it determines the overall generation cost, whereas the voltage magnitudes
are subject to relatively narrow constraints (see condition [2.2.1]).

On the other hand, Equations [2.2.5] are well suited for a “direct” solution
starting from the values of all vh, αh1. Then, an iterative procedure may be
adopted, by modifying the values vh (not assigned) and αh1 at each step until
they are consistent with the desired values of active and reactive powers (see
Section 2.2.4).

The efficiency of such an iterative procedure is essentially dependent on the
degree of sensitivity to variations ∆vh, ∆αhk of the constrained active and reac-
tive powers. By inspection of the respective partial derivatives, one may easily
determine that:

• variations in voltage phase shifts predominantly result in active power vari-
ations;

• variations in voltage magnitudes predominantly result in reactive power
variations,

so that there is approximately a “decoupling” between the subsystems (∆P1, . . . ,

∆Pn, ∆α21, . . . , ∆αn1) and (∆Q1, . . . , ∆Qn, ∆v1, . . . , ∆vn), respectively



2.2 CHOICE OF THE WORKING POINT 61

characterized by (n − 1) and n degrees of freedom. (One should recall constraints
[2.2.1] on voltages and approximations (network predominantly reactive and
small phase shifts) already outlined in Section 2.1.5. Again, it is assumed that
node 1 is the phase reference node.)

To determine the so-called nonlimited load-flow, it is optimal to assume
(n − 1) equality constraints on active powers (2), and the remaining n on reactive
powers and/or voltage magnitudes.

Usually:

• the generic phase shift αh1 mostly affects Ph, so that active powers are
assigned at nodes 2, . . . , n (leaving P1 unknown, at the phase reference
node) and the phase shifts α21, . . . , αn1 are adapted;

• the generic vh mostly affects Qh, so that voltage magnitudes at all nodes
are assigned, except for load nodes (possibly changing these assignments
if they result in nonadmissible reactive powers; see Section 2.2.5) and the
vh values at the load nodes are changed until the assigned values of Qh at
such nodes are achieved.

As a consequence of the above, terminal nodes may be classified as follows
(see Fig. 2.10):

• “PQ” nodes: nodes for which active and reactive powers are assigned;

• “Pv” nodes: nodes for which active powers and voltage magnitudes are
assigned;

• node “v,” i.e., node 1 (the phase reference node), for which only the voltage
magnitude is assigned.

Node “v” is also called the “slack node” or “balance node,” as its role is to
achieve the due balance of active powers, considering active powers injected at
other nodes and losses. For this reason, this node should be a generation node of
significant power.

Additionally, the following typically holds(3):

• load nodes are PQ nodes;

• reactive compensation nodes may be considered Pv nodes (or possibly PQ
nodes) with P = 0;

• generation nodes are also Pv nodes, apart from the slack node.

(2) The assignment of all the n active powers P1, . . . , Pn, which would determine active power
losses in the network, would not be theoretically impossible. However, it would easily result in
unacceptable vh values at one or more nodes, because of the small sensitivity of active powers with
respect to voltage magnitudes.
(3) A PQ node and a Pv node coincident to each other would act as a Pv node. This assumption
seems plausible, even with distinct but close nodes.
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Boundary nodes may be considered Pv nodes, provided the static character-
istics of the connected external systems are considered.

Finally, the “nonrigid assignments” are referred to:

• voltage magnitudes at all Pv nodes and at the slack node;

• active powers at some of the Pv nodes (typically at generation nodes).

At the boundary nodes, the constraints caused by static characteristics of the external
systems may actually rearrange the P , v assignments at such nodes, based on values Q,
α correspondingly evaluated.

Usually, it is reasonable to assume that such rearrangements are small, and that they
may be automatically considered by representing the external systems with a simplified
equivalent, such as that indicated in Figure 2.11 (see also Section 2.3.1c).

2.2.4. Solution of Network Equations Between Voltages
and Powers at the Terminal Nodes

According to Section 2.2.3, it is necessary to develop an iterative solution for
(see Fig. 2.12):

• the first part of Equations [2.2.5] (with Ph known) at all PQ and Pv

nodes (i.e., all the terminal nodes with the exception of the slack node,
h = 2, . . . , n);

• the second part of Equations [2.2.5] (with Qh known) only at the PQ nodes,

“equivalent
injections”

simplified equivalent
of external networks

boundary
nodes

network under examination

Figure 2.11. A representation of possible external systems.
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Figure 2.12. Schematic diagram for the solution of network equations.

so that one can obtain all the phase shifts α21, . . . , αn1 and nonassigned voltage
magnitudes vh (i.e., those at the PQ nodes).

If, at a generic PQ node, an equality constraint Qh = Qh(vh) is actually held,
the assignment of Qh also would be iterated until this constraint is met.

The remaining parts of Equations [2.2.5] are used to derive the active and
reactive powers at the slack node, and the reactive powers at the Pv nodes.

The choice of the initial values v
(o)
h , α

(o)
h1 (related to nonassigned vh and to αh1,

as the starting values for the iterative procedure) is obviously important for its
effects on procedure convergence and final results. In fact, due to the nonlinearity
of the equations, one could also obtain solutions of no practical interest, or
even no solution at all. One may assume that v

(o)
h is equal to nominal voltage

(obviously at the PQ nodes where vh is not already assigned) and α
(o)
h1 = 0.

Alternatively, these values can be determined by using the simplified “dc” model
(see Equations [2.1.17]).

From the values mentioned above, one can obtain the values v
(1)
h1 , α

(1)
h1 at the

end of the first iteration step and so on, until the variations for the unknown
variables are small enough.

The commonly used iterative methods refer, through possible adaptations and
simplifications, to the Gauss-Seidel or Newton-Raphson methods.

By the Gauss-Seidel method, the equations to be solved (in the generic unknown
variables x1, . . . , xN ) are arranged in the form:

xh = fh(x1, . . . , xN) (h = 1, . . . , N) [2.2.6]

and the unknown values at the i-th iteration step are computed in sequence (from
1 to N ) according to:

x
(i)
h = fh(x

(i)
1 , . . . , x

(i)
(h−1), x

(i−1)
h , . . . , x

(i−1)
N )
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Such iterations are known as “chained,” because the most updated values of the
unknown variables are used in the sequence; the choice of the order 1, . . . , N

may, of course, be important to convergence.
By using the procedure suggested by Glimm-Stagg, Equation [2.2.6] is obtained

observing that:

• for the PQ nodes (where Ph, Qh are assigned, while the unknowns are vh,
αh1): in vector terms and with known notation, it results:

N∑
1

kY hk vk = ıh = Ph − jQh

v∗
h

so that Equations [2.2.5] are equivalent to:

vh =
(

Ph − jQh

v∗
h

−
n∑
1

k �=hY hk vk

)/
Y hh

from which vh, αh1 can be deduced in the desired form;

• for Pv nodes (where Ph, vh are assigned, while αh1 is unknown): by letting

i′hejβ ′
h � ıh − Y hhvh =

n∑
1

k �=hY hk vke
jαk

the first part of Equations [2.2.5] can be rewritten as:

Ph = v2
hGhh + vhi′h cos(αh − β ′

h)

so that:

αh = β ′
h + cos−1

(
Ph − v2

hGhh

vhi′h

)

and consequently αh1 can be deduced in the desired form.

With phase shifts, one may assume for simplicity that α1 = 0 and consequently
α21 = α2, . . . , αn1 = αn.

To improve the convergence of iterations, the computation can be started from
the unknown variables relative to the most meshed nodes, i.e., those nodes into
which more branches are connected.

By the Newton-Raphson method, the equations are instead arranged in the form:

ch = Wh(x1, . . . , xN) (h = 1, . . . , N) [2.2.7]
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with c1, . . . , cN assigned, that is, with matrix notation:

c = W(x)

By generically imposing:

c = W(x(i)) ∼= W(x(i−1)) + dW

dx
(x(i−1))(x(i) − x(i−1))

and by disregarding the approximation symbol, an equation in x(i) is derived,
that is:

x(i) = x(i−1) +
(

dW

dx
(x(i−1))

)−1

(c − W(x(i−1)))

From the above, the values of the unknowns x
(i)
h can be computed at the i-th

iteration step.

The matrix dW/dx is the so-called “Jacobian matrix.” The matrix equation in x(i) is
equivalent to a system of N linear equations in x

(i)

1 , . . . , x
(i)
N , which, for large N , may be

more conveniently solved iteratively; for instance, by the Gauss-Seidel method itself, as
previously mentioned, so that the inversion of the Jacobian matrix can be avoided.

Additionally, the iteration convergence may be improved by adopting possible “accel-
eration factors,” i.e., by overestimating (e.g., by a multiplication factor 1.5) the generic
correction (x(i) − x(i−1)) with respect to the above equation. Finally, the Jacobian matrix
should be computed at each iteration, but this may be avoided — thus alleviating the com-
putation process, at the cost of slower convergence speed — particularly when close to
the final solution, where the corrections at each iteration would be small.

It is clear that Equations [2.2.5] are already in the form of Equation [2.2.7], so
the application of the Newton-Raphson method requires the computation of the
right sides of these equations, and of the Jacobian submatrices ∂P ′/∂α′, ∂P ′/∂v′,
∂Q′/∂α′, ∂Q′/∂v′ obtainable from Equations [2.2.5], where:

• P ′, α′ are column matrices constituted by P2, . . . , Pn and by α21, . . . , αn1

respectively;

• Q′, v′ are column matrices constituted by Qh and vh, respectively, at the
PQ nodes only.

To avoid the relatively burdensome computation of trigonometric functions
(sine and cosine) that appear at the right side of Equations [2.2.5] and in above
submatrices, the polar coordinates vh, αh1 can be abandoned and a model based
on Cartesian coordinates adopted:

{
vhR � vh cos αh1

vhI � vh sin αh1
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Equations [2.2.5] can be then replaced with:

• for all PQ and Pv nodes (i.e., for h = 2, . . . , n):

Ph = Ghh(v2
hR + v2

hI ) +
n∑
1

k �=h(Ghk (vhRvkR + vhI vkI )

− Bhk (vhRvkI − vhI vkR))

and moreover:

• for Pv nodes only:
v2

h = v2
hR + v2

hI

• for PQ nodes only:

Qh = −Bhh(v2
hR + v2

hI ) +
n∑
1

k �=h(−Ghk (vhRvkI − vhI vkR)

− Bhk (vhRvkR + vhI vkI ))

where all the quantities at the left sides are assigned (as well as v1R = v1, v1I =
0), so that equations follow Equation [2.2.7] format, with vhR , vhI (h = 2, . . . , n)

the unknown variables. However, by so doing, the number of equations and
unknown variables becomes 2(n − 1) and is therefore larger than with polar
coordinates. (The difference is equal to the number of Pv nodes.)

Among the simplified versions of the Newton-Raphson method, which are
based on estimates of the Jacobian matrix (apart from avoiding the updating of
this matrix) the following can be mentioned:

• With Cartesian coordinates: the Ward-Hale method, in which the Jacobian
matrix is considered, after a proper ordering of the indexes, of the “block
diagonalized form,” with (n − 1) (2,2) submatrices, by considering:

• only terms ∂Ph/∂vhR, ∂Ph/∂vhI , ∂(v2
h)/∂vhR, ∂(v2

h)/∂vhI for Pv nodes;

• only terms ∂Ph/∂vhR, ∂Ph/∂vhI , ∂Qh/∂vhR, ∂Qh/∂vhI for PQ nodes.

• With polar coordinates: the Carpentier method (or “decoupled” load-flow
method) in which — by remembering the approximate decoupling between
the subsystems (∆P ′, ∆α′) and (∆Q′, ∆v′) (see Section 2.2.3) — the Jaco-
bian matrix is again considered in the block diagonalized form, by only
accounting for the submatrices ∂P ′/∂α′, ∂Q′/∂v′. Finally, the Stott method
(or “fast decoupled” load-flow method), which is particularly useful for
very large networks and in which these submatrices are evaluated by using
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Equations [2.1.17] (“dc” model, that makes use of no trigonometric func-
tions), by further assuming:

∂Ph/∂αk1
∼= −vhvkBhk , ∂Qh/∂vk

∼= −vhBhk

also for k = h (actually, for k = h, it instead results:

∂Ph/∂αh1 = −v2
hBhh − Qh

∼=
n∑
1

k �=hvhvkBhk

∂Qh/∂vh = (−v2
hBhh + Qh)/vh

∼= −2vhBhh −
n∑
1

k �=hvkBhk

but the terms ±Qh can be usually disregarded with respect to −v2
hBhh).

2.2.5. Checks on the Working Point and Possible Corrections

The working point obtained starting from the (2n − 1) assignments at the terminal
nodes (nonlimited load flow) must actually meet different conditions, related to:

• quality and admissibility at the terminal nodes and inside the network;

• security;

• economy.

If these conditions are not met, the nonrigid assignments must be changed
(by accounting for their respective admissibility limits; see Equations [2.2.1],
[2.2.3]), or the value of possible adjustable parameters must be modified (or
even, if necessary, the system configuration itself).

The aim of this section is limited to broad indications on the most typical
situations and approximations that are usually accepted.

(a) Quality and Admissibility at the Terminal Nodes

• The active power P1 at the slack node must be within the admissible range,
according to the constraints:

P1 ∈ [P1 min, P1 max]

(see the first part of conditions [2.2.3]). Actually, such constraints can be
considered when assigning the active powers at all the other nodes, based
on an estimated value of losses. If this condition is not met, active power
assignments at Pv nodes can be changed, and particularly at nodes near the
slack node.
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• Also the nonassigned reactive powers Qh (i.e., those at Pv nodes and the
slack node) must be within admissible ranges, according to constraints:

Qh ∈ [Qh min, Qh max]

(see the second part of conditions [2.2.3]). If this condition is violated at
one or more nodes, the voltage magnitudes (nonrigidly assigned) at such
nodes can be rearranged; an increment of the generic vh usually results in
an increment in the respective Qh and, at a smaller amount, in a reduction
of the reactive power injected at the other nodes. At nodes where the above-
mentioned condition is not met, Qh could be assumed to equal the violated
limit, leaving the value of vh unknown, as with the operation of over- and
underexcitation limiters (see Section 6.2).

For a boundary node with reactive compensation, it can be written Qh = Q′
h + Q′′

h, by
denoting Q′

h as the reactive power supplied from the external network, and Q′′
h as the

reactive power delivered by the compensator, with Q′′
h ∈ [Q′′

h min, Q′′
h max].

The limits:
Qh min = Q′

h + Q′′
h min, Qh max = Q′

h + Q′′
h max

are consequently variable with Q′
h, which itself is dependent on the assigned Ph,vh and

on the characteristics of the external system.

• The nonassigned voltage magnitudes vh (i.e., those at PQ nodes) must
satisfy constraints:

vh ∈ [vh min, vh max]

(see condition [2.2.1]). If this is not true, the voltage magnitude assignments
at the other nodes (Pv and slack node) again may be modified, by consider-
ing that their increment usually results in a voltage (magnitude) increment
at PQ nodes.

The possibility of obtaining a better voltage profile by correcting the adjustable
parameter values should be further considered, as described later.

(b) Quality and Admissibility Inside the Network
Typical conditions to be checked are:

• the voltage magnitudes at the “internal” nodes must meet constraints:

v ∈ [vmin, vmax]

• the current magnitudes (through various equipments) must meet constraints:

i ≤ imax



2.2 CHOICE OF THE WORKING POINT 69

Therefore, it is necessary to determine voltages at the internal nodes by
using Equation [2.1.9] (or by estimation with Equation [2.1.20]), then to deter-
mine branch currents and current flowing through each component, according to
Section 2.1.3.

If the check on voltage magnitudes is not successful, the assignments vh (at
Pv nodes and at the slack node) may be rearranged, particularly those hav-
ing larger influence on the voltages that are out of limit. These assignments
are constrained enough because of conditions discussed above, so availability
of further degrees of freedom is important to achieve voltage magnitudes (and
reactive power flows) acceptable for all the network. This is possible with the
presence of adjustable parameter elements, such as shunt reactors and capac-
itors, tap-changing transformers, and “in-phase” regulating transformers (see
Section 5.3).

Note that, because of previous scenarios, the solution of such a problem is
not very sensitive to the value of phase shifts between voltages; on the other
hand, the phase shifts may be important for the value of currents in series
branches (and transmitted active powers), and consequently of currents in dif-
ferent components.

A significant example is a series branch between nodes h and k, having a
reactance x, for which the current is given by:

i2 = (v2
h + v2

k − 2vhvk cos αhk )/x2

while the transmitted active power is:

P = vhvk

x
sin αhk

so that, by assuming cos αhk
∼= 1 − α2

hk /2, sin αhk
∼= αhk , one can develop this

equation:

i2 ∼=
(

vh − vk

x

)2

+ P 2

vhvk

where the first term vanishes if vh = vk .
If some currents do not meet the above-mentioned constraint, the active power

assignments among Pv nodes, and more specifically among generators, must be
redistributed to modify the phase shift values (both at the terminal and internal
nodes; refer to Equations [2.1.22] and [2.1.23]). This causes active power flows
in the network to be redistributed. To meet the same goal, “quadrature”-regulating
transformers may be used as adjustable devices (see Section 5.3).

(c) Security
Security checks should require a broad but detailed plan of dynamic simulations,
which should reflect the real behavior of different components — generators, net-
work, loads, protection and control systems, etc. — in response to significant
perturbations (contingency analysis). The stability “in the small,” i.e., for small
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perturbations, can be checked in a more direct way by the dynamic analysis of
the linearized system.

The goal of such simulations is to reveal “risk” situations, not only for sin-
gle components (e.g., calculation of short-circuit currents, to be compared with
breaker duties), but also for the whole system, according to Section 1.7.

Without getting into many details, it may be observed that:

• the simulation plan may be limited to events which appear the most dan-
gerous, according to the characteristics of the specific system under exam-
ination and to the previous operating experience;

• each simulation can often use simplifications, with relation to the most
interesting phenomena (see Section 1.8 and all the following chapters).

Much stronger simplifications usually are needed in real-time scheduling, for
which the information concerning security must be quickly available (e.g., ana-
lyzing hundreds of events in a few minutes; similar conclusions may also apply
in planning, although for very different reasons, i.e., related to the uncertainty of
data and the large number of future configurations to be compared).

Quite often, security checks are limited to the so-called “static” security,
evaluating only the possible static effects of perturbations without considering
transients caused by them and by checking if such effects correspond to a steady-
state that:

• exists (more specifically, the rotating power and the reactive compensa-
tion must still be sufficient and well spread, to avoid frequency or voltage
instability, etc.);

• is tolerable (i.e., it does not cause the intervention of protections, particularly
for currents which should not be too large in each network branch).

For an unacceptable case, one should again:

• correct the voltage profile (i.e., the corresponding assignments) to increase
the reactive power margins at generation and compensation nodes; for
instance, by setting the generic Qh in the middle position within its lim-
its Qh min, Qh max (this criterion also may be adopted to share the reac-
tive power generation between different units of a same power plant; see
Section 6.2.2);

• correct the active power regime — specifically the active dispatching between
the Pv nodes — to increase the current margins (with respect to imax) for each
branch, similar to what has been discussed in (b).

The adjustable parameters may be acted upon or the system configuration rein-
forced (e.g., addition of units or lines).
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For a more comprehensive evaluation of the new steady-state, at a frequency which may
be different than the nominal frequency, the following should be considered:

• the static characteristics of control systems;

• the static dependency of loads on voltage and frequency;

without neglecting possible external systems.

For simplicity, the “dc” model may be assumed, for evaluating the new (magnitude)
voltage and reactive power steady-state and then the new active power and phase shift
steady-state, and for deducing possible corrective actions, considering the opportunity of
using the full model for final validations.

Finally, the assumed events generally involve “single” perturbations of partic-
ular impact, such as:

• a line outage, which results in a reduction in transmittable active powers or
supportable voltages (see Section 1.5), and causes an increment of current
flow in the surrounding lines;

• a power plant disconnection, which causes a reduction in rotating power
and overcurrents in some lines (particularly those connected to power plants
which are mostly required to supply lost power).

(d) Economy
For a given set of thermal power units, the cost of generation can be evalu-
ated based on fuel consumption and unit costs (at generation site, i.e., including
transportation costs, etc.) of adopted fuels.

For each operating plant, the fuel consumption per unit of time depends on
the generated driving power or (as internal losses may be neglected) on the
delivered active power. By subtracting from this power the active power absorbed
by auxiliary systems (which may be approximately 5% of the total delivered
power), and incorporating the unit cost of fuel, the cost per unit of time (C) can
be determined starting from the active power (P ) supplied to the grid by the
generic unit.

The characteristic (C, P ) may be, for instance, similar to that in Figure 2.13,
with multiple pieces caused by the sequential opening of the turbine valves. (In
Section 2.3, a function C(P ), like the dashed one reported in Figure 2.13, will
be adopted with a continuous and increasing derivative dC/dP .)

This characteristic can be determined based on design data and/or experimental
tests. The values of C may be increased to account for further costs related to
unit operation (e.g., accessory materials) and for possible charges related to the
emission of polluting materials. Additionally, the characteristic may vary with
the operating conditions of the thermal cycle (e.g., temperature of the cooling
water at the condenser or external air) and with the efficiency of the plant (with
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actual characteristic
idealized characteristic

Figure 2.13. Example of the characteristic (C, P ) for a thermal unit (C = cost
per unit of time, P = active power).

respect to the time elapsed from the last maintenance). Further complications are
encountered with multiple interacting boilers and turbines because the resulting
characteristic depends on the coordination of the operation of different parts.

Even for a power plant with more than one operating unit, the minimization
(for any given value of total active power delivered by the plant, disregarding
internal losses) of the corresponding cost per unit of time is clearly possible. In
fact, this cost generally varies according to the way the total power is shared
between different units, and may be minimized by adopting the most suitable
sharing option. If this minimization is systematically carried out at local sites by
coordinating the use of the operating units, then it is possible to define (based
only on cost characteristics of single units) a univocal relationship between
the total power delivered by the plant and the corresponding cost per unit
of time.

When the cost characteristics are not particularly suitable for analytic manipulation (see
Section 2.3.1a), the optimal solution may be achieved by a procedure based on “dynamic
programming.”

For this purpose:

• let us assume that the set of units 1, . . . , m operating at the given plant is known
(and numbered in arbitrary order from 1 to m);

• let us consider discrete values (multiple of an elementary step ∆P ) for active powers
Pt1, . . . , Ptm delivered by units, and for their sum:

Ptot =
m∑
1

iPti ∈
[

m∑
1

iPti min,

m∑
1

iPti max

]
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• let us denote by C0
tot(k)(Ptot) the minimum total cost per unit of time, obtained — for

any given Ptot — by properly choosing Pt1, . . . , Ptk and by keeping Pt(k+1), . . . , Ptm at
their respective technical minima (obviously, for Ptot ≤ ∑k

1 iPti max +∑m
k+1 iPti min).

The following formula may then be used:

C0
tot(k)(Ptot) = min

Ptk

(
C0

tot(k−1)(Ptot − Ptk + Ptk min)

+Ck(Ptk ) − Ck(Ptk min)
)

(k = 1, . . . , m)

where:

• for k = 1, it simply results:

C0
tot(1)(Ptot) = C1

(
Ptot −

m∑
2

iPti min

)
+

m∑
2

iCi(Pti min)

(obviously, for Ptot ≤ Pt1 max +∑m
2 iPti min);

• for k = 2, . . . , m the function C0
tot(k−1)(Ptot − Ptk + Ptk min) must be evaluated

for all possible values (Ptot − Ptk + Ptk min), each of which leads to a solution
Pt1, . . . , Pt(k−1).

The searched solution is finally defined, for any given Ptot, by the value C0
tot(m)(Ptot) and

by the corresponding values Pt1, . . . Ptm .

The same problem would exist for the whole system, if the total (active)
power delivered by the thermal power plants could be considered assigned. In
this case, the optimal power share between the different plants (and units) could
be determined, again, only based on individual cost characteristics.

However, the above hypothesis requires that:

• in addition to active powers absorbed by loads, powers delivered by hydro-
electric plants and those exchanged through (possible) interconnections are
assigned;

• network losses are known;

so that the total amount of power required from thermal power plants can be
determined. Note that only thermal and hydroelectric generations are consid-
ered here to simplify the presentation. Other types of generation may be treated
similarly to one of these two kinds of generation.

The former of the above conditions may be assumed as satisfied, as a
consequence of previous scheduling of hydraulic resources and interconnection
exchanges (see Sections 2.3.3 and 2.3.4).

For a generic hydroelectric unit, the used water flow q (disregarding losses) depends on the
active power P supplied to the grid, according to a characteristic shown in Figure 2.14a.
Such a characteristic may vary with the operating conditions of the plant (e.g., water level
in the reservoir) and its efficiency status.
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1 unit

2 units

3 units

Figure 2.14. (a) An example of the characteristic (q, P ) for a hydroelectric unit
(q = used water flow, P = active power). (b) An example of the optimal char-
acteristic (qtot, Ptot) for a hydroelectric plant with several units (qtot = used water
flow, Ptot = active power).

When the hydroplant has more than one operating unit, it is convenient to maximize — at
any given total water flow qtot — the total delivered power Ptot, to reduce the generation
demand to thermal power plants and the total thermal generation cost. Based on the
above-mentioned characteristics, it is possible to determine the optimal sharing of the total
water flow (and power) between the different units, by adopting a dynamic programming
procedure like the one previously illustrated. This allows the definition of an univocal
relationship between Ptot and qtot (see Fig. 2.14b).

However, it is not possible to determine network losses in advance because
they depend on the power sharing between different plants or all thermal units.
Therefore network characteristics, which determine such dependency, must be
considered.

According to the stated hypotheses, the slack node (1) must correspond to a
thermal unit (P1 = Pt1) or even a whole thermal plant, as P1 cannot be assigned.
Network losses can be expressed as a function of active powers P2, . . . , Pn,
besides reactive powers Qcj at load nodes (PQ nodes) and voltage magnitudes
vh at remaining terminal nodes, i.e., in the form:

p = φ(P2, . . . , Pn; . . . , Qcj , . . . ; . . . , vh, . . .) [2.2.8]

A small variation ∆Pi = ∆Pti in one of the thermal units (i �= 1) causes not
only a cost variation per unit of time ∆Ci in the thermal unit itself, but also a
variation:

∆P1 = −∆Pi + ∆p = −∆Pi

(
1 − ∂φ

∂Pi

)

and, consequently, a variation ∆C1 in the thermal unit (or plant) connected at
the slack bus. Instead, possible variations ∆vh, within the limits imposed by
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previously mentioned requirements, would only modify network losses, with
usually small effects on the resulting cost.

By numerical computation, the ideal can be reached by modifying (according
to respective constraints) each Pi = Pti , to obtain a negative ∆Ci + ∆C1, and
then by iterating until, with some tolerance:

∆Ci + ∆C1 = 0

Such a condition may also be expressed in the form:

∆Ci/∆Pi

1 − ∂φ/∂Pi

= ∆C1/∆P1 [2.2.9]

which is analogous to Equation [2.3.5] reported in Section 2.3.

2.2.6. Active and Reactive Dispatching

According to what has been shown up to now, the choices of the values P

and v (nonrigid assignments; see Fig. 2.10) are based on very different criteria.
By considering the constraints (in particular those on voltages), the effects of v

assignments on the choice of P values are quite modest and vice versa. Thus,
the determination of the working point may be practically carried out (at the
possible price of some iterations) by solving two distinct problems, the so-called
“active dispatching” (choice of P , with v assigned) and “reactive dispatching”
(choice of v, with P assigned). Analogous considerations apply to the choice of
adjustable parameter values, as specified below.

It may be stated that the goal of active dispatching is the determination of
the active power share at different generation nodes and, possibly, boundary
nodes, which minimizes the overall generation cost, accounting for constraints on
generated active powers and currents (with adequate margins, for security require-
ments)(4). Active dispatching also can take advantage of adjustable parameters,
if the system is equipped with “quadrature”-regulating transformers to modify
the different branch currents in the network. To obtain a satisfactory solution, the
system configuration, and more specifically the set of operating generators, may
require correction to meet the requirements of spinning reserve.

On the other hand, reactive dispatching implies the choice of voltages (except
at load nodes) by considering constraints on all voltages (at terminal and internal
nodes) and generated reactive powers (at generation and reactive compensation
nodes), and providing sufficient reactive power margins. In reactive dispatching,
the role of adjustable parameters — corresponding to tap-changing transformers,
adjustable condensers and reactors, and “in-phase” regulating transformers — is
particularly important. To obtain a satisfactory solution, the system configuration

(4) In some cases (see Sections 2.3.2 and 2.3.3) active dispatching must be formulated as an “over
time” problem, instead of the purely “instantaneous” problem considered here.
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and, more specifically, the whole set of operating compensators (and/or generators
themselves) may need to be corrected so that at the corresponding nodes the
required reactive power margins can be achieved. Finally, the solution of reactive
dispatching also may be univocally found, by imposing the minimization of a
particular “objective function,” for instance

∑
h ahQ2

h (with proper ah), so that
the reactive power margins are shared among the generation and/or compensation
nodes (h), according to security requirements. Alternatively, if these requirements
do not look critical, the minimization of network losses may be imposed, to
somewhat reduce the total generated active power and consequently its cost,
according to economical requirements.

Based on the above information, the working point may be determined by
an iterative procedure, by solving each of the two problems starting from the
solution obtained for the other. Each solution may be numerically obtained using
the gradient method, by minimizing the objective function through successive
corrections, consistently with constraints. By doing so, the scheme of Figure 2.10
may be translated into that of Figure 2.15.

constraints:
on active powers

P dispatching among
the remaining nodes 

(and possible adjustable
parameters)

ACTIVE DISPATCHING
(objective function to be
minimized: total cost of
generation)

REACTIVE
DISPATCHING
(objective function to be
minimized: e.g., oriented
to security requirements)

P at load nodes, at
reactive compensation
nodes (P = 0), and at
other possible nodes

system
configuration

(solution of
network

equations)

Q at load nodes

  at nonload nodes
(and adjustable

parameters)

constraints:
on voltages
on reactive powers
(with security margins)

on currents (with security 
margins)

Figure 2.15. Choice of the working point, through active and reactive dispatching.
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To start the procedure, the active dispatching problem may be solved first
by accounting for the generation costs and ignoring the presence of the network
(see also Section 2.3.1a). From the solution obtained and considering the network
equations, the reactive dispatching problem may be solved, so as to find a first-
step “preliminary” working point, and so on.

However, with an often acceptable approximation, active dispatching also may
be solved by using a simplified model of the network (as, for instance, the “dc”
model), and the iterations themselves may be avoided by assuming, as parameters
of such a model, those values corresponding to the “preliminary” working point
(see Sections 2.3.1b,c,d).

2.3. ANALYTICAL CRITERIA FOR ECONOMIC OPTIMIZATION

2.3.1. Economic Optimization of Thermoelectric Generation with
Constraints on Variations over Time

This section states in analytical terms — even at the expense of some simpli-
fications — the economic optimization problem and the criteria for its solution,
besides what is generically recalled in Section 2.2.5d. The analytical expressions
(adopted here and in the following) can be helpful, not only for the interpretation
of optimal conditions but also for setting useful guidelines in the choice and
implementation of numerical procedures, thus avoiding a purely empirical search
of optimal solutions.

It has already been pointed out that the economic optimization problem may
be essentially translated into the choice of the nonrigidly assigned active powers
(“active dispatching”), whereas the choice of the voltage and reactive power
steady-state may be substantially considered as a separate problem (“reactive
dispatching”), in which the solution may not significantly influence the economic
result. If the system is represented by a static model, with no dynamic constraints
on variations over time, the mentioned active powers must be chosen in such
a way as to minimize the total cost per unit of time, by accounting both for
maximum and minimum active power values and for other conditions that may
affect the choice (more precisely, limits on currents, and security requirements
related to active power availability and current margins inside the network).

For ease of explanation, in the following we will assume that the generation is
only thermal and hydroelectric, as any other type of generation may be formally
treated in analogy to one of such two types.

Moreover, the following will be assumed to be preassigned:

• the values of adjustable parameters, which substantially affect only the v/Q

steady-state (voltage magnitudes and reactive powers)(5);

(5) As an exception, we may recall the case of possible “quadrature”-regulating transformers, the
adjustment of which corrects the active power flows and consequently currents in the different
branches. This fact should be considered, in addition to what is expressed in the following Sections (c)
and (d).
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• the reactive powers Qcj absorbed by loads, and the voltage magnitudes vh

at the remaining nodes (Pv nodes, and the slack node), or more generally
(according to the “dc” approximation) the whole v/Q steady-state;

• the active powers Pcj absorbed by loads, as well as the active powers deliv-
ered by the hydroelectric plants and the active power “equivalent injections”
from external systems (Fig. 2.11) (as to criteria on which their choice is
based, see Sections 2.3.3 and 2.3.4, respectively), possibly in addition to
the active powers delivered by specific thermal plants.

The n terminal nodes of the network may then be divided into (with n =
nt + no + nc):

• nt nodes with nonassigned thermal generation (Pt1, . . . , Ptnt );

• no nodes with preassigned injection (Po1, . . . , Pono ) (hydroelectric and pos-
sibly thermal generation, reactive compensation and possible equivalent
injections);

• nc load nodes (Pc1, . . . , Pcnc ).

In the above node-numbering scheme, the nt nodes are to be considered first,
i.e., they are the nodes 1, . . . , nt , with node 1 being the slack node (in fact, it
must be a nonassigned injection node).

With such a premise, the network steady-state operating condition will depend
on the choice of the active powers Pi = Pti , i = 2, . . . , nt .

(a) Optimization Based Only on Cost Characteristics
Let us assume at first that all the above-defined nt nodes may be considered
one unique node, as if all the thermal units with nonassigned generation would
supply the grid through the same node. In such conditions, this node is just the
slack node (1) and the steady-state operating condition of the network is already
completely determined by the assignments.

In particular, network losses (p) come to be known, as well as the total active
power

∑
i Pti demand for thermal plants with nonassigned generation (by Pti ,

the single powers supplied to the grid by such units are denoted). The goal is to
determine the most economical share of

∑
i Pti .

To simplify the analytical treatment, a cost Ci per unit of time is assumed to
correspond to each Pti (see Section 2.2.5d) according to an ideal characteristic as
shown in Figure 2.13, i.e., with a continuous and increasing derivative dCi/dPti

(with Pti ∈ [Pti min, Pti max]). (This characteristic also could be assumed to be
piece-wise linear, with dCi/dPti constant at intervals. In such a case, different
optimization procedures than those described below should be adopted.)

By temporarily ignoring the limits Pti min, Pti max, the following must be
imposed:

min
∑

i

Ci(Pti )
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(where
∑

i Ci(Pti ) is the so-called “objective function” to be minimized), with
the constraint:

0 = Pc + p − Po −
∑

i

Pti

which defines the active power balance, with Pc �
∑

j Pcj , Po �
∑

k Pok , so that
(Pc + p − Po) has an assigned value.

To solve this problem, the well-known Lagrange method leads to the following
“Lagrangian function:”

L �
∑

i

Ci(Pti ) + λ

(
Pc + p − Po −

∑
i

Pti

)

The solution must satisfy the conditions:

0 = ∂L
∂Pti

= dCi

dPti
− λ

or:
dCi

dPti
= λ ∀i = 1, . . . , nt

This indicates that the derivatives dCi/dPti , also called incremental costs “at
generation,” must be equal to one another; see for example, for the case of two
units, the points OO in Figure 2.16(6).

Figure 2.16. Optimization only based on cost characteristics, in case of two ther-
mal units. For the given Pt1 + Pt2 = P o

t1 + P o
t2, both solutions AA, BB lead to

C1 + C2 > Co
1 + Co

2 . The solution OO, for which (dC1/dPt1)
o = (dC2/

dPt2)
o = λ, is the most economical one.

(6) In general, these conditions are necessary to minimize the objective function. However, they also
are sufficient in the present case, because of the hypothesis that dCi/dPti increases with the respective
Pti (see also Fig. 2.16). The condition sufficiency will be similarly assumed in the following sections.
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For any given value of λ, the single Pti and sum
∑

i Pti can then be calculated,
and vice versa. Once

∑
i Pti = Pc + p − Po is known, the corresponding value

of λ, and consequently the optimal dispatching defined by the Pti values, can be
derived.

By differentiating, it follows:

dλ = d
(

dCi

dPti

)
= d2Ci

dP 2
ti

· dPti ∀i

and then:

d
∑

i

Pti = dλ
∑

i

1

d2Ci/dP 2
ti

� dλ

h

where h is the generic slope of the characteristic (λ,
∑

i Pti ).
It then results:

dPti = h

d2Ci/dP 2
ti

d
∑

k

Ptk � gi d
∑

k

Ptk

where gi (with
∑

i gi = 1) defines the optimal participation of dPti to the overall variation
d
∑

k Ptk ; thus, it is also called “participation factor” for the i-th generator.
Often, relations of the following can be assumed:

Ci = Cio + aiPti + bi

P 2
ti

2

with Cio, ai, bi positive constants; the incremental costs at generation are then dCi/dPti =
ai + biPti ; i.e., linear functions of respective Pti . At the optimal conditions, it holds:

Pti = λ − ai

bi

,
∑

i

Pti =
(∑

i

1

bi

)
λ −

∑
i

ai

bi

so that the single Pti ’s and their sum are linearly increasing with λ. It then follows
Ci = Cio − a2

i /2bi + λ2/2bi , and:

λ =

∑
i

Pti +
∑

i

ai

bi

∑
i

1

bi

so one can finally deduce the optimal values Ci ,
∑

i Ci for any given
∑

i Pti .

With two generators and generic conditions, it results (by indicating with the superscript
“o” the optimal values; see Fig. 2.16):

dC1

dPt1
= λ + b1(Pt1 − P o

t1),
dC2

dPt2
= λ − b2(Pt1 − P o

t1)

C1 = Co
1 + λ(Pt1 − P o

t1) + b1
(Pt1 − P o

t1)
2

2
, C2 = Co

2 − λ(Pt1 − P o
t1) + b2

(Pt1 − P o
t1)

2

2
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to which the following overcost per unit of time (with respect to the optimal solution
Pt1 = P o

t1, dC1/dPt1 = dC2/dPt2 = λ) can be derived:

(C1 + C2) − (C1 + C2)
o = (b1 + b2)

(Pt1 − P o
t1)

2

2
=

(
dC1

dPt1
− dC2

dPt2

)2

2(b1 + b2)

If the equality of the mentioned incremental costs holds, it follows that
d
∑

i Ci = λ d
∑

i Pti = λ d(Pc + p − Po), which is equivalent to say that λ

represents, for a small variation in total demanded power, the ratio between the
resulting variation of cost per unit of time and the total power variation (or even,
for all the time for which the considered steady-state holds, the ratio between the
variation of cost and that of total energy demanded).

By expressing the constraint on powers in the form of Pt1 = Pc + p − Po −∑k �=1 Ptk ,
the objective function Ctot �

∑
i Ci can be considered as a function of Pti ’s, i �= 1, with:

∂Ctot

∂Pti
= dCi

dPti
− dC1

dPt1
(i �= 1)

By numerical means, the minimization of Ctot may be obtained, for instance, by the
gradient method, by assuming at each step:

∆Pti = −k

(
dCi

dPti
− dC1

dPt1

)
(i �= 1)

with a positive and appropriate k; or by varying the only value Pti corresponding to the
largest absolute value of (dCi/dPti − dC1/dPt1), and so on. As an alternative, the Newton-
Raphson method (Section 2.2.4) may be used, deducing ∆Pti ’s at each step starting from
the equations:

0 = dCi

dPti
− dC1

dPt1
+ d2Ci

dP 2
ti

∆Pti − d2C1

dP 2
t1

·

−

∑
k �=1

∆Ptk


 (i �= 1)

Such numerical procedures (with obvious adaptations and possible modifications) can be
useful also in solving problems that are presented later on.

Now consider the limits on the Pti ’s, by imposing:

min
∑

i

Ci(Pti )

0 = Pc + p − Po −
∑

i

Pti

Pti ∈ [Pti min, Pti max] ∀i




[2.3.1]
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The Kuhn-Tucker method (an extension of the Lagrange method, in the pres-
ence of inequality constraints) may be used to solve the problem, leading to the
Lagrangian function:

L �
∑

i

Ci(Pti ) + λ

(
Pc + p − Po −

∑
i

Pti

)

+
∑

i

λ′
i(Pti min − Pti ) +

∑
i

λ′′
i (Pti − Pti max)

with the usual conditions:

0 = ∂L
∂Pti

to which the following conditions (called “excluding” conditions) must be added:

{
λ′

i = 0 if Pti > Pti min, λ′
i ≥ 0 if Pti = Pti min

λ′′
i = 0 if Pti < Pti max, λ′′

i ≥ 0 if Pti = Pti max

Note that, by generically imposing min F(x1, . . . , xn) in the presence of the inequality
constraint 0 ≥ g(x1, . . . , xn), such a constraint can be changed into an equality constraint
by writing 0 = g(x1, . . . , xn) + a2, with a as an unknown variable. If the constraint is of
the type 0 ≤ h(x1, . . . , xn), h can be substituted with −h. By the Lagrange method with
L � F + λ(g + a2), the following conditions then hold:




0 = ∂L
∂xi

(i = 1, . . . , n)

0 = ∂L
∂a

, i.e., 0 = λa

and furthermore (to obtain min F ):

∂2L
∂a2

≥ 0, i.e., λ ≥ 0

so that, from the last two conditions, by recalling the constraint 0 = g + a2, the following
(“excluding”) conditions can be deduced:

λ = 0 if a �= 0 (i.e., 0 > g), λ ≥ 0 if a = 0 (i.e., 0 = g)

which are analogous to the above-mentioned ones.

It then follows 0 = dCi/dPti − λ − λ′
i + λ′′

i , or equivalently:

ci = λ ∀i = 1, . . . , nt [2.3.2]



2.3 ANALYTICAL CRITERIA FOR ECONOMIC OPTIMIZATION 83

by denoting ci � dCi/dPti − λ′
i + λ′′

i ; that is:

ci




≤ dCi

dPti
(P +

ti min) if Pti = Pti min

= dCi

dPti
if Pti ∈ (Pti min, Pti max)

≥ dCi

dPti
(P −

ti max) if Pti = Pti max

[2.3.3]

As a consequence of Equation [2.3.2], it still holds that the incremental costs at
generation must equal each other, provided this denomination is extended to the
ci’s defined by Equations [2.3.3], which depend on their respective Pti according
to Figure 2.17a.

For any given value of λ, each Pti can be evaluated as well as the sum∑
i Pti (see the example with three generators, Fig. 2.17); then, the knowledge

of the characteristic (λ,
∑

i Pti ) determines, through the value of λ, the optimal
dispatching for any given

∑
i Pti = Pc + p − Po (obviously included within the

limits
∑

i Pti min,
∑

i Pti max).
The characteristic (λ,

∑
i Pti ) is generally constituted by several pieces with

positive slopes, separated by discontinuity points. At each discontinuity point, (at
least) one of the Pti ’s leaves — for an increasing λ — its lower limit Pti min, or

Figure 2.17. Equality of incremental costs at generation (example with three
thermal units): (a) characteristics of individual units; (b) dependence of total gen-
erated power, on incremental cost at generation; (c) dispatching of total generated
power, between different units.
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reaches its upper limit Pti max. Each piece is linear if it can be assumed that costs
per unit of time are quadratic functions of the respective Pti ’s, as indicated above.
In any case, it still holds that d

∑
i Cti = λ d

∑
i Pti = λ d(Pc + p − Po), so that

λ retains the previously stated meaning.
If the operating units of a single power plant are represented by their ideal

characteristics, and plant losses are disregarded, the condition of equal incre-
mental costs at generation can be used to determine the optimal share of any
possible value of the total delivered active power (by obviously disregarding
possible generators operating at assigned power). The whole power plant can
then be represented (for the considered units) by means of only one characteris-
tic (Ctot, Ptot), with Ptot ∈ [Ptot min, Ptot max], generally consisting of several pieces
with dCtot/dPtot increasing with Ptot.

According to Section 2.2.5d, for a more realistic solution it is possible to optimize the
share between units of the same power plant, starting from the actual characteristics, not
from ideal ones. We will assume that the resulting characteristic (C, Pt ) of the generic
power plant is with one or more pieces, in which dC/dPt increases with Pt , or that it
may be likewise approximated.

Instead, with several thermal power plants (each having an unassigned total
generation), the steady-state of the network depends on the active power dispatch-
ing between the power plants (Section 2.2.5d), particularly for losses. Thus, the
condition of equal incremental costs at generation may be adopted with close
estimation for the whole set of power plants, only if they are close to each other
or if the dependence of network losses on active dispatching may be disregarded.
Otherwise, it is worth considering such dependency, according to (b) below.

(b) Account for Variations of Network Losses
To account for network losses, as dependent on active power dispatching between
units, Equations [2.3.1] must be replaced by:

min
∑

i

Ci(Pti ), 0 = Pc + p − Po −
∑

i

Pti , Pti ∈ [Pti min, Pti max]

(i = 1, . . . , nt )

where Pc �
∑

j Pcj , Po �
∑

k Pok and:

p = φ(Pt2, . . . , Ptn t
; . . . , Pok , . . . ; . . . , Pcj , . . . ; . . . , Qcj , . . . ; . . . , vh, . . .)

[2.3.4]
according to Equation [2.2.8]. By recalling Equations [2.1.24] and [2.1.28], the
dependence of p on active powers can be assumed to be the result of the term
pα , which can be approximated by Equation [2.1.29].
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Once the Lagrangian function is assumed:

L �
∑

i

Ci(Pti ) + λ

(
Pc + p − Po −

∑
i

Pti

)

+
∑

i

λ′
i (Pti min − Pti ) +

∑
i

λ′′
i (Pti − Pti max)

with Pok ’s, Pcj ’s, Qcj ’s, vh’s assigned, the following conditions can be deter-
mined:

c1 = ci

1 − ∂φ

∂Pti

= λ (i = 2, . . . , nt ) [2.3.5]

(similarly to Equation [2.2.9]), which are, for any given value of λ, one equation
in Pt1 and (nt − 1) equations in Pt2, . . . , Ptn t

. From Equation [2.3.5] each Pti (i =
1, . . . , nt ), as well as p,

∑
i Pti and (Pc − Po), can be determined (see Fig. 2.18a).

The knowledge of the (λ, (Pc − Po)) characteristic allows then to derive, through
the value of λ, the optimal values of Pti ’s for any assigned (Pc − Po).

Note that:

d
∑

i

Ci = dC1 +
∑
i �=1

dCi = λ


dPti +

∑
i �=1

(
1 − ∂φ

∂Pti

)
dPti




= λ

(
d
∑

i

Pti − dφt

)
= λ(d(Pc − Po) + dφo + dφc + dφvQ)

Figure 2.18. Block diagram showing the relationship between the total preas-
signed active power (Pc − Po) and: (a) the incremental cost at generation for
unit 1 (λ = c1); (b) the incremental cost at load (λc) under the hypothesis of
“conform” loads.
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where:

dφt �
∑
i �=1

∂φ

∂Pti
dPti

dφo �
∑

k

∂φ

∂Pok
dPok

dφc �
∑

j

∂φ

∂Pcj
dPcj

dφvQ �
∑

j

∂φ

∂Qcj
dQcj +

∑
h

∂φ

∂vh

dvh

(while dp = dφt + dφo + dφc + dφvQ, d
∑

i Pti − dp = d(Pc − Po)), from which
the meaning of λ with respect to possible variations of the assigned values
Pok , Pcj , Qcj , vh can be determined. In particular, if each Pok , Qcj , vh does not
change, it results d

∑
i Ci = λ(dPc + dφc), where dφc is the variation of losses

caused by the variation of the assigned Pcj s only.

If vh’s were neither assigned nor constrained, then following further conditions would
hold:

0 = ∂φ

∂vh

(for all hs that do not refer to load nodes), which would correspond intuitively to a choice
of vh’s so as to minimize network losses (for any given set of Pt2, . . . , Ptn t

). However,
these conditions do not usually have practical interest, as voltage magnitudes are already
(as mentioned before) constrained enough by their limits and by requirements related to
the steady-state reactive power (network flows, and reactive power margins at generation
and compensation nodes).

In practice — especially if the generic network considered covers an area
which, under different aspects, looks homogeneous and not too wide (see foot-
note(1), Section 2.1.5) — single load demands Pcj ’s, may be assumed to partially
depend on common causes (e.g., meteorological conditions, working time-tables,
television programs etc.), according to:

Pcj = Pcj (Pc) [2.3.6]

(“conform” load hypothesis). For instance Pcj = P ∗
cj + bj (Pc −∑P ∗

ci ), with P ∗
cj ,

bj known constants (and
∑

bj = 1), where the P ∗
cj ’s are unrelated base values,

whereas the bj coefficients define the way any variation of Pc from the base
value is shared between load nodes.
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Because of 0 = Pc + p − Po −∑i Pti , the Pcj ’s depend on (Po +∑i Pti −
p), and by Equation [2.3.4] the following can be derived:

p = θ(Pt1, . . . , Ptn t
; . . . , Pok , . . . ; . . . , Qcj , . . . ; . . . , vh, . . . ; p) [2.3.7]

from which (at the price of approximations) losses p can be derived as a function
of all powers Pt1, . . . , Ptn t

, besides Pok , Qcj , vh. This leads to the so-called “loss”
formula(7):

p = p(Pt1, . . . , Ptn t
; . . . , Pok , . . . ; . . . , Qcj , . . . ; . . . , vh, . . .) [2.3.8]

(If it were nc = 1, this formula would be directly determined similarly to Equation
[2.2.8], by formally assuming as node 1 the unique load node.)

Therefore, conditions of the following type can be deduced

ci

1 − ∂p

∂Pti

= λc ∀i = 1, . . . , nt [2.3.9]

This is a formulation more “symmetrical” than the previous one (as all nodes of
thermoelectric generation are now treated in a similar way). Furthermore:

• the active powers that must be known to compute the derivatives ∂p/∂Pti

(also called “incremental losses at generation”) are only the single Pti , Pok ,
which are operating variables that can be easily determined even during
operation itself, differently from what usually happens for Pc and each Pcj ;

• the constant λc has a more interesting meaning than that of the previous
constant λ, per the information specified below.

Equation [2.3.9] corresponds, at each given value of λc, to nt equations in
Pt1, . . . , Ptn t

. Each Pti can be determined, as well as p,
∑

i Pti , and (Pc − Po)
(see Fig. 2.18b). This leads to the characteristic (λc, (Pc − Po)). Knowing this
characteristic enables, for any given value of (Pc − Po), the determination of λc

and thus the optimal values of Pti ’s.

Equation [2.3.9] is equivalent to Equations [2.3.5], as it results:

∂θ

∂p
= −

∑
j

∂φ

∂Pcj

dPcj

dPc

= − dφc

dPc

(7) For general purposes it might also be assumed — with obvious notation — that vt1, . . . , vtn t vary
with Pt1, . . . , Ptn t in such a way to satisfy constraints of the type Qti = k′

i + k′′
i Pti , with k′

i , k′′
i

known constants.
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additionally,

∂θ

∂Pt1
= − ∂θ

∂p

∂θ

∂Pti
= ∂φ

∂Pti
− ∂θ

∂p
for i = 2, . . . , nt

∂p

∂Pti
=

∂θ

∂Pti

1 − ∂θ

∂p

for i = 1, . . . , nt [2.3.10]

so that, finally:

1 − ∂φ

∂Pti
=

1 − ∂p

∂Pti

1 − ∂p

∂Pt1

for i = 2, . . . , nt

while the constants λ, λc differ from each other according to:

λc = λ

1 − ∂p

∂Pt1

= λ

(
1 + ∂φc

∂Pc

)
[2.3.11]

If it is assumed that the costs per unit of time Ci are quadratic functions of the corre-
sponding Pti ’s and that φ is a quadratic function in Pt2, . . . , Ptnt (which can be easily
obtained by using Equations [2.1.24], [2.1.28], and [2.1.29]), the conditions [2.3.5] may
be translated, for each given value of λ, into a system of linear equations in the Pti ’s
(or, better, in those Pti ’s which are within their limits, while for the other Pti ’s it holds
either Pti = Pti min or Pti = Pti max). This can significantly simplify the deduction of each
Pti from λ. By accounting for Equation [2.3.11], this situation also can be used for deter-
mining the correspondence between λc and Pti ’s, and between λc and (Pc − Po) (see
Fig. 2.18a).

Additionally:

d
∑

i

Ci = λc

∑
i

(
1 − ∂p

∂Pti

)
dPti

from which, by adopting symbols already defined, it may be determined that:

d
∑

i

Ci = λc


dPc + −dPo + dφo + dφvQ

1 + dφc

dPc




If each assigned Pok , Qcj , vh is kept unchanged, it then follows in a much simpler
way d

∑
i Ci = λc dPc, so that the value of λc defines — for a small variation
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dPc — the ratio between the variation of cost per unit of time and the total load
variation which causes it. For this reason, the generic quantity ci/(1 − ∂p/∂Pti ),
which is in the left side of Equation [2.3.9], is called the incremental cost “at
load.” Thus, such conditions imply the equality of the incremental costs “at load”
instead of those “at generation” considered in section (a).

It is to be noted that, for each i, the incremental cost at load is somewhat
different from that at generation, due to the “penalty factor” 1/(1 − ∂p/∂Pti ).
As a practical consequence, the more penalized the generic generating unit (as
if its fuel had a higher cost) the larger the increase of losses with its delivered
power Pti . With two generating units having the same characteristics (Ci, Pti ),
more power should be supplied from the unit having the smaller ∂p/∂Pti , i.e.
(obviously, assuming a single load node), from the unit “closer” to the load.

Practically, deducting the loss formula from the implicit form of Equation [2.3.7] requires
some simplification. As an initial (and acceptable) estimation, the dependence of function
θ on p may be disregarded (as if the Pcj ’s would depend on P0 +∑i Pti ), assuming the
approximate equation:

p ∼= θ(Pt1, . . . , Ptn t
; . . . , Pok , . . . ; . . . , Qcj , . . . ; . . . , vh, . . . ; 0)

� θ∗(Pt1, . . . , Ptn t
; . . . , Pok , . . . ; . . . , Qcj , . . . ; . . . , vh, . . .) [2.3.12]

which is already in the desired form of Equation [2.3.8].

However, deducting the partial derivatives ∂p/∂Pti should not be based on the above
formula; in fact, in order not to worsen the degree of approximation, Equation [2.3.10]
must be recalled, assuming:

∂p

∂Pti

∼=
∂θ

∂Pti

1 − ∂θ

∂p

(Pt1, . . . , Ptn t ; . . . , Pok , . . . ; . . . , Qcj , . . . ; . . . , vh, . . . ; 0)

instead of ∂p/∂Pti
∼= ∂θ∗/∂Pti , as it would result from Equation [2.3.12].

(c) Influence of Limits on Currents
With reference to the current flowing into a generic branch of the network, now
assume the constraint (see condition [2.2.4]):

i ≤ imax

The Lagrangian function can be written as:

L �
∑

i

Ci(Pti ) + λ

(
Pc + p − Po −

∑
i

Pti

)
+
∑

i

λ′
i(Pti min − Pti )

+
∑

i

λ′′
i (Pti − Pti max) + µ(i − imax)
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where losses p (see Equation [2.3.4]) and current i depend on active powers at
all terminal nodes, except that at the slack node (node 1), i.e., on:

Pt2, . . . , Ptn t
; Po1, . . . , Pono

; Pc1, . . . , Pcnc

In addition, they also depend on reactive powers Qc1, . . . , Qcnc
at load nodes and

voltage magnitudes at the remaining terminal nodes. (If Equation [2.3.6] could
be accepted, i.e., if the loads may be assumed to “conform,” the active pow-
ers Pt1, . . . , Ptn t

; Po1, . . . , Pono
may still be assumed as independent variables,

instead of those listed previously.)
The following optimality conditions are then obtained:

c1 =
ci + µ

∂i

∂Pti

1 − ∂φ

∂Pti

= λ (i = 2, . . . , nt ) [2.3.13]

where µ = 0 if i < imax, µ ≥ 0 if i = imax.
By comparison with Equations [2.3.5] the effect of the constraint on i can be

found to be formally equivalent (when i = imax) to an increase in the incremental
cost ci if ∂i/∂Pti > 0, and to a decrease if ∂i/∂Pti < 0 (i = 2, . . . , nt ). This
can lead to a redistribution of Pt1, . . . , Ptn t

. It is here assumed, as in (d), that
the problem can actually have a solution, consistent with the constraints, by
acting on the Pti ’s. Generally, one can also take advantage of adjustment of
“quadrature”-regulating transformers and re-adjust the assigned values Pok , vh.

These considerations can be extended to constraints on more than one current.
However, the treatment requires the (not so easy) analytical definition of the
dependence of currents on the above-defined independent variables. Therefore,
the use of simplifications becomes a must.

If the approximations of the “dc” model are accepted and the v/Q regime is
already preassigned (and it remains unchanged in spite of corrections on active
powers), the constraints on currents may be conveniently replaced (Section 2.2.5b)
by the constraints:

Fl ∈ [−Fl max, +Fl max]

where Fl is the active power flow in the generic branch l (series branch) between
nodes r, s (terminal or internal nodes). Fl is assumed to be positive when current
flows from r to s.

With such hypotheses it holds Fl = (vrvs/xrs)αrs (see the first part of
Equations [2.1.11]). The phase shift αrs linearly depends (per Equations [2.1.22]
and [2.1.23]) on active powers injected at the terminal nodes except for the slack
node, i.e., on active powers Pti (i �= 1), Pok , Pcj . This leads to an approximate
equation:

Fl =
∑
i �=1

alti Pti +
∑

k

alok Pok +
∑

j

alcj (−Pcj ) [2.3.14]
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where coefficients alti , . . . are the sensitivity coefficients defined by Equ-
ation [2.1.26].

For interconnected operation, approximations of the dc model may further simplify the
representation of external networks, in addition to what can be obtained with the usual
simplified equivalents (see Fig. 2.11). Active powers exchanged at the boundary nodes
can be expressed as linear functions of:

• active powers of generators and loads within external systems;

• phase shifts between voltages at boundary nodes.

The former of such contributions may be expressed — with reference to the equivalent
circuit of Figure 2.6a or 2.6b — by (active power) “equivalent injections” directly applied
at the boundary nodes, without any dependence on phase shifts; whereas the latter con-
tribution can be accounted for by adding proper “equivalent branches” between nodes
themselves (if more than one).

By assuming again that Pok ’s, Pcj ’s are assigned (although the treatment can be
obviously extended to the case in which the Pok ’s are not assigned) the following
can be derived:

F
(t)
l ∈ [F (t)

l min, F
(t)
l max]

with:

F
(t)
l �

∑
i �=1

alti Pti [2.3.15]




F
(t)
l min � −Fl max −

∑
k

alok Pok +
∑

j

alcj Pcj

F
(t)
l max � +Fl max −

∑
k

alok Pok +
∑

j

alcj Pcj

With reference to a given branch it can be written (with obvious extension to
constraints on more than one branch):

L �
∑

i

Ci(Pti ) + λ

(
Pc + p − Po −

∑
i

Pti

)
+
∑

i

λ′
i(Pti min − Pti )

+
∑

i

λ′′
i (Pti − Pti max) + µ′(F (t)

l min − F
(t)
l ) + µ′′(F (t)

l − F
(t)
l max)

from which it can be derived:

c1 = ci + (µ′′ − µ′)alti

1 − ∂φ

∂Pti

= λ (i = 2, . . . , nt ) [2.3.16]
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where:

(µ′′ − µ′)




= −µ′ ≤ 0 if F
(t)
l = F

(t)
l min (i.e., Fl = −Fl max)

= 0 if F
(t)
l ∈ (F

(t)
l min, F

(t)
l max) (i.e., Fl ∈ (−Fl max, +Fl max))

= µ′′ ≥ 0 if F
(t)
l = F

(t)
l max (i.e., Fl = +Fl max)

Therefore, if the power Fl is at one of its limits, the quantity (µ′′ − µ′)alti (the
sign of which depends also on the sign of the respective sensitivity coefficient
alti ) has to be added to the generic incremental cost ci , thus modifying the active
powers Pt1, . . . , Ptn t

.
As a significant example, assume Ci = Cio + aiPti + bi(P

2
ti /2) (with Cio, ai, bi

> 0) and suppose that all the Pti ’s are within their respective limits Pti min, Pti max,
so that:

λ′
i = λ′′

i = 0, ci = dCi

dPti
= ai + biPti

Furthermore, losses are disregarded.
When F = Fl max, it can be derived, from Equations [2.3.16]:

Pt1 = λ − a1

b1
, Pti = λ − ai − µ′′alti

bi

(i = 2, . . . , nt )

(with µ′′ ≥ 0). By imposing
∑

i Pti = Pc − Po, F
(t)
l = F

(t)
l max, two linear equations

in the unknowns λ, µ′′ are obtained. Once these unknowns are determined, all the
active powers Pt1, . . . , Ptn t

corresponding to the minimum
∑

i Ci can be derived.
If µ′′ < 0, the assumption Fl = Fl max should be removed.

In the above-expressed conditions, it is easy to check that, by denoting with
the superscript “o” the values obtainable at the same (Pc − Po) in the absence of
the constraint Fl ≤ Fl max, it results in particular:

λ − λo = µ′′a∗
l

Pti − P o
ti = λ − λo − µ′′alti

bi

= µ′′ a
∗
l − alti

bi

(i = 2, . . . , nt )

where:

a∗
l �

∑
k �=1

altk

bk

∑
k

1

bk

so that the constraint has the effect of increasing or decreasing the generic Pti ,
according to the fact that the respective coefficient alti is smaller or larger than
the critical value a∗

l defined above (while Pt1 − P o
t1 = (λ − λo)/b1 = µ′′(a∗

l /b1)

is obviously equal to −∑i �=1 (Pti − P o
ti )).

Similar considerations apply when considering the lower limit Fl = −Fl max.



2.3 ANALYTICAL CRITERIA FOR ECONOMIC OPTIMIZATION 93

When two subnetworks are connected only through the branch under consideration, the
coefficients alti ’s would be:

• all zero, for the nodes in the subnetwork that includes the slack node;

• all equal to each other, for the nodes in the other subnetwork;

so that the considered constraint would increase the generation in one subnetwork while
decreasing generation in the other; consequently, the units of the former subnetwork would
be set at a higher incremental cost than that corresponding to the units in the latter.

To obtain a better approximation, the above-described simplifications may be
adopted only when readjusting the working point (“redispatching”), starting from
the “base” solution obtained by neglecting the limits on currents (by adopting
the full model, and even resorting only to a numerical procedure).

Of course, redispatching becomes necessary only if in the base working point
one or more limits are violated; in this case, the correction will increase the
total cost per unit of time (

∑
i Ci). Therefore, increase of the total cost may be

assumed as the objective function to be minimized, imposing:

min
∑

i

∆Ci,
∑

i

∆Ci �
∑

i

(Ci(P
o
ti + ∆Pti ) − Ci(P

o
ti ))

(the superscript “o” denotes the values corresponding to the base working point,
and it is generically intended that ∆Pti � Pti − P o

ti , etc.)
By further assuming that the steady-state values of voltage magnitudes (and

of reactive powers) remain unchanged with respect to the base working point, as
well as the set of values Pok , Pcj :

• the constraint caused by the balance of active powers can be written as:

0 = ∆p − ∆
∑

i

Pti

• the limits on Pti ’s may be expressed by the following constraints:

∆Pti ∈ [Pti min − P o
ti , Pti max − P o

ti ] (i = 1, . . . , nt )

• the limits on currents may be expressed as constraints on transmitted powers:

∆Fl ∈ [−Fl max − F o
l , +Fl max − F o

l ]

• finally, it may be assumed (by recalling Equation [2.1.26]):

∆Fl =
∑
i �=1

alti ∆Pti +
∑

k

alok ∆Pok +
∑

j

alcj (−∆Pcj ) [2.3.17]



94 CHAPTER 2 CONFIGURATION AND WORKING POINT

or, with Pok ’s, Pcj ’s assigned:

∆Fl =
∑
i �=1

alti ∆Pti

where the coefficients alti retain the meaning defined earlier.

(The possible extension to the case when Pok ’s are not assigned is then obvious.)
By considering, for simplicity, the constraints on one branch for which the

current base value has been found to be in excess of the admitted value, it may
be written:

L �
∑

i

∆Ci(∆Pti ) + λ

(
∆p −

∑
i

∆Pti

)
+
∑

i

λ′
i (∆Pti min − ∆Pti )

+
∑

i

λ′′
i (∆Pti − ∆Pti max) + µ′(∆Fl min − ∆Fl) + µ′′(∆Fl − ∆Fl max)

so that conditions as in Equations [2.3.16] may still be derived, where:

(µ′′ − µ′)




= −µ′ ≤ 0 if ∆Fl = −Fl max − F o
l

= 0 if ∆Fl ∈ (−Fl max − F o
l , +Fl max − F o

l )

= µ′′ ≥ 0 if ∆Fl = +Fl max − F o
l

with consequences similar to those illustrated above.
Note that with a simplified, likely acceptable approach we may also assume,

if P o
ti and Pti are both within the limits Pti min, Pti max:

∆Ci =
(

dCi

dPti

)o

∆Pti +
(

d2Ci

dP 2
ti

)o
(∆Pti )

2

2

By assuming ∆Pti = 0 at the other possible nodes (for which Pti = P o
ti =

Pti min or Pti = P o
ti = Pti max holds), we may then derive:

∑
i

∆Ci =
∑

i

co
i ∆Pti +

∑
i

(
d2Ci

dP 2
ti

)o
(∆Pti )

2

2

where the first term in the right side is:

λo


∆p −

∑
i �=1

∂φ

∂Pti
∆Pti




(remember Equations [2.3.5] and 0 = ∆p − ∆
∑

i Pti ) and then it may be disre-
garded, or approximated by a quadratic function of ∆Pt2, . . . , ∆Ptn t

.
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No matter what simplifying procedure is adopted, the results should be checked
by evaluating, on the basis of the full model, the working point which actually
corresponds to the above found Pt2, . . . , Ptn t

, and correcting this last working
point if constraints on currents are not satisfied.

(d) Influence of Security Constraints
The analytical formulation illustrated in the previous sections also may be prop-
erly adapted to account for security requirements. However, it may seem unavoid-
able to use strong simplifications. First, the attention can be limited only to the
static behavior of the system, in response to considered perturbations (“static”
security); additionally, the static model itself can be simplified by accepting the
approximations described in (c) (i.e., “dc” model and assigned v/Q steady-state),
and by assuming that:

• network losses are negligible;
• the v/Q steady-state remains unchanged even after perturbations(8).

By doing so, the relationships between active powers (injected at the terminal
nodes and flowing through the branches) and voltage phase shifts (at all nodes)
are simply defined by the equivalent circuit of Figure 2.6a or b, where:

• conductances have assigned values;
• active power injections (depending on generation and load, in the examined

system and any external systems connected to it) have a zero sum, because
of the hypothesis on losses.

With interconnected operations, the “equivalent injections” at the boundary
nodes must be considered, and the possible “equivalent branches” between these
nodes should be included in the circuit according to Section (c).

With reference to such an equivalent circuit, perturbations may be schemati-
cally classified into:

• perturbations of injected active power;
• structural perturbations inside the equivalent circuit;

according to the specifications below.
A perturbation of injected active power may occur at:

• a generation node (thermal or hydroelectric generation), as resulting from
the casual trip of a generating unit or a whole power plant;

(8) Additionally, reactance variations are disregard, even if the perturbation leads to a frequency
value different from the initial one. When the network configuration is changed, the unavoidable
variations of voltage magnitudes at the internal nodes should be accounted for (see Fig. 2.7), with
consequences on the limits ± Fl max and various coefficients considered below.
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• a load node, caused by load connection or disconnection (or to a continuous
variation of demand);

• a boundary node, caused by perturbations concerning generation and/or
load in the external systems (which cause a variation in the equivalent
injection)(9).

A perturbation like the one considered here results in a redistribution of all
injected powers (as their sum must still be zero), which is determined by the
overall system characteristics as will be better specified in the following chapters.
Such a redistribution causes a transient unbalance between the driving power and
the generated power on each generating unit, with consequent speed variations
followed by the intervention of the f/P control system (see Chapter 3) until a
new steady-state is reached.

However, for the existence of the new steady-state, it is necessary that units
under control are capable of generating the overall demanded variation of active
power, staying respectively within driving power minimum and maximum limits
(refer to the first part of conditions [2.2.3]). The constraint concerning the mini-
mum limits is not of particular concern, as it could be activated as with a large,
total or almost total, load rejection (and/or loss of the exported power), which can
indeed be managed by intentionally disconnecting some generating units. Instead,
the situation involving the maximum limits may be more critical, such as when a
power plant disconnection or load connection (or loss of imported power) occurs,
because the total set of operating units should not be excessive (due to econom-
ical requirements; see also Section 2.4.2b), and the start-up of new units can be
difficult, if not impossible, in short times. Therefore, it is necessary to guarantee
sufficient spinning reserve, with particular reference to units under control, so as
to reduce — from the probabilistic point of view — the risk of power deficiency.
More simply, one may impose a spinning reserve sufficiently larger than:

• the maximum power of the largest unit (and/or the maximum power impor-
ted through a single link);

• a given percentage (e.g., 2–5%) of the total load.

Additionally, the spinning reserve also must exhibit a proper geographical spread,
not only for the considerations illustrated below, but also for operation when the
system is split into two or more electrical islands (Section 1.7.1).

Actually, the new steady-state may not even exist because of the nonlinearities disregarded
by the “dc” model. In particular, the transmissibility limits of active power (Section 1.5)
are not considered by such a model.

(9) With a single boundary node, the opening of the interconnection has similar consequences to
those caused by a power plant trip or a load rejection, according to the sense of the exchanged
power before the opening itself. This also holds when other boundary nodes are present, provided
they are not connected (through equivalent branches, as explained above) to the considered node;
otherwise, the opening may be seen as a structural perturbation.
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By assuming that the generic perturbation does not prevent the system from
reaching a new steady-state, let us now examine the effects of a trip of a thermal
generating unit with a nonassigned generation, with specific concern to power
flows in different branches.

By adopting the notation Pti , Pok , Pcj , Fl previously defined for the values
prior to the trip, and by denoting with an apex the values corresponding to the
final steady-state, let us assume that the s-th generating unit is disconnected, so
that P ′

ts = 0.
The corresponding lack of the injection Pts is balanced in the new steady-state

by proper variations of injections at the remaining nodes (the sum of injected
active powers is zero by hypothesis, and each single variation is determined by
the f/P control).

Equations such as the following can be assumed:

P ′
ti − Pti � gisPts (i = 1, . . . , nt ; i �= s)

P ′
ok − Pok � goksPts (k = 1, . . . , no)

−(P ′
cj − Pcj ) � gcjsPts (j = 1, . . . , nc)




[2.3.18]

with: ∑
i �=s

gis +
∑

k

goks +
∑

j

gcjs = 1

where the values of the coefficients gis , goks , gcjs depend on the “static” model
assumed for the system. If only the static effects of the primary f/P control are
considered, which generally result in a network frequency variation (Section 3.3.1),
such coefficients are determined by the primary regulators’ parameters (at those
nodes for which the primary control is activated) and dependence of loads on
frequency. Instead, if the static effects of the secondary f/P control are con-
sidered (Section 3.3.2), with network frequency equal to the initial value, only the
coefficients gis , goks corresponding to powers under secondary control are not zero.

These coefficients may sometimes change depending on the initial steady-state
(particularly on disconnected power), e.g., when, after the disconnection, some
unit reaches its maximum power limit. The meaning of the above-mentioned
coefficients is evident from the preceding equations. They may be called “node-
to-node redistribution” coefficients of the injected active power, from node s to
the remaining nodes i, ok, cj.

As a consequence of Equations [2.3.17] and [2.3.18], the following equation
can be derived:

F ′
l = Fl + flsPts [2.3.19]

with:

fls �
∑
i �=1

alti gis +
∑

k

alok goks +
∑

j

alcj gcjs [2.3.20]
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(assuming gss = −1 if s �= 1), where Fl, F ′
l are, respectively, the initial and final

values of the active power flow in generic branch l.
For security reasons, it is necessary that the following new constraints (con-

cerning the final conditions after the possible disconnection):

F ′
l ∈ [−Fl max, +Fl max]

are added to the constraints already considered in section (c):

Fl ∈ [−Fl max, +Fl max]

The values corresponding to the “base” working point, found without model
approximations but disregarding the above-mentioned constraints, are again
denoted by a superscript “o” (as in Section (c)). The resulting active power flow
in the branch l, at the final steady-state following the disconnection, is denoted
by F ′o

l , so that F ′o
l = F o

l + flsP
o
ts .

If F o
l and/or F ′o

l do not match their constraints, a “redispatching” procedure
may be used, which is similar to that described in Section (c), by again adopting
corrections ∆Pti = Pti − P o

ti for i = 2, . . . , nt , and considering the additional
constraints:

∆F ′
l ∈ [−Fl max − F ′o

l , +Fl max − F ′o
l ]

where, according to Equation [2.3.19], with fls constant:

F ′o
l = F o

l + flsP
o
ts [2.3.21]

∆F ′
l = ∆Fl + fls∆Pts [2.3.22]

with ∆Fl =∑i �=1 alti ∆Pti .
It further holds, because of the hypothesis of zero losses, that ∆Pt1 = −∑i �=1

∆Pti . Additionally, it must be ∆Fl ∈ [−Fl max − F o
l , +Fl max − F o

l ].

By considering the expression for ∆Fl , Equation [2.3.22] also may be written as:

∆F ′
l =

∑
i �=1

bli ∆Pti [2.3.23]

where:

• if the disconnection takes place at a node s �= 1:




bli � alti for i �= s

bls � alts + fls =
∑

h �=1,s

althghs +
∑

k

alok goks +
∑

j

alcj gcjs
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• if the disconnection takes place at the node s = 1 (i.e., at the slack node):

bli � alti − fls

However, Equation [2.3.22] is based on the assumption that fls , as well as the coefficients
gis etc., are invariant. Indeed, such coefficients also might vary, depending on the initial
steady-state obtained by the redispatching.

The treatment appears to be easier in other cases, for which the perturba-
tion concerns an injected power of assigned value, which does not undergo
changes caused by possible redispatching (assigned generations, loads, equiv-
alent injections). In fact, for such cases, an equation similar to Equation [2.3.19]
again results, where the last term of the right side may now be considered
assigned (comments on the invariance of fls should however be reminded), so
that Equation [2.3.22] may be replaced by the simpler expression:

∆F ′
l = ∆Fl

which is Equation [2.3.23] with bli = alti .
A structural perturbation inside the equivalent circuit is typically constituted

by a branch opening between two nodes (terminal and/or internal nodes). In a
real network, this may correspond to a line and/or transformer opening.

By assuming that the a-th branch is opened, the corresponding active power
flow then changes from its initial value Fa to the final valueF ′

a = 0, whereas the
final steady-state of injected active powers may be considered unchanged with
respect to the initial one, i.e., P ′

ti = Pti , etc.

Actually, this perturbation generally causes variations in each injected power, according
to the dynamic characteristics of generators, loads etc. However, these variations may be
modest, and purely transient due to f/P control. In present conditions, the existence of
the new steady-state — even if not compromised by minimum and maximum limits on
driving power — should be still checked by using the full model, with particular regard
to active power transmissibility limits and voltage supportability limits (Section 1.5).

By recalling Equation [2.1.27], the final value of the active power flow in the
generic branch l is now given by:

F ′
l = Fl + dlaFa

where the coefficient dla is the “branch-to-branch redistribution” coefficient of
the active power flow (from branch a to branch l ), that can be deduced by the
equivalent circuit.

The treatment is similar to that of the previous cases, provided that Equations
[2.3.21] and [2.3.22] are substituted by:

F ′o
l = F o

l + dlaF o
a , ∆F ′

l = ∆Fl + dla∆Fa
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where ∆Fl =∑i �=1 alti ∆Pti , ∆Fa =∑i �=1 aati ∆Pti (it then follows Equ-
ation [2.3.23], with bli = alti + dlaaati ).

2.3.2. Economic Optimization of Thermoelectric Generation with
Constraints on Variations Over Time

(a) Influence of the Limits on the Rate of Change for Active Power
in Thermal Units
In the previous sections, it has been assumed that the system is represented
by a purely static model, as if the system could be kept indefinitely at the
generic steady-state. Generally, as powers absorbed by loads vary with time, the
assumption of the static model implies that the steady-state can be instantaneously
adapted to different situations, without any dynamic limitation.

However, active powers delivered by thermal plants cannot vary too fast,
because of functional and/or safety reasons (such as thermal stresses). Thus it
may seem reasonable to resort to a “dynamic” model that includes at least such
limitations, if fast enough load variations occur.

The resulting dispatching is called “dynamic dispatching,” in opposition to the “static
dispatching” considered so far. However, to avoid misunderstanding, in both cases the
dispatching is the previsional type, starting from load forecasts covering a given time
interval, and the difference is only related to the model type. More precisely, with the static
model, the dispatching problem becomes “instantaneous” unrelated problems, whereas by
using the dynamic model, only a single dispatching “over time” problem must be solved,
the final solution of which depends, at each time, also on past and future load demands.

To formulate the effect of the considered limitations, let us assume:

dPti

dt
= ui ∈ [ui min, ui max] (i = 1, . . . , nt )

where ui min < 0, ui max > 0 (for instance |ui min| = ui max = kP ti max, with k in
the order of a few percent per minute); and assume, for simplicity, that limits
ui min, ui max may be actually activated only for the l-th unit.

Denoting by [0, T ] the considered time interval, and using the notation defined
in Section 2.3.1, the problem may be formulated as follows:

min
∫ T

0

∑
i

Ci(Pti (t)) dt

with the following constraints (∀t ∈ [0, T ]):

0 = Pc(t) + p(t) − Po(t) −
∑

i

Pti (t)
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0 = dPtl

dt
(t) − ul(t)

Pti (t) ∈ [Pti min, Pti max] (i = 1, . . . , nt )

ul(t) ∈ [ul min, ul max]

where the initial value Ptl (0) is assumed to be known, whereas losses p are
expressed, at each time, by Equation [2.3.4]. (For simplicity, limits on currents
and security constraints are not considered here; moreover the system config-
uration — operating generators etc. — is assumed not to change for the whole
considered time interval.)

By subdividing the time interval into a sufficiently large number R of elemen-
tary intervals of duration τ � T /R, the following “discrete” formulation may be
deduced (which may be compared in an easier way with what is previously seen,
and includes the total load forecasts in their discrete form P (1)

c , . . . , P (R)
c , which

is the form usually available):

min
∑

r

∑
i

Ci(P
(r)
ti )τ

with the constraints (∀r = 1, . . . , R):

0 = P (r)
c + p(r) − P (r)

o −
∑

i

P
(r)
ti

0 = P
(r)

tl − P
(r−1)

tl − u
(r)
l τ

P
(r)
ti ∈ [Pti min, Pti max] (i = 1, . . . , nt )

u
(r)
l ∈ [ul min, ul max]

where P
(0)

tl � Ptl (0) is known (whereas p(r) depends on P
(r)
t2 , . . . , P

(r)
tn t

, . . . accor-
ding to Equation [2.3.4]).

With the previously stated assumptions, a Lagrangian function of the type
L =∑r L(r)τ may then be assumed, with:

L(r) �
∑

i

Ci(P
(r)
ti ) + λ(r)(P (r)

c + p(r) − P (r)
o −

∑
i

P
(r)
ti ) +

∑
i

λ
′(r)
i (Pti min−P

(r)
ti )

+
∑

i

λ
′′(r)
i (P

(r)
ti − Pti max) + β

(r)
l (P

(r)

tl − P
(r−1)

tl − u
(r)
l τ )

+ [β ′(r)
l (ul min − u

(r)
l ) + β

′′(r)
l (u

(r)
l − ul max)]τ

Such Lagrangian function — by assuming assigned (besides P
(0)

tl = Ptl (0))
Pok , Pcj , Qcj , vh at the different time intervals — depends on P

(r)
t1 , . . . , P

(r)
tn t

, u
(r)
l

(r = 1, . . . , R).
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By setting to zero the partial derivatives of L with respect to P
(r)
t1 , . . . , P

(r)
tn t

,
the following conditions may be derived:

• for i �= l:

0 = ∂L(r)

∂P
(r)
ti

=
(

dCi

dPti

)(r)

− λ(r)

(
1 −

(
∂φ

∂Pti

)(r)
)

− λ
′(r)
i + λ

′′(r)
i

= c
(r)
i − λ(r)

(
1 −

(
∂φ

∂Pti

)(r)
)

(r = 1, . . . , R)

• for i = l:


0 = ∂L
τ∂P

(r)

tl

=
(

dCl

dPtl

)(r)

− λ(r)

(
1 −

(
∂φ

∂Ptl

)(r)
)

−λ
′(r)
l + λ

′′(r)
l + β

(r)
l − β

(r+1)
l

= c
(r)
l − λ(r)

(
1 −

(
∂φ

∂Ptl

)(r)
)

+ β
(r)
l − β

(r+1)
l (r = 1, . . . , R − 1)

0 = ∂L(R)

∂P
(R)

tl

=
(

dCl

dPtl

)(R)

− λ(R)

(
1 −

(
∂φ

∂Ptl

)(R)
)

− λ
′(R)
l + λ

′′(R)
l + β

(R)
l

= c
(R)
l − λ(R)

(
1 −

(
∂φ

∂Ptl

)(R)
)

+ β
(R)
l

or equivalently, with i �= l:




c
(r)
i

1−
(

∂φ

∂Pti

)(r)
= c

(r)
l +β

(r)
l −β

(r+1)
l

1−
(

∂φ

∂Ptl

)(r)
=λ(r) (r =1, . . . , R−1)

c
(R)
i

1−
(

∂φ

∂Pti

)(R)
= c

(R)
l +β

(R)
l

1−
(

∂φ

∂Ptl

)(R)
=λ(R)

[2.3.24]

where c
(r)
1 , . . . , c(r)

nt
are the incremental costs at generation defined by Equations

[2.3.3], whereas (∂φ/∂Pt1)
(r) = 0.

Additionally, by setting to zero the partial derivatives of L with respect to
u

(r)
l , it may be derived:

0 = ∂L(r)

∂u
(r)
l

= (−β
(r)
l − β

′(r)
l + β

′′(r)
l )τ (r = 1, . . . , R)
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Figure 2.19. Dependence of the Lagrangian multiplier β
(r)
l on rate of change

u
(r)
l for power of the l-th unit.

from which, by considering the “excluding” conditions on β
′(r)
l , β

′′(r)
l :

β
(r)
l = −β

′(r)
l + β

′′(r)
l




= −β
′(r)
l ≤ 0 if u

(r)
l = ul min

= 0 if u
(r)
l ∈ (ul min, ul max)

= β
′′(r)
l ≥ 0 if u

(r)
l = ul max

[2.3.25]

according to Figure 2.19.

For dynamic conditions, the generation costs per unit of time can be considered slightly
higher (for given Pti ’s) than those considered up to now. For example, we may assume
the expression Ci(Pti ) + C ′

i (ui), where the generic term C ′
i is an additional cost (which

is zero for ui = 0).

By considering this, the expression of L(r) becomes:

L(r) =
∑

i

(Ci(P
(r)
ti ) + C ′

i (u
(r)
i )) + λ(r)

(
P (r)

c + p(r) − P (r)
o −

∑
i

P
(r)
ti

)

+
∑

i

λ
′(r)
i (Pti min − P

(r)
ti ) +

∑
i

λ
′′(r)
i (P

(r)
ti − Pti max)

+
∑

i

β
(r)
i (P

(r)
ti − P

(r−1)
ti − u

(r)
i τ ) +

[
β

′(r)
l (ul min − u

(r)
l ) + β

′′(r)
l (u

(r)
l − ul max)

]
τ

so that L(r) also depends on all the u
(r)
i with i �= l. Then, for all i = 1, . . . , nt , it can

be derived: 


c
(r)
i + β

(r)
i − β

(r+1)
i

1 −
(

∂φ

∂Pti

)(r)
= λ(r) (r = 1, . . . , R − 1)

c
(R)
i + β

(R)
i

1 −
(

∂φ

∂Pti

)(R)
= λ(R)
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additionally:




β
(r)
i =

(
dC ′

i

dui

)(r)

· 1

τ
(i �= l, r = 1, . . . , R)

β
(r)
l =

(
dC ′

l

dul

)(r)

· 1

τ
− β

′(r)
l + β

′′(r)
l (r = 1, . . . , R)

More specifically, by assuming C ′
i proportional to u2

i , the generic β
(r)
i is proportional to

u
(r)
i ; and this holds true also for i = l, within the limits ul min, ul max; see the dashed line

in Figure 2.19.

By neglecting, for simplicity, loss variations, conditions [2.3.24] can be rewrit-
ten as follows (r = 1, . . . , R):

• c
(r)
i = λ(r) for all i �= l: this means the incremental costs at generation for all

units with i �= l, are equal, thus allowing the definition of a single “equiva-
lent characteristic” (λ,

∑
i �=l Pti ) for the whole set of such units, according

to Section 2.3.1a. Additionally, since
∑

i �=l P
(r)
ti = P (r)

c + p − P (r)
o − P

(r)

tl ,
with P (r)

c , p, P (r)
o known, the generic value λ(r) can be determined from

P
(r)

tl or vice versa.

• λ(r) − c
(r)
l = β

(r)
l − β

(r+1)
l (with the condition β

(R+1)
l = 0), where the left-

side term can be deduced from P
(r)

tl or vice versa.

Furthermore, it must be considered that P
(r)

tl = P
(r−1)

tl + u
(r)
l τ , where P

(0)

tl is
assigned, whereas β

(r)
l depends on u

(r)
l according to Equations [2.3.25], i.e.,

according to the characteristic of Figure 2.19.
The block diagram of Figure 2.20 (with r = 1, . . . , R) then applies, which

shows that all variables under consideration finally depend on β
(R+1)
l = 0 and

on P
(0)

tl .

“equivalent
characteristic”

Figure 2.20. A computational block diagram in the presence of rate of change
limits for the power of the l-th unit (under the assumption of constant losses).
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For example, if the costs per unit of time are quadratic functions of delivered
powers (of the type Ci = Cio + aiPti + bi(P

2
ti /2) as already seen), and if it is

assumed that limits Pti min, Pti max are not reached, it follows:

λ = a + b
∑
i �=l

Pti = a + b(Pc + p − Po − Ptl )

cl = al + blPtl

with a, b, al, bl as proper (positive) constants; it then results:

λ(r) − c
(r)
l = a − al + b(P (r)

c + p − P (r)
o ) − (b + bl)P

(r)

tl

Without constraints on ul , the optimal solution would be defined, for each r =
1, . . . , R, by β

(r)
l = 0, λ(r) = c

(r)
l , and consequently, it would be:

P
(r)

tl = a − al + b(P (r)
c + p − P (r)

o )

b + bl

� P
(r)o

tl [2.3.26]

as with R purely instantaneous dispatchings.
Now assume, for simplicity, that the number of elementary intervals is R = 3;

furthermore:

P (1)
c + p − P (1)

o = P ′, P (2)
c + p − P (2)

o = P (3)
c + p − P (3)

o = P ′ + ατ (α > o)

(see Fig. 2.21a), with the initial condition P
(0)

tl = (a − al + bP ′)/(b + bl) corre-
sponding, for the given P ′, to the optimal value when disregarding constraints
on ul .

Equation [2.3.26] leads to:

P
(1)

tl = P
(0)

tl = P
(1)o

tl , P
(2)

tl = P
(3)

tl = P
(0)

tl + bατ

b + bl

= P
(2)o

tl = P
(3)o

tl

(Fig. 2.21b, case 1), but such a solution, which corresponds to three instantane-
ous dispatchings, is seen as optimal if and only if bα/(b + bl) = u

(2)
l ≤ ul max;

otherwise, it cannot be achieved because it requires too large a value of u
(2)
l .

More precisely:

• If bα/(b + bl) ∈ (ul max, 3ul max), the optimal solution is that shown in
Figure 2.21b, case 2. The results of the instantaneous dispatching are valid
only at the final point r = 3 (with P

(3)

tl = P
(0)

tl + bατ/(b + bl) = P
(3)o

tl ), but
not at the intermediate points r = 1, 2, where P

(1)

tl > P
(1)o

tl and P
(2)

tl < P
(2)o

tl ,
with u

(2)
l = ul max, u

(1)
l = u

(3)
l = (bα/(b + bl) − ul max)/2. Specifically, note

the “forward type” correction on P
(1)

tl , caused by the forecast of the following
increase of (Pc + p − Po).
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Figure 2.21. An example of dispatching “over time” (R = 3 elementary inter-
vals), as influenced by limits on rate of change for the power of the l-th unit:
(a) total active power demanded; (b) power of the l-th unit. (1) bα/(b + bl) <

ul max, (1′) bα/(b + bl) = ul max, (2) bα/(b + bl) ∈ (ul max, 3ul max), (3) bα/

(b + bl) ≥ 3ul max.

• If bα/(b + bl) ≥ 3ul max, the optimal solution is that in the same figure,
case 3, with u

(1)
l = u

(2)
l = u

(3)
l = ul max. That is equivalent to saying that

Ptl grows at its maximum rate in all the elementary intervals, until reaching
the value P

(3)

tl = P
(0)

tl + 3ul maxτ (which is no longer consistent with the
instantaneous dispatching, unless it were bα/(b + bl) = 3ul max).

The dependence of u
(1)
l , u

(2)
l , u

(3)
l on bα/(b + bl) is illustrated in Figure 2.22a.

The above-reported equations enable easy identification of each value P
(r)

tl , λ(r) −
c

(r)
l , β

(r)
l for the different cases.

Recalling Section 2.3.1a for the case of two units, the overcost caused by constraint
ul ≤ ul max is given by:

S =
∑

r

[∑
i

Ci

(
P

(r)
ti

)
−
∑

i

Ci

(
P

(r)o
ti

)]
τ = b + bl

2
τ
∑

r

(
P

(r)

tl − P
(r)o

tl

)2

= 1

2(b + bl)
τ
∑

r

(
λ(r) − c

(r)
l

)2

which depends on bα/(b + bl), according to Figure 2.22b.
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(1) (2) (1) (2) (3)(3)

Figure 2.22. Example of Figure 2.21; effect of bα/(b + bl) on: (a) rate of change
ul for the power of the l-th unit; (b) over-cost S due to the limit on the rate of
change.

(b) Influence of Constraints Concerning the Fuel Consumption
In the previous treatment, it has been assumed that fuel flows used by the differ-
ent units can be chosen, at any instant, with no limitation. Actually, such flows
are related to other variables according to a model, which may result in further
constraints on variations over time, accounting for the conditions of fuel acqui-
sition and storage, the type of supplying contracts, environmental requirements
(limits on pollution, etc.), and so on.

Consider an interval [0, T ] of proper duration (which may vary from case to
case, and may also be quite different from that considered in Section (a)) and
assume, for simplicity, that such constraints arise just for the l-th power plant
and concern a single fuel.

The following problems are particularly meaningful (although they are defined
very schematically), with possible generalizations.

Problem 1 (Fig. 2.23a):

• the law qal(t), according to which the fuel flows to the power plant in the
interval [0, T ], is known (qal is just the incoming fuel flow);

• it is possible to store the fuel, according to the law:

dVl

dt
= qal − ql

with Vl(0) known (Vl denotes the quantity of stored fuel, and ql the used
fuel flow, which depends on Ptl );
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Figure 2.23. Examples of dispatching “over time” caused by: (a) limits on fuel
storage (problem 1); (b) minimum amount of fuel to be used (problem 2).

• the quantity Vl must satisfy, at each instant, the constraints:

Vl ∈ [Vl min, Vl max]

Problem 2 (Fig. 2.23b):

• there is no storage capability, so that ql(t) = qal(t);
• the supply contract implies, for the interval [0, T ], a minimum cost Gl min

which corresponds to the acquisition of a given quantity of fuel Wl min, so
that at least this quantity should be used:

Wl �
∫ T

o

ql dt =
∫ T

o

qal dt ≥ Wl min

• furthermore, any possible surplus (Wl − Wl min) implies an additional cost
k′(Wl − Wl min).

Both of the above-defined problems may be translated into dispatching “over
time” problems, even if the power system is represented by a static model (as
we will assume, disregarding the limits on dPti /dt ; additionally, the system con-
figuration will be assumed unchanged over the entire interval [0, T ]).

In Problem 1, with notation similar to those used in Section (a), a Lagrangian
function L =∑r L(r)τ may be adopted, with:

L(r) �
∑

i

Ci(P
(r)
ti ) + λ(r)

(
P (r)

c + p(r) − P (r)
o −

∑
i

P
(r)
ti

)

+
∑

i

λ
′(r)
i (Pti min − P

(r)
ti ) +

∑
i

λ
′′(r)
i (P

(r)
ti − Pti max)
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+ γ
(r)
l

[
V

(r)
l − V

(r−1)
l

τ
− q

(r)
al + ql(P

(r)

tl )

]

+ [γ ′(r)
l (Vl min − V

(r)
l ) + γ

′′(r)
l (V

(r)
l − Vl max)]/τ

which depends on P
(r)
t1 , . . . , P

(r)
tn t

, V
(r)
l (r = 1, . . . , R). (V (0)

l � Vl(0) is known, as
well as all the values of qal, Pok , Pcj , Qcj , vh; whereas losses p can be derived
by using Equation [2.3.4]).

By setting to zero the partial derivatives of L with respect to P
(r)
t1 , . . . , P

(r)
tn t

,
the following conditions are then derived (r = 1, . . . , R):

• for i �= l:

0 = ∂L(r)

∂P
(r)
ti

=
(

dCi

dPti

)(r)

− λ(r)

(
1 −

(
∂φ

∂Pti

)(r)
)

− λ
′(r)
i + λ

′′(r)
i

= c
(r)
i − λ(r)

(
1 −

(
∂φ

∂Pti

)(r)
)

• for i = l:

0 = ∂L(r)

∂P
(r)

tl

=
(

dCl

dPtl

)(r)

− λ(r)

(
1 −

(
∂φ

∂Ptl

)(r)
)

− λ
′(r)
l + λ

′′(r)
l

+ γ
(r)
l

(
dql

dPtl

)(r)

= c
(r)
l − λ(r)

(
1 −

(
∂φ

∂Ptl

)(r)
)

+ γ
(r)
l

(
dql

dPtl

)(r)

that is to say, with i �= l:

c
(r)
i

1 −
(

∂φ

∂Pti

)(r)
=

c
(r)
l + γ

(r)
l

(
dql

dPtl

)(r)

1 −
(

∂φ

∂Ptl

)(r)
= λ(r) (r = 1, . . . , R) [2.3.27]

where c
(r)
1 , . . . , c(r)

nt
are the incremental costs at generation defined by Equations

[2.3.3], whereas (∂φ/∂Pt1)
(r) = 0.
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By assuming Cl = kql + h, with k, h as proper constants (k is the unit cost of fuel at the
l-th power plant), it holds:

(
dCl

dPtl

)(r)

+ γ
(r)
l

(
dql

dPtl

)(r)

=
(
k + γ

(r)
l

)( dql

dPtl

)(r)

so that the generic value γ
(r)
l may be viewed as an “equivalent” variation of the unit cost

of fuel, due to the possible activation of constraints on Vl (see the following text).

Furthermore, by setting to zero the partial derivatives of L with respect to
V

(r)
l , it follows:




0 = ∂L
τ∂V

(r)
l

= (γ
(r)
l − γ

(r+1)
l − γ

′(r)
l + γ

′′(r)
l )/τ (r = 1, . . . , R − 1)

0 = ∂L(R)

∂V
(R)
l

= (γ
(R)
l − γ

′(R)
l + γ

′′(R)
l )/τ

(this last condition would disappear if V
(R)
l is assigned), from which, by consid-

ering the “excluding” conditions on γ
′(r)
l , γ

′′(r)
l :

γ
(r+1)
l




= γ
(r)
l − γ

′(r)
l ≤ γ

(r)
l if V

(r)
l = Vl min

= γ
(r)
l if V

(r)
l ∈ (Vl min, Vl max)

= γ
(r)
l + γ

′′(r)
l ≥ γ

(r)
l if V

(r)
l = Vl max

[2.3.28]

(r = 1, . . . , R), according to Figure 2.24, with γ
(R+1)
l = 0.

If constraints on Vl are not activated, it can be deduced γ
(1)
l = · · · = γ

(R)
l = 0,

and the optimal solution is constituted by R purely instantaneous dispatchings.
Otherwise, the optimal solution implies, generally, the definition of m

subintervals. Within each of these subintervals the value γ
(r)
l remains constant

Figure 2.24. Dependence of the variation of the Lagrange multiplier γl on the
quantity Vl of stored fuel (problem 1).



2.3 ANALYTICAL CRITERIA FOR ECONOMIC OPTIMIZATION 111

(γl(1), . . . , γl(m), respectively). By indicating with Vl(0), Vl(1), . . . , Vl(m) the values
assumed by Vl at the extremes of such subintervals, it results Vl(s) = Vl min

or Vl(s) = Vl max for s = 1, . . . , m − 1, whereas Vl(0) = V
(0)
l is assigned and

Vl(m) = V
(R)
l ∈ [Vl min, Vl max] is the value reached at t = T .

The treatment must be modified if, besides Vl(0), the final value V
(R)
l = Vl(T ) is also

assigned (or even, since
∫ T

0 qal dt is known, if the quantity Wl �
∫ T

0 ql dt of fuel to be
used is assigned). In this case, similar to that discussed in Section 2.3.3b:

• the condition γ
(R+1)
l = 0 (which is a consequence of 0 = ∂L(R)/∂V

(R)
l ) needs no

longer to be imposed;

• the value of γ
(R)
l can be determined starting from P

(R)

tl , or from (V (R)
l − V

(R−1)
l )

(for instance, the diagram of the following Figure 2.25 changes in an obvious way,
for r = R).

In a generic subinterval, the final quantity of stored fuel Vl(s) increases with
γl(s) (see Fig. 2.25), i.e., with the “equivalent” unit fuel cost. Thus γl(s) must
be increased — as if fuel were more expensive — if the fuel consumption for
the given subinterval is excessive (accounting for limits on Vl), and must be
decreased in the opposite case.

By disregarding, for simplicity, the dependence of losses on generated power
dispatching, from conditions [2.3.27] it can be derived (r = 1, . . . , R):

• c
(r)
i = λ(r) for all i �= l. Consequently, it is possible to reference the “equiv-

alent characteristic” (λ,
∑

i �=l Pti ), then derive λ(r) from P
(r)

tl (with P (r)
c , p,

P (r)
o assigned) or vice versa.

“equivalent
characteristic”

Figure 2.25. A computational block diagram for problem 1 (under the assump-
tion of constant losses).
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• (λ(r) − c
(r)
l )/(dql/dPtl )

(r) = γ
(r)
l , where the left side can be derived from

P
(r)

tl or vice versa.

Furthermore, it must be considered that V
(r)
l = V

(r−1)
l + [q(r)

al − ql(P
(r)

tl )]τ , where
V

(0)
l is assigned, whereas (γ

(r+1)
l − γ

(r)
l ) (with the condition γ

(R+1)
l = 0) depends

on V
(r)
l according to Equations [2.3.28], i.e., according to the characteristic shown

in Figure 2.24.
The block diagram in Figure 2.25 (with r = 1, . . . , R) then holds, which

shows that all the considered variables become dependent on γ
(R+1)
l = 0 and V

(0)
l .

As in Section (a), the subsequent values (λ(r) − c
(r)
l ) allow (under the adopted

assumptions) the evaluation of overcost caused by constraints.

The problem becomes much simpler if, in the considered time interval, no fuel supply is
scheduled, so that qal(t) = 0 ∀t ∈ [0, T ]. In such a case, in fact, it holds (dVl/dt)(t) =
−ql(t) < 0, and consequently only the limit Vl min may be considered, and only at t = T .

With Wl �
∫ T

0 ql dt as the consumed quantity of fuel, the constraint Vl(T ) = Vl(0) − Wl ≥
Vl min also can be written as Wl ≤ Wl max, with Wl max � Vl(0) − Vl min. As an alternative, by
assuming Cl = kql + h, it also can be written Gl �

∫ T

0 Cl dt ≤ k(Vl(0) − Vl min) + hT .

It certainly follows:

γ
′(1)

l = · · · = γ
′(R−1)

l = 0

γ
′′(1)
l = · · · = γ

′′(R)
l = 0

and the solution implies a single subinterval (m = 1), with:

γ
(1)
l = · · · = γ

(R)
l = γ

′(R)
l

{= 0 if V
(R)
l > Vl min

≥ 0 if V
(R)
l = Vl min

where V
(R)
l = Vl(T ) = Vl(0) −∑r ql(P

(r)

tl )τ , whereas the Lagrangian function is re-
duced to:

L =
∑

r

[∑
i

Ci(P
(r)
ti ) + λ(r)

(
P (r)

c + p(r) − P (r)
o −

∑
i

P
(r)
ti

)
+
∑

i

λ
′(r)
i (Pti min − P

(r)
ti )

+
∑

i

λ
′′(r)
i (P

(r)
ti − Pti max)

]
τ + γ

′(R)
l

(
Vl min − V

(0)
l +

∑
r

ql(P
(r)

tl )τ

)
[2.3.29]

If the assumption γ
′(R)
l = 0 leads to V

(R)
l < Vl min, it must be imposed V

(R)
l = Vl min, by

deriving γ
′(R)
l . This last value is equivalent to an increase — constant all over the interval

[0, T ] — of the unit cost of fuel.

If, instead, Vl(T ) is assigned (as well as the quantity Wl), it follows:

γ
′(1)
l = · · · = γ

′(R)
l = 0

γ
′′(1)
l = · · · = γ

′′(R)
l = 0
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again with a single subinterval (m = 1), and:

γ
(1)
l = · · · = γ

(R)
l

where this last value (to be determined on the basis of the condition V
(R)
l = Vl(T )) is

equivalent to a variation — constant within [0, T ] — of the unit cost.

Finally, in the case of the problem 2, the cost Gl of generation at the l-th
power plant for the whole interval [0, T ] can be assumed:

Gl = Gl min + k′(Wl − Wl min) + hT

(where h is a proper constant), with the constraint:

Wl �
∫ T

0
ql dt ≥ Wl min

which is equivalent to Gl ≥ Gl min + hT ; then it again may be written;

Gl =
∫ T

0
Cl dt

by assuming Cl � k′ql + h − (k′Wmin − Gl min)/T .
The problem is similar to the previous one, leading to Equation [2.3.29],

with the only difference that the quantity Wl of consumed fuel is now
minimally bounded, instead of maximally bounded. As for the Lagrangian
function, it may be then assumed as a function similar to Equation [2.3.29],

obtained by replacing the last term γ
′(R)
l

(
Vl min − V

(0)
l +∑r ql(P

(r)

tl )τ
)

by a

term γ
′′(R)
l

(
Wl min −∑r ql(P

(r)

tl )τ
)

, where:

γ
′′(R)
l

{= 0 if Wl > Wl min

≥ 0 if Wl = Wl min

with Wl =∑r ql(P
(r)

tl )τ .
If the assumption γ

′′(R)
l = 0 leads to Wl < Wl min, it must be imposed Wl =

Wl min, by deriving γ
′′(R)
l . This last value is equivalent to a decrease — constant

within [0, T ] — of the unit cost of fuel.

2.3.3. Choice of the Hydroelectric Generation Schedule

(a) Preliminaries
The hydroelectric generation schedule has been assumed to be preassigned up
to now. Actually it must be properly coordinated with the thermal generation
schedule, so that the most economical overall solution may be obtained.
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Such coordination must be performed “over time,” based on:

• forecasting hydraulic inflows, and spillages for uses different from gene-
ration;

• scheduling water storages in reservoirs and basins;

which determine the amount of water to be used for generation purposes, in each
given time interval [0, T ] (e.g., a day or a week, according also to the capability
of reservoirs and basins). The water storages must be kept within their minimum
and maximum limits at each instant.

Even from these points of view the typology of hydraulic plants is very wide, since water
inflows and storage capabilities may be small or large. With a pumping-generating plant,
the inflow can be artificially increased by pumping as specified later. Additionally, the
type of plants may differ significantly for the available water “head,” which can vary
from a few meters to several hundreds of meters. The water head determines the type of
turbine to be adopted, which may be a “reaction” type for “low head” (Kaplan turbines
or similar ones) or “medium head” (Francis turbines), and “action” type for “high head”
(Pelton turbines).

The scheduling problem becomes more complicated with the presence, in the same valley,
of hydraulically coupled plants, for which the water used by a plant contributes to the
inflow of the downstream plants (with water travel times, from one plant to the other,
which may not be disregarded in long distances). Finally, possible environmental require-
ments resulting from the use of water for agriculture, ship transportation, fishing, or use
of the surrounding area, etc. may introduce further constraints on water flows, their rate
of change, level variations in reservoirs, and so on.

The amounts of water to be used in the assigned interval [0, T ] may be
translated, by considering the water heads and by properly estimating losses
in hydraulic supply systems and turbines, into available energy for hydroelec-
tric generation, obviously within the power limits of respective units. We will
assume that this energy is insufficient with respect to total demand in [0, T ], so
that generation cannot be only hydroelectric.

With such assumptions, the coordination of hydroelectric and thermoelectric
generations may be established to minimize the thermoelectric generation cost,
with the following known information:

• the load power demand as a function of time;
• the energy for hydroelectric generation and thus the amount of energy

required from thermoelectric generation (apart from network losses);
• the power limits of the hydroelectric power plants (besides minimum and

maximum storage limits).

It is assumed that within each hydroelectric plant, the use of operating units
is coordinated, according to Section 2.2.5d (see also Fig. 2.14b). Furthermore it
is assumed that the set of operating thermal units can be properly chosen, so that
they can supply the demanded power, accounting for their respective limits.
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The most frequent situation is case (1), in which the overall hydroelectric
generation power is not enough to meet the total demanded power, at each instant
within [0, T ]. In this case, the thermal generation must be used for all the interval
[0, T ], and the time behavior of the corresponding power must be optimized
(specifically, as it will be seen, “leveling” it as much as possible).

A different problem arises in case (2), in which the hydroelectric power is
sufficient at each instant within [0, T ] and the thermal generation, needed only
to compensate for the insufficiency of available hydroenergy, may be used even
for a subinterval within [0, T ]. Thus, it is possible to optimize the choice of
this subinterval (and specifically its duration), starting from the knowledge of the
energy required from thermal generation.

Problems similar to the above mentioned may occur in the intermediate cases,
when the hydropower is sufficient only for a part of [0, T ].

(b) Case with Hydropower Always Insufficient
(b1) Generalities
To qualitatively illustrate the above-defined case (1) (i.e., always insufficient
hydropower), assume for simplicity that the system includes a single hydro-
electric plant, with reservoir or basin. (For a flowing water plant, the generation
schedule is simply based on the requirement to use the inflows at its disposal.)

With Pw denoting the active power delivered by this plant, and using the
notation defined in Section 2.3.1, the problem of economical optimization along
[0, T ] may be formulated as follows(10):

min
∫ T

0

∑
i

Ci (Pti (t)) dt

with the constraints (∀t ∈ [0, T ]):

0 = Pc(t) + p(t) − P ′
o(t) −

∑
i

Pti (t) − Pw(t)

Pti (t) ∈ [Pti min, Pti max] (i = 1, . . . , nt )

Pw(t) ∈ [Pw min, Pw max]

where it is assumed P ′
o � Po − Pw (assigned value), while losses p are at each

instant p = φ(Pt2, . . . , Ptn t
, Pw, . . .) (see Equation [2.3.4]). In addition:

dV

dt
= qa − q

V (0), V (T ) both assigned

(10) Limits on currents and security constraints, and limits on variations over time considered in
Section 2.3.2 are not included here for simplicity. Additionally, it is still assumed that the system
configuration is kept constant along the whole [0, T ].
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with the constraints (∀t ∈ [0, T ]):

V (t) ∈ [Vmin, Vmax]

where:

• V is the quantity of stored water (in the reservoir or in the basin);
• qa is the total incoming water flow (difference between inflows and

spillages), with qa(t) assigned within all [0, T ];
• q is the used water flow, depending on Pw (the head will be assumed

constant).

The quantity of water to be used is:

W �
∫ T

0
q dt =

∫ T

0
qa dt − (V (T ) − V (0))

Due to constraints on V , it is assumed that:

• V = Vmin implies q ≤ qa , and thus qa ≥ q(Pw min). Otherwise, the plant should be
considered out of service.

• V = Vmax implies q ≥ qa . Actually, it might also be:

q < qa, 0 = dV

dt
= qa − q − qs

where qs = qa − q(>0) is an “overflow” which should be avoided as it cannot be
reused unless other plants are present downstream.

It is easy to understand the strict analogy between the considered problem and
problem 1 presented in Section 2.3.2b, with Vl(0), Vl(T ) both assigned.

By assuming that the interval [0, T ] is divided into a large number R of
elementary subintervals (each lasting τ � T /R), a Lagrangian function of the
type L =∑r L(r)τ may be assumed, with:

L(r) �
∑

i

Ci(P
(r)
ti ) + λ(r)

(
P (r)

c + p(r) − P ′(r)
o −

∑
i

P
(r)
ti − P (r)

w

)

+
∑

i

λ
′(r)
i (Pti min − P

(r)
ti ) +

∑
i

λ
′′(r)
i (P

(r)
ti − Pti max)

+ λ′(r)
w (Pw min − P (r)

w ) + λ′′(r)
w (P (r)

w − Pw max)

+ γ (r)

[
V (r) − V (r−1)

τ
− q(r)

a + q(P (r)
w )

]

+ [γ ′(r)(Vmin − V (r)) + γ ′′(r)(V (r) − Vmax)]/τ
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which depends on P
(r)
t1 , . . . , P

(r)
tnt

, P (r)
w with r = 1, . . . , R, and on V (r) with r =

1, . . . , R − 1 (while V (0) = V (0) and V (R) = V (T ) are assigned).
By setting to zero the corresponding partial derivatives, the following condi-

tions result:

c
(r)
i

1 −
(

∂φ

∂Pti

)(r)
= c(r)

w

1 −
(

∂φ

∂Pw

)(r)
= λ(r) (i = 1, . . . , nt ; r = 1, . . . , R)

γ (r+1)




= γ (r) − γ ′(r) ≤ γ (r) if V (r) = Vmin

= γ (r) if V (r) ∈ (Vmin, Vmax) (r = 1, . . . , R − 1)

= γ (r) + γ ′′(r) ≥ γ (r) if V (r) = Vmax

similar to Equations [2.3.27] and [2.3.28], where c
(r)
1 , . . . , c(r)

nt
are the incre-

mental costs at generation defined by Equations [2.3.3], with (∂φ/∂Pt1)
(r) = 0,

whereas:

c(r)
w � γ (r)

(
dq

dPw

)(r)

− λ′(r)
w + λ′′(r)

w




≤ γ (r)
dq

dPw

(P +
w min) if P (r)

w = Pw min

= γ (r)

(
dq

dPw

)(r)

if P (r)
w ∈ (Pw min, Pw max)

≥ γ (r)
dq

dPw

(P −
w max) if P (r)

w = Pw max

The above may be interpreted as the incremental cost at generation for the
hydroelectric plant, in the generic r-th subinterval (r = 1, . . . , R), as if water
were a fuel with an “equivalent” unit cost equal to γ (r).

The optimal solution “over time” can be formally seen as R purely instanta-
neous dispatchings (with the hydroelectric plant considered as a thermal plant) but
on the basis of the values γ (1), . . . , γ (R) which must be determined by imposing
the conditions V (0) = V (0), V (R) = V (T ) and the constraints V (1), . . . , V (R−1) ∈
[Vmin, Vmax].

By disregarding, for simplicity, the dependence of losses on generated power
dispatching, the block diagram of Figure 2.26 may be derived, from which it
is evident that all the variables involved depend on V (0) and on V (R). (Such a
scheme is derived similarly to that of Figure 2.25, from which it differs only in
the final part (r = R).)

Furthermore, by recalling Section 2.3.2b, it can be understood that, if con-
straints on V are never activated, the “equivalent” unit cost of water is constant
along the whole interval [0, T ]. In the opposite case, there are more subinter-
vals separated by the condition V = Vmin or V = Vmax, and in each of such
subintervals, γ (r) remains constant (at a proper value, as already seen).
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BLOCK (1): BLOCK (2):

“equivalent
characteristic”

“equivalent
characteristic”

Figure 2.26. A computational block diagram in the presence of a single hydro-
electric plant (under the assumption of constant losses).

The treatment becomes more complicated when:

• the head may not be considered constant (specifically, for low and medium head
plants equipped with reaction turbines, it also depends on the water level at the
water outflow);

• the dependence of q on Pw (or also that of the generic Ci on Pti ) is not suitable for
analytical treatment;

• other constraints must be considered, such as constraints on dq/dt within certain
subintervals, caused by use of water for agriculture or other requirements.

For such cases, a procedure based on dynamic programming may be useful, e.g., according
to the following formula:

F o(r, Xk) = min
Xj

[
F o(r − 1, Xj ) +

∑
i

Ci(r − 1, Xj ; r, Xk)τ

]

where, for discrete values Xj , Xk :

• F o(r, Xk) is the minimum total cost that can be obtained by going from V = V (0)

at t = 0, to V = Xk at t = rτ (for r = 1 it is F o(1, Xk) = ∑
i Ci(0, Vo; 1, Xk)τ
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• ∑i Ci(r − 1, Xj ; r, Xk)τ is the thermal generation cost that results when going from
V = Xj at t = (r − 1)τ , to V = Xk at t = rτ (in fact, under this condition, the
values of q, Pw ,

∑
i Pti ,

∑
i Ci can be sequentially evaluated for the given t = rτ )

with the assumption of directly accounting for all constraints at any step. The optimal solu-
tion is defined by F o(R, V (R)) and the corresponding values of V etc. for t = τ, . . . , Rτ .

The extension to the case of more hydroelectric plants, hydraulically noninter-
acting, is obvious; more complications may arise in the presence of hydraulically
coupled plants in the same valley, for which it is necessary to properly coordinate
the generation to avoid overflows, etc. (the equivalent unit costs of water at each
plant also may vary because of storage limits on downstream plants).

(b2) Simplified Analysis
The above-illustrated problem may be treated with some important simplifica-
tions, based on the following (usually acceptable) hypotheses:

(1) the water flow q is proportional to Pw (see also Fig. 2.14b), i.e., q = bPw,
dq/dPw = b, with b a known constant;

(2) the storage constraints are not active (i.e. V (t) ∈ (Vmin, Vmax)) along all
[0, T ], so that the “equivalent” unit cost of water has a constant value γ ;

(3) network losses are independent of the generated power dispatching, thus
allowing to assume ∂φ/∂Pti = ∂φ/∂Pw = 0;

(4) the minimum value of Pw is zero, i.e., Pw min = 0 (whereas, as already
specified, it is assumed Pw max < Pc(t) + p − P ′

o(t) ∀t ∈ [0, T ], which
means insufficient hydroelectric power at each instant).

As a consequence of hypotheses (1), (2), and (4), it results:

cw

{≤ γ b if Pw = 0
= γ b if Pw ∈ (0, Pw max)

≥ γ b if Pw = Pw max

where γ b is constant. Whereas, due to hypothesis (3), it must be at any instant:

ci = cw = λ (i = 1, . . . , nt )

which means the equality of incremental costs at generation, for both the thermal
plants and the hydroelectric plant.

For any given value of γ , everything is then known; thus, the characteris-
tic
(
λ,
∑

i Pti + Pw

)
can be evaluated in the usual way and, for any given total

demanded power
∑

i Pti + Pw = Pc + p − P ′
o � P ′

c , the values λ, Pt1, . . . , Ptn t
,

Pw can be derived; see Figure 2.27 (in Fig. 2.27a, the characteristic
(
ct ,
∑

i Pti
)
,

i.e., the “equivalent” characteristic of the set of thermal power plants, is rep-
resented as a piecewise line of only three segments for reasons of graphical
simplicity; however, the diagrams in Fig. 2.27c remain valid independently of
this simplification).
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Figure 2.27. Equality of incremental costs at generation in the presence of a sin-
gle hydroelectric plant (not a pumping station), for a given “equivalent” unit cost
γ of the water: (a) equivalent characteristic of thermal units and characteristic of
the hydroelectric plant; (b) dependence of total generated power on incremental
cost at generation; (c) generated power dispatching, between thermal units and
the hydroelectric plant.

It can be derived that Pw = 0 when λ < γ b (i.e., P ′
c smaller than the value

Pl reported in the Fig. 2.27), whereas for increasing values of λ, or equivalently
of P ′

c , the hydroelectric plant is required to supply power when λ = γ b (which
corresponds to

∑
i Pti constant and equal to Pl), with Pw = Pw max when λ > γ b.

However, the value of γ is not known at the start of the procedure, and
it must be determined based on assigned values V (0) and V (T ), i.e., based
on water quantity to be used W �

∫ T

0 q(t) dt . Again, the hypothesis (1), which
states that W = b

∫ T

0 Pw(t), is useful, since the energy Ew �
∫ T

0 Pw(t) supplied
by hydroelectric generation turns out to be assigned(11).

The optimal solution may then be directly obtained without involving the value
of λ, starting from the law P ′

c(t) and from the values Pw max, Ew, according to
examples of Figure 2.28.

All the above analysis leads to the criterion of using hydroelectric generation
to “level” as much as possible the diagram

∑
i Pti (t), by considering that at each

(11) This conclusion also can be reached by generally assuming that q is not proportional to Pw , but
linearly depends on it.
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Figure 2.28. Leveling the diagram of total thermal generation power
∑

i Pti (t),
for three different values of the hydrogeneration energy Ew (the smallest value
of Ew is in case (1), and the largest is in case (3); the opposite happens for the
values of Pl and γ reported in Fig. 2.27).
For each of the three cases:

• the bold line diagram represents the total thermal generation power∑
i Pti (t);

• the hydrogeneration power is given by Pw = P ′
c −∑i Pti ;

• the hydrogeneration energy corresponds to the area indicated with Ew.

instant it must be
∑

i Pti (t) ∈ [P ′
c(t) − Pw max, P ′

c(t)]
(12). (In Fig. 2.28, it has been

assumed Pw max < P ′
c max − P ′

c min, thus the complete leveling (
∑

i Pti constant) is
not possible for any value of Ew. If instead it is Pw max > P ′

c max − P ′
c min, the

total leveling can be obtained, at intermediate values of Ew.)

The convenience of leveling
∑

i Pti (t) may be more directly justified by observing that:

• under the adopted assumptions, the following energy is assigned:

Et �
∫ T

0

∑
i

Pti (t) dt =
∫ T

0
P ′

c(t) dt − Ew

(12) Once Pl is known, powers
∑

i Pti , Pw will depend only on P ′
c (independently of t), according to

Figure 2.27c. Additionally, as it can be easily checked, the graphic deduction of Pl (see Fig. 2.28)
also can be performed starting from the “duration” diagram (P ′

c , θ ) instead of the temporal diagram
(P ′

c, t). (The “duration” θ(a), corresponding to a generic value P ′
c = a, is defined as the total duration

for which P ′
c(t) ≥ a; if P ′

c(t) = a for one or more intervals of duration different from zero, it is
assumed that θ(a) includes all values within [θ(a+), θ(a−)].)

More specifically, the diagrams of Figure 2.28 (and those of Fig. 2.30) also might be “duration”
diagrams, with t replaced by θ .
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• the total cost per unit of time
∑

i Ci is, for a given constant set of operating units and
with optimal dispatching of Pti ’s, a continuous function of

∑
i Pti , with increasing

derivative (and possible discontinuities in the derivative itself),

so that, if Et and T are assigned without further constraints, the total cost
∫ T

0

∑
i Ci dt

will be minimum for
∑

i Pti = constant = Et/T .

It is also interesting that, to level
∑

i Pti (t), the objective function
∫ T

0

∑
i Ci dt also may

be replaced by
∫ T

0 (
∑

i Pti )
2 dt . This assumption may allow clear simplifications in more

general cases (e.g., when storage constraints are considered).

The extension to the case of more hydroelectric plants is obvious (even in
the case of valleys, again under the assumption that storage constraints are not
active). Specifically, the optimal solution can be obtained through subsequent
leveling — performed by starting from highest values of P ′

c — provided that the
different plants are used according to a proper order, which may be determined
on the basis of the law P ′

c(t) (or of the corresponding duration diagram) and of
the values Pw(j) max, Ew(j) for each plant (j = 1, 2, . . .).

However, it must be considered that all results described up to now have been
obtained by assuming a constant system configuration, and thus assuming that all
the considered units are in operation for the whole interval [0, T ]. Actually, the
set of operating units within the hydroelectric plant also might vary according
to the value of Pw (Fig. 2.14b), and the whole plant might be set out of opera-
tion at those subintervals in which Pw(t) = 0 (Fig. 2.28a,b). Similarly, with an
insufficiently leveled

∑
i Pti (t), it may be more economical — or even necessary,

when this power is below the sum of “technical minimum” limits — to shut down
some thermal units in the low-load subintervals. In this case, the problem must be
reformulated, because the cost characteristics in the different subintervals are cor-
respondingly modified (in other words, the hydroelectric generation scheduling
interacts with the operational scheduling of thermal plants); see Section 2.4.2b.

By only assigning the demanded energy, the economic optimum can be obtained by
using the thermal units at full power (or nearly), and possibly not all of them for the
whole interval [0, T ], that is with a varying configuration and an unleveled

∑
i Pti (t);

see the example reported in Section (c). Such solutions indeed appear to be of scarce
interest (particularly for predominantly thermal generation), as they could easily affect
the spinning reserve requirements.

Up to now, the behavior of powers injected through possible boundary nodes (see the
term P ′

o(t)) was considered as assigned; on the contrary, the behavior of such injections
might be adjusted, according to the law by which the incremental cost varies within [0, T ]
(see Section 2.3.4).

(b3) Convenience of Possible Pump-Storage
If thermal generation is required to supply, within [0, T ], significantly different
values of

∑
i Pti , the use of pump-storage hydroelectric plants may allow a further

leveling of
∑

i Pti (t) and, consequently, a reduction in generation cost. To obtain
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this result, it is assumed that pumping actions are performed at lower loads (when
the thermal generation cost is relatively small) and that the water corresponding
to pumping is used to reduce the thermal generation when it is more expensive
(i.e., at higher loads).

Depending on the characteristics of plants, the generation-pumping cycle may be daily,
with pumping at night, or weekly, with (further) pumping during weekends, etc.

The new results obtained may suggest proper modifications to the operational scheduling
of units and/or interchange scheduling through interconnections (see Section 2.4.2b).

By confining our attention, for simplicity, to the case of a single hydro-
electric plant, and by assuming that it can work in the whole interval Pw ∈
[−Pp max, +Pw max], with:

{
Pw > 0 (Pw ∈ (0, Pw max]), q = qg(Pw) > 0 during generation
Pw < 0 (Pw ∈ [−Pp max, 0)), q = qp(Pw) < 0 during pumping

the previous treatment may be extended without difficulties, by again defining a
proper value for the “equivalent” unit cost of water (or more values, if constraints
on V are activated), and so on, and by considering that the dependence of q on
Pw is generally different in the generating phase and in the pumping phase.

If, for simplicity:

• it is assumed that:




q = bgPw,
dq

dPw

= bg during generation

q = bpPw,
dq

dPw

= bp during pumping

with bg, bp known constants, and, more precisely, with η � bp/bg < 1
(where η can be interpreted as the overall efficiency of the generating-
pumping cycle);

• hypotheses (2) and (3) defined earlier are accepted (constraints on V not
activated, and losses independent of the generated power dispatching),
whereas the hypothesis (4) must be removed, as it now holds Pw min =
−Pp max;

then, diagrams like those in Figure 2.29 can be obtained (instead of those in
Fig. 2.27).

Moreover, the quantity of water to be used (which is known) is now:

W �
∫ T

0
q(t) dt = bgEg − bpEp = bg(Eg − ηEp)
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by assuming that Eg is the energy delivered during the generation phase, and
Ep is the energy absorbed during the pumping phase. If Ew = W/bg is the
delivered energy in the absence of pumping (as in the previously treated case;
see Fig. 2.28), it then follows that:

∆Eg � Eg − Ew = bp

bg

Ep = ηEp

Consequently, the optimal solution can again be directly derived, without
involving the value γ of the “equivalent” unit cost, from P ′

c(t) and from Pw max,
Pp max, Ew, η, according to examples of Figure 2.30.

The leveling of the diagram
∑

i Pti (t) can be then improved. On the other hand,
the constraints to be considered are

∑
i Pti (t) ∈ [P ′

c(t) − Pw max, P ′
c(t) + Pp max],

and are thus less stringent than those previously considered (Pp max = 0).
Obvious variations must be integrated into the treatment when it is convenient,

for efficiency reasons, that the pumping phase be operated only at Pw values
near −Pp max.

(c) Case with Hydropower Always Sufficient
Now examine case (2) defined in Section (a) (always sufficient hydroelectric
power), for which the necessity of thermal generation is only caused by lack
of hydroenergy at disposal.

More precisely, assume that the most economic law
∑

i Pti (t) (t ∈ [0, T ]) must
be found, based on the total energy Et �

∫ T

0

∑
i Pti (t) dt demanded from thermal

plants, and without concern for load diagram and spinning reserve requirements
(we assume that such problems can be solved by the contribution of hydroelectric
generation).

For greater generality, assume that the generic i-th unit is kept into operation
along the subinterval [toi , toi + Ti] (which may possibly coincide with [0, T ]).
The energy supplied by this unit is then Eti = ∫ toi +Ti

toi
Pti (t) dt , while the corre-

sponding cost:

• is reduced to only the generation cost Gi = ∫ toi +Ti

toi
Ci(Pti (t)) dt , if the con-

sidered unit is always in operation (toi = 0, Ti = T );

• includes, on the contrary, the cost Ai for startup and/or shutdown.

In the last case, it may be thought that the problem arises periodically (or
nearly so) with period T . The cost Ai may be considered an increasing function
of the no-operation duration (T − Ti) or, equivalently, a decreasing function of
Ti , with Ti ∈ (0, T ) (see also Section 2.4.2b).

With such assumptions, the aim is to minimize the total cost
∑

i(Gi + Ai) for
the given total energy

∑
i Eti = Et .

To solve this problem, it is useful to first determine the operating sched-
ule which, for the generic unit, minimizes the cost (Gi + Ai) at each given
energy Eti .
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Figure 2.30. Leveling the diagram of total thermal generation power
∑

i Pti (t),
in the presence of a pump-storage hydroelectric plant, and for two different values
of the efficiency η [small in case (a), and large in case (b)].
It is assumed that, in the absence of pumping, the solution is similar to that
indicated in Figure 2.28a (i.e.,

∑
i Pti = min(P ′

c, Pl)).
For each of the two cases:

• the bold line diagram represents the total thermal generation power
∑

i Pti

in the presence of pumping;
• the hydrogeneration power (negative in the pumping phase) is given by

Pw = P ′
c −∑i Pti ;

• the hydroelectric plant supplies the energy Ew + ∆Eg during the generation
phase, and absorbs the energy Ep during the pumping phase.

Values Plp , Plg , ∆Eg , Ep are subject to the conditions: λp/λg = ct (Plp)/ct (Plg) =
bp/bg = η (see also Fig. 2.29), ∆Eg/Ep = η.

In this concern, according to previous information, the function Ci(Pti ) is
continuous and with positive slope. Thus, for a generic pair of values Eti , Ti ,
the cost Gi is minimum at Pti (t) = constant = Eti /Ti (provided that Eti /Ti ∈
[Pti min, Pti max]), i.e., it is convenient to operate the unit at constant power. In
the following, we then assume that:

Pti = Eti

Ti

Gi = Ci(Pti )Ti = Ci(Pti )

Pti
Eti
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Figure 2.31. An example of characteristics for the i-th thermal unit: (a) (Ci, Pti );
(b) (Ci/Pti , Pti ); (Ci = cost per unit of time, Pti = generated power, Ci/Pti =
specific cost).

where the ratio Ci(Pti )/Pti (also called “specific” cost) can be viewed as the
energy unit cost when operating at constant power. Such a cost depends on
Pti according to a characteristic like the one indicated in Figure 2.31b, and is
minimum for a value Pti = P ∗

ti usually close to or coincident with Pti max. In the
former case it is evident that (Ci/Pti )

∗ = (dCi/dPti )
∗, i.e., the specific cost and

the incremental cost are equal to each other at Pti = P ∗
ti (see also Fig. 2.31a.)

For any given Eti (not larger than Pti maxT ) Gi may be minimized by imposing
Ci/Pti = (Ci/Pti )

∗ and thus Pti = P ∗
ti ; however, this is possible only if the con-

sequent value Ti = Eti /P ∗
ti is not larger than T , i.e., Eti ≤ P ∗

ti T . On the contrary,
it must be simply set Ti = T , Pti = Eti /T .

It then follows:

• if Eti < P ∗
ti T : Ti = Eti /P ∗

ti < T, Pti = P ∗
ti , Gi = (Ci/Pti )

∗Eti (with dGi/

dEti = (Ci/Pti )
∗);

• if Eti ≥ P ∗
ti T : Ti = T , Pti = Eti /T , Gi = Ci(Eti /T ) · T (with dGi/dEti =

dCi/dPti );

according to Figure 2.32a. However, such results correspond to the minimized
generation cost Gi only; consequently they must be adopted only if the cost
Ai(Ti) (different from zero if Ti ∈ (0, T )) may be disregarded.

To account for the startup and/or shutdown cost, the following may be observed, for any
given energy Eti ∈ [0, Pti maxT ].

• If Ti = T (unit always in operation), it simply holds:

Pti = Eti

T
, Gi + Ai = Gi = Ci

(
Eti

T

)
· T

(from which, more specifically: d(Gi + Ai)/dEti = dCi/dPti , with Pti = Eti /T ).
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Figure 2.32. Minimization (starting from the knowledge of the energy Eti sup-
plied by the i-th unit) of: (a) only the generation cost Gi ; (b) the total cost
(Gi + Ai), including also the cost (Ai) for startup and/or shutdown.

• If instead Ti ∈ (0, T ), it holds Ti = Eti /Pti and, generically, the total cost is:

Gi + Ai = Ci(Pti )

Pti
Eti + Ai

(
Eti

Pti

)

In the last case, the total cost can be minimized by adequately choosing Pti ; more precisely,
by setting to zero its partial derivative with respect to Pti , the following condition is
obtained:

dCi

dPti
= Ci + A′

i

Pti

(
where A′

i � dAi

dTi

, with Ti = Eti

Pti

)

From the above equation, the solution Pti = P o
ti (Eti ) can be derived (with P o

ti < P ∗
ti ,

because A′
i < 0 and so (dCi/dPti )

o < (Ci/Pti )
o); it then follows that, for Ti ∈ (0, T ) and,

consequently, for Eti ∈ (0, P o
ti T ):

Ti = Eti

P o
ti

, Gi + Ai =
(

Ci

Pti

)o

Eti + Ai

(
Eti

P o
ti

)

(it has been assumed that P o
ti ≥ Pti min; otherwise P o

ti must be replaced by Pti min).
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In particular, if Ai were linearly dependent on Ti (i.e., if A′
i were constant) it can be

derived for any Eti :

P o
ti = constant

d(Gi + Ai)

dEti
=
(

Ci

Pti

)o

+ A′
i

P o
ti

=
(

dCi

dPti

)o

= constant

Then, for any assigned value of Eti , the situation at minimum cost must be chosen.
Referring to notation used in Figure 2.32b (in which A′

i is assumed to be a constant, and
P o

ti > Pti min), it can be derived that the unit must be kept into operation:

• for a duration Ti = Eti /P o
ti < T (and with Pti = P o

ti ), if Eti < E ′
ti ;

• for the whole time T (and with Pti = Eti /T ), if Eti ≥ E ′
ti ;

where E ′
ti is the value of Eti for which the two reported situations result in the same

cost, or:

Ci

(
Eti

T

)
T =

(
Ci

Pti

)o

Eti + Ai

(
Eti

P o
ti

)

(The solution must be searched within the interval Eti ∈ [Pti minT , P o
ti T ]; if it does not

exist, E ′
ti should be replaced with Pti minT .)

If it is assumed that Ci = Cio + aiPti + bi(P
2
ti /2), Ai = Aio − kiTi , with all coefficients

being positive, it can be derived:

dCi

dPti
= ai + biPti

P ∗
ti =

√
2Cio

bi

(assuming P ∗
ti < Pti max)

P o
ti =

√
2(Cio − ki)

bi

(assuming ki < Cio, P o
ti > Pti min)

E ′
ti = P o

ti T −
√

2(Aio − kiT )T

bi

(obviously assuming that Ai(T
−) = Aio − kiT > 0 and furthermore E ′

ti > Pti minT ).

By again examining the problem with more than one thermal unit, it must be
imposed:

min
∑

i

(Gi + Ai)(Eti )

with the constraints:

0 = Et −
∑

i

Eti , Eti ∈ [0, Pti maxT ]
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where each cost (Gi + Ai) can be considered a function of the respective energy
Eti , according to the above.

By assuming, for simplicity, that possible startup and/or shutdown have a
negligible cost Ai , the following Lagrangian function may be assumed:

L �
∑

i

Gi (Eti ) + µ

(
Et −

∑
i

Eti

)
+
∑

i

µ′
i · (−Eti )

+
∑

i

µ′′
i · (Eti − Pti maxT )

and the following conditions may be derived:

0 = ∂L
∂Eti

= dGi

dEti
− µ − µ′

i + µ′′
i

or equivalently:
gi = µ ∀i

by assuming:

gi � dGi

dEti
− µ′

i + µ′′
i




≤ dGi

dEti
(0+) if Eti = 0

= dGi

dEti
if Eti ∈ (0, Pti maxT )

≥ dGi

dEti
(Pti maxT

−) if Eti = Pti maxT

according to what is reported in Figure 2.33a.
For any given value of µ, each energy Eti may be derived, as well as the

sum
∑

i Eti = Et (see the example for two units, in Figure 2.33). Knowing the
characteristic (µ, Et ) enables the deduction, through µ, of the optimal values
Eti for any assigned Et . Note the strict analogy with the problem of the most
economical dispatching of thermal generation powers (Section 2.3.1a). Also, for
Et values that require the use of more than one unit, the power dispatching meets
the condition of equal incremental costs (see also Fig. 2.33).

By knowing energy Eti , the values Ti , Pti can be finally derived, which define
the operational scheduling of each unit.

The problem can be significantly simplified in the case — not too far from
reality — that P ∗

ti = Pti max for all units (i.e., the specific cost is at its minimum
at maximum power). In fact, under such assumption, gi = constant = (Ci/Pti )

∗
for the whole interval Eti ∈ (0, Pti maxT ); if, with the adopted numbering, it is
assumed that: (

C1

Pt1

)∗
<

(
C2

Pt2

)∗
< . . .
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Figure 2.33. Minimization of total generation cost
∑

i Gi (see text).

the solution is then achieved by simply using units at full power, and more
precisely:

• only unit 1, for a duration T1 = Et/Pt1 max, if Et ≤ Pt1 maxT ;

• unit 1 for the whole duration T , and unit 2 for a duration T2 = Et2/Pt2 max

(with Et2 = Et − Pt1 maxT ), if Et ∈ (Pt1 maxT , (Pt1 max + Pt2 max)T );

and so on. (The same result may be reached more directly by observing that the
least expensive energy is the one supplied by unit 1, then by unit 2, etc.)

Things are more complicated if costs Ai (caused by possible startup and/or shutdown)
also must be considered. In fact, the behavior of the generic cost (Gi + Ai) as a func-
tion of Eti (with a discontinuity at Eti = 0 and an abrupt reduction of its slope at
Eti = E ′

ti ; see Fig. 2.32b) may pose prejudices on the conditions 0 = ∂L/∂Eti . To avoid
such shortcomings, a proper numerical procedure may be adopted to perform the optimal
search by using, for instance, dynamic programming. Qualitatively speaking, because of
costs Ai , the priority sequence 1, 2, . . . may undergo some modifications with respect
to the one previously defined (based only on values (Ci/Pti )

∗), as it is not conve-
nient to schedule the startup and/or the shutdown of those units exhibiting rather high
Ai costs.
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2.3.4. Choice of Powers Exchanged Through Interconnections

In the treatment developed up to now, the possible presence of external sys-
tems — interconnected to the one under examination — has been considered by
means of proper simplified equivalents with preassigned active power injections.
Actually, the optimal solution should instead be determined jointly, based on
characteristics (operational and economical) of all single systems, with a uniform
approximation of respective models. To simplify the terminology, the single sys-
tems interconnected with each other will be named “areas,” whereas the entire
system may be called multiarea “composite” system.

If, for simplicity, the variations of network losses are disregarded, the optimal solution
for the whole composite system implies the equality of incremental costs in the different
areas. If, for instance, the system includes two areas and their respective incremental
costs λ(1), λ(2) are — for a given value of the exchange power P12 from area 1 to area
2 — different from each other with λ(1) < λ(2), it is easy to understand that the mentioned
exchange should be increased. The incremental cost λ(1) can be relatively small when, for
instance, the load in area 1 is modest or, in this area, it is necessary to use a lot of water,
stored or flowing, for hydroelectric generation.

A “small” increment dP12 > 0 in fact results into:

dC(1) = λ(1) dP12, dC(2) = −λ(2) dP12

so that the additional cost dC(1) (per unit of time) in area 1 is smaller than the saving
(−dC(2)) in area 2; thus, indicating by h dP12 the price (per unit of time) paid by 2 to 1,
the cost variations become:

dC(1) − h dP12 = (λ(1) − h) dP12 in area 1

dC(2) + h dP12 = (h − λ(2)) dP12 in area 2

Consequently, they can be both negative (that means there can be a saving for both areas)
if the unit price h is assumed within λ(1) and λ(2). Note that the overall saving is:

−dC(1) − dC(2) = (λ(2) − λ(1)) dP12 > 0

and can be divided into equal parts by assuming h = (λ(1) + λ(1)/2). Similar considera-
tions hold for not “small” variations ∆P12, ∆C(1), ∆C(2), as long as incremental costs are
different from each other. However, the existence of constraints on P12 also can call for
different incremental costs, according to Section 2.3.1c.

However, a unique global dispatching, committed to a proper centralized
“coordination” office, may be generally accepted only as a general guideline.

In fact, accounting for all details in each area would easily lead to an exces-
sively burdensome global model and significant difficulties in the centralized
(and updated) collection of necessary data. At least for analyzing such details,
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it is usually convenient to resort to better approximated dispatchings, performed
within each area.

Furthermore, the autonomy in the management of different areas (which may
belong to different states) may result, because of local reasons of different
nature, in specific strategies that cannot be easily committed to others. In such
situations, power exchanges through interconnections become the object of con-
tracting between the involved utilities. Meanwhile, the centralized office may
offer a general overview of the situation, evaluate the obtainable savings, start
the negotiations, perform intermediate actions, and so on.

With different conditions to be considered, it is useful to qualitatively identify
the following:

• it is efficient to sell power (or equivalently energy, in the considered time
interval) particularly to those areas having higher incremental costs, and to
buy from those areas having lower incremental costs; in case of separate
negotiations, the agreed prices also may depend on the sequence of the
negotiations themselves;

• the efficiency of modifying an exchanged power should be evident, account-
ing for the uncertainty on load forecasting in the interested areas (and
errors in exchanged power regulation during operation; see Section 3.4);
with respect to this matter, prices may be readjusted, with reference to what
is estimated at the previsional stage, according to actual values of loads and
exchanged powers;

• when modifying the exchange power between two areas, a variation in the
losses of other areas (e.g., interposed between the two considered areas; see
also the simplified treatment below) may be induced, thus affecting their
generation costs; this should be considered for possible refunding;

• because of the exchange program between two areas for a given time, the
unit sets to be kept in operation may be reduced in one area and increased
in the other (with corresponding shift of rotating power from one area to
the other); this fact implies further variations in respective costs;

• negotiations can be carried out in advance, by guaranteeing supply of the
agreed amount (in which case, the price may be rather high); however, there
may be different situations, for instance, when the amount of the generic
exchange is not guaranteed, subject to actual supply area availabilities;

• the exchange program between two areas may imply long-term compensa-
tions, if the annual load peaks in the two areas are shifted with each other,
for instance, with winter peak (electric heating) in one area and summer peak
(air conditioning) in the other; or if there is a significant amount of water
used for hydroelectric generation, in one area or in the other, according to
seasons; and so on; similar compensations may occur even in shorter-term
periods (e.g., during the same day, in case of shifted load diagrams due to
an hourly fuse difference).
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The global dispatching for an N -area system may resort to simplifying assump-
tions. As a first-level approximation, and with possible refinements in the model,
it may be assumed that:

(1) the configuration is assigned (actually, as cited, the exchange program
itself may suggest modifications to the configuration; for instance, as far
as the sets of operating units in the different areas are concerned);

(2) the v/Q steady-state is preassigned (and not sensitive to active power
corrections);

(3) loads “conform” (see Equation [2.3.6]) within each area (note that such
an hypothesis might be unacceptable, if referred to different areas);

(4) in each area a “generation-load subnetwork” can be defined, which is
connected to boundary nodes of the area itself by means of a single “area
node”; see Figure 2.34 (the subnetwork that links all area nodes, including
the boundary nodes, will be called “interconnection subnetwork”).

Note that assumptions (1), (2), and (3) have already been largely used in the
previous sections. Assumption (4), which substantially recalls simplified equiv-
alents like those reported in Figure 2.11, may allow consideration of effects of
each exchanged power on losses in the different areas, according to what is
already mentioned.

nodes with
assigned
injections

load
nodes

losses

losses

losses

losses

“area
node”

nodes with
(nonassigned)

thermal generation

boundary
nodes

INTERCONNECTION
SUBNETWORK

GENERATION-LOAD
SUBNETWORK

Figure 2.34. Schematic representation of a multiarea system.
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The generic generation-load subnetwork may be represented by an equation
like: ∑

i

Pti(r) + Po(r) + P(r) = Pc(r) + p′
(r) (r = 1, . . . , N)

with constraints, for each thermoelectric unit:

Pti(r) ∈ [Pti(r) min, Pti(r) max
]

where it is assumed that Po(r) �
∑

k Pok(r) and Pc(r) �
∑

j Pcj (r) are assigned,
whereas P(r) is the active power injected through the area node, and losses p′

(r)

depend — because of the hypothesis of load conformity — on Pti(r), P(r).
For any given value of the power P(r), it is possible to derive conditions of

the following type, by means of separate dispatching (see Equation [2.3.9]):

ci(r)

1 − ∂p′
(r)

∂Pti(r)

= λc(r)

where the value λc(r) is the incremental cost “at load,” in common to all the units
of the considered subnetwork.

For small variations of P(r), with Po(r) and Pc(r) assigned, it can be derived:

0 = d
∑

i

Pti(r) + dP(r) − dp′
(r)

=
∑

i

(
1 − ∂p′

(r)

∂Pti(r)

)
dPti(r) +

(
1 − ∂p′

(r)

∂P(r)

)
dP(r)

and, consequently, the overall cost variation (per unit of time) in the r-th area:

dC(r) � d
∑

i

Ci(r) = λc(r)

∑
i

(
1 − ∂p′

(r)

∂Pti(r)

)
dPti(r) = −λc(r)

(
1 − ∂p′

(r)

∂P(r)

)
dP(r)

or equivalently:
dC(r) = −µ(r) dP(r) (r = 1, . . . , N) [2.3.30]

with:

µ(r) � λc(r)

(
1 − ∂p′

(r)

∂P(r)

)

The quantity µ(r) can be interpreted in terms of incremental cost at the r-th area node.
Alternatively, it is also possible to assimilate the rest of the system, as viewed from
such a node, to an equivalent generator, supplying the power P(r) at an incremental
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cost (at generation) equal to µ(r); by so doing, it is possible to account for constraints
P(r) ∈ [P(r) min, P(r) max] by means of µ(r), similarly to that proved for one generator in
Equations [2.3.3].

With the interconnection subnetwork , it must first be underlined that powers
“imported” from different areas through their respective boundary nodes (see
Fig. 2.34) sum up to zero, so that

∑
r PI (r) = 0. This implies that only (N − 1)

of the N imported powers can be chosen independently.
On the other hand, because of the assumed hypotheses, the steady-state of the

interconnection subnetwork is determined by (N − 1) independent variables, e.g.,
constituted by phase shifts between voltages at “area nodes.” Since the imported
powers are the base for possible negotiations, it is convenient to assume that the
(N − 1) independent variables are just powers PI(2), . . . , PI (N) (whereas PI(1) =
−PI(2) − . . . − PI(N)). For any given choice of these powers, it is possible to
derive:

• powers exchanged between any pair of areas (and, specifically, through any
single boundary node);

• losses p′′
(1), . . . , p′′

(N) in the interconnection subnetwork, and pertaining to
the different areas;

• powers P(1), . . . , P(N) flowing through area nodes, expressed by;

P(r) = PI(r) − p′′
(r)(PI (2), . . . , PI (N)) (r = 1, . . . , N)

and so on.
Therefore, it is possible to obtain:

dP(1) = −
N∑
2

s

(
1 + ∂p′′

(1)

∂PI (s)

)
dPI(s)

dP(r) =
(

1 − ∂p′′
(r)

∂PI (r)

)
dPI(r) −

N∑
2

s �=r

∂p′′
(r)

∂PI (s)

dPI(s)

(r = 2, . . . , N); and by recalling Equation [2.3.30] it is finally possible to deter-
mine the cost variations dC(1), . . . , dC(N) caused, in different areas, by small
variations dPI(2), . . . , dPI(N) of imported powers.

More precisely, if the power exchange Pab from area a to area b is increased
by the (small) amount:

dPab = −dPI(a) = +dPI(b)

with powers imported by other areas being unchanged (i.e., with dPI(r) = 0 for
r �= a, b), it is possible to determine the following cost variations:
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dC(a) = −µ(a) dP(a) = +µ(a)

(
1 − ∂p′′

(a)

∂PI (a)

+ ∂p′′
(a)

∂PI (b)

)
dPab

dC(b) = −µ(b) dP(b) = −µ(b)

(
1 − ∂p′′

(b)

∂PI (b)

+ ∂p′′
(b)

∂PI (a)

)
dPab

Furthermore, in the other areas (r �= a, b):

dC(r) = −µ(r) dP(r) = +µ(r)

(
∂p′′

(r)

∂PI (b)

− ∂p′′
(r)

∂PI (a)

)
dPab

(such expressions also can be used when a = 1 or b = 1, provided the par-
tial derivatives with respect to PI(1) are assumed to be zero). This can provide
important suggestions to arrange exchange programs between different areas.

The optimal solution for the whole system then corresponds to the (N − 1)
conditions:

0 =
∂

N∑
1

sC(s)

∂PI (r)

, or equivalently 0 =
N∑
1

s µ(s)

∂P(s)

∂PI (r)

(r = 2, . . . , N)

which, by considering what has been previously established, may be translated
in the matrix equation:

A




µ(2)

...

µ(N)


 =




1
...

1


µ(1) [2.3.31]

in µ(1), . . . , µ(N), where the elements of the matrix A are defined by:

Arr �
1 − ∂p′′

(r)

∂PI (r)

1 + ∂p′′
(1)

∂PI (r)

Ars �
− ∂p′′

(s)

∂PI (r)

1 + ∂p′′
(1)

∂PI (r)

(s �= r)

(r, s = 2, . . . , N ). Note that the A matrix depends on powers PI(2), . . . , PI (N).
For any values of these last powers, Equation [2.3.31] allows, starting from µ(1),
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generation-load
subnetwork
for area r

(r = 2, ... , N )

generation-load
subnetwork
for area 1

interconnection
subnetwork

Figure 2.35. A computational block diagram for a multiarea system.

determination of µ(2), . . . , µ(N); the final solution can be derived according to the
diagram of Figure 2.35, by considering further links between involved variables.

The (N − 1) conditions expressed by the matrix Equation [2.3.31] also may be set into
other equivalent forms such as, for instance, Equation [2.3.32] or [2.3.33] reported below.
More precisely:

• if each of powers P(1), . . . , P(N) is expressed as a function of the phases α1, . . . , αN

of area node voltages, by setting:

0 =
∂

N∑
1

sC(s)

∂αr

(r = 1, . . . , N)

and by recalling Equation [2.3.30] the following (N − 1) conditions are derived:

0 =
N∑
1

sµ(s)Ksr (r = 2, . . . , N) [2.3.32]

with Ksr � ∂P(s)/∂αr (the similar condition for r = 1 can be disregarded, as powers
P(s) actually depend only on phase shifts, and therefore it holds

∑N
1 rKsr = 0);

• if total losses in the interconnection subnetwork are assumed to be of the form∑N
1 rp

′′
(r) = φ′′(P(2), . . . , P(N)), it follows:

P(1) = −(φ′′ + P(2) + · · · + P(N))

d
N∑
1

sCs = −
N∑
1

sµ(s) dP(s) =
N∑
2

s

((
1 + ∂φ′′

∂P(s)

)
µ(1) − µ(s)

)
dP(s)
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and then the following (N − 1) conditions:

µ(s) =
(

1 + ∂φ′′

∂P(s)

)
µ(1) (s = 2, . . . , N) [2.3.33]

from which µ(2), . . . , µ(N) starting from µ(1).

If variations of losses in the interconnection subnetwork are disregarded, the
results simplify to:

µ(1) = µ(2) = · · · = µ(N)

while the matrix A becomes the (N − 1, N − 1) identity matrix, and in Equations
[2.3.32] and [2.3.33] it respectively holds

∑N
1 sKsr = 0, ∂φ′′/∂P(2) = · · · = ∂φ′′/

∂P(N) = 0. In this case, therefore, the optimal solution implies (further than the
equality of the incremental costs at load, within each generation-load subnetwork )
the equality of the incremental costs at the different area nodes, that is:

λc(1)

(
1 − ∂p′

(1)

∂P(1)

)
= · · · = λc(N)

(
1 − ∂p′

(N)

∂P(N)

)

2.4. PREVISIONAL SCHEDULING

2.4.1. Generalities

Data for the previsional scheduling basically concern:

• system components;
• load demands;
• different inflows available for generation.

Such data are obviously affected by uncertainties, for what respectively con-
cerns (as specified later on) the risks of forced unavailability of components and
the difficulties in forecasting load demands and inflows.

Data about system components concern not only already existing equipment,
but also those on the way into service. Thus problems relevant for the operational
scheduling also can overlap — particularly in the long term, e.g., from 6 months
to several years — with those concerning the system development planning.

Each component is intended to be specified by its main operating character-
istics, in addition to its operating constraints. In particular, for generating units
it is necessary to consider the maximum active powers that they can generate
(and other capability limits; see Section 2.2.1), generation costs (by assuming as
known the unit costs of fuels; see Section 2.2.5d), and further constraints and
costs related to startups and shutdowns (Section 2.4.2b).
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Furthermore, for each component, ordinary maintenance requirements must be
specified in terms of duration and frequency.

Finally, the risk of forced unavailabilities caused by damages (more or less
casual in nature) must be taken into consideration. Apart from damages resulting
from specific deterministic causes, such as errors in design, manufacturing, or
maintenance, random damage events should be considered and treated by prob-
abilistic models. These events can be characterized by experimentally derived
parameters; for instance, the mean “outage” duration τa (continuous unavail-
ability, with repair time included) may be in the range of at least 1–5 days
for hydroelectric or gas turbine units, and 3–10 days or more for thermal units
equipped with steam turbines. For the most usual values of the outage frequency
fa , the “availability factor” for a unit (defined as the ratio between the availability
duration and the total duration, and thus equal to (1 − faτa)) may be 0.80–0.95
for hydroelectric units, and even less for thermal units equipped with steam or
gas turbines. Outage frequency may actually be higher for both new and old
units (such as for 40–50 year old hydrounits, or 20–25 year old thermal units),
respectively, caused by settlement and wear reasons. Based on such data, it is
possible to determine probabilistic indications on the actual availability, along
the time, of each single component. Once we know the units scheduled to be in
operation and, for each of them, the date of the most recent outage, we also may
evaluate the probability that the total available power, at any generic instant, is
not lower than a given value, and so on.

Load demands are defined, in detail, by the variations with time (“load dia-
gram”), as active and reactive powers absorbed at each load node. However,
because of uncertainties in forecasting, it may be preferable to accept simpler
more easily predictable specifications, by grouping loads at a single or a few
“equivalent” nodes and/or assuming step-varying load diagrams defined by mean
values within each time interval, etc., according to the following (risks resulting
from forecasting errors should be accounted for).

Also, load demands — apart from the small, rather quick fluctuations with
zero mean value, already considered in Section 1.2.2 — are related to require-
ments of different nature which are typically periodical or almost so. The typical
periodicity (see Fig. 2.36) is:

• daily, with higher demands in daytime hours (mostly due to industrial loads
at working hours, and loads for “lighting” in the early evening) with respect
to night hours;

• weekly, with higher demands (and of different nature) in working days with
respect to weekends;

• yearly, with different demands depending on months and weeks (e.g., results
from winter heating, holiday weeks, etc.),

and with different amounts in the subsequent years, according to variations of
the demand law in the long term.
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Mon Tue Wed Thur Fri Sat Sun

Figure 2.36. Example of a weekly load diagram (Pc = total active load power).

Load demand forecasting is essentially based on:

• past information (e.g., obtained by recording at load nodes, or at generation
and boundary nodes), concerning, for instance, the shape of the load diagram
and the energy absorbed in days similar to the considered one;

• previsions about parameters affecting load demands themselves, among
which the industrial development and (particularly in the short term) the
meteorological conditions, further than other contingent causes of different
nature (modifications in working times, television programs, etc.).

Probabilistic indications on the reliability of load forecasts may be obtained
by detecting past errors for any given day and hour (e.g., peak hour), and
so on.

The different inflows available for generation are typically constituted by water
inflows (having subtracted possible spillages) in the hydroplants. Similarly, we
may consider natural inflows of fuel or of motive fluid to possible geothermal
power plants, and so on. Hydraulic inflows are basically the natural ones, caused
by rain and snow and ice melting, and then depending on meteorological condi-
tions and water travel times. Moreover, in the case of snow and ice melting, the
inflows depend on the state of snow fields and glaciers, and thus on the mete-
orological conditions of the preceding winter. Further inflows may be added to
natural ones, such as those due to hydraulic coupling, i.e., caused by the outflow
from hydroplants located upstream and belonging to the same valley, and those
due to pumping.

It also may be thought that the causes which determine the hydraulic inflows
arise in a rather similar way year by year. However, it would be unreasonable
to estimate future inflows as functions of time, within the span of a whole year.
For long intervals (e.g., 1 year, 1 month, or even 1 week, as per interpolation on
each month), previsions can be formulated only on water volumes due to inflows,
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based on previous multiyear experience (and for instance in terms of probability
that the total energy at disposal from the totality of inflows is not below a given
value). The inflows as functions of time are instead predicted only for shorter
intervals, not too far in the future (e.g., the next day).

The basic problems related to previsional scheduling are qualitatively summa-
rized in Figure 2.37. For some problems the solution may be required, broadly,
with a significant advance and with reference to long periods of operation. Ref-
erence can be made to the necessity of in-time agreements with suppliers of fuel
(its acquisition imply may also delays in transportation etc.) and with other util-
ities (for what concerns exchanges through interconnections), and furthermore
to the convenience of scheduling — even for long-time horizons — fuel storages,
water storages in reservoirs, maintenance periods of units, etc. Thus it is neces-
sary to carry out, at first, a “long-term” scheduling (which, for instance, covers
1 year and is updated, for instance, monthly with reference to the subsequent
12 months), based on data relatively global and therefore less affected by fore-
cast uncertainties, and sufficient to provide a quick response to the above-cited
requirements. In this context, the search for detailed solutions would be scarcely
significant (apart from the enormous computing complications) because neces-
sary data would be too uncertain, and many results would not be necessary so
much in advance.

On the other hand, more detailed, useful, and significant solutions can be
obtained only with reference to more limited future intervals. A “medium-
term” scheduling (concerning, for instance, the next week) is then performed,
to better define the amount of water to be used and possibly pumped, in
hydroelectric plants within each day, the operating intervals of thermal units,
and so on. The detailed determination of configurations and working points
to be achieved, for instance, during the next day, can be then obtained by a
“short-term” scheduling, based on the most updated forecast. Results so obtained
may be adjusted by the real-time scheduling, accounting for actual operating
conditions.

2.4.2. Typical Formulations and Procedures

For each of the three scheduling levels mentioned (long-, medium-, and short-
term) the total interval of time under consideration (lasting T ) is subdivided into
several elementary intervals (lasting τ ). The results of scheduling are referred
to these elementary intervals, in accordance with a “discrete” formulation. The
different pairs of values T , τ , must be chosen according to the nature of the
problems considered; in fact, the choice of the duration τ must account for a
reasonable level of detail to be achieved in the definition of results, based on
enough credible data along the interval T .
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As a general guideline, the following may be assumed:

• long-term scheduling: T = 1 year, τ = 1 week;

• medium-term scheduling: T = 1 week, τ = 1 day (or 4 hours, or 2 hours);

• short-term scheduling: T = 1 day, τ = 30 minutes (or 15 minutes)(13).

The relevance of the problems and their subdivision into the three mentioned
levels may depend on the characteristics of the system under examination. The
hints reported in the following reference examples of formulations and proce-
dures, with particular concern to active power generation (and exchange) sched-
ules, and under the assumption that the hydroelectric generation has a significant,
though not prevailing, importance.

(a) Long-Term Scheduling
With the long-term, the choice T = 1 year appears particularly reasonable, be-
cause it corresponds to the longest time interval by which load demands and
hydraulic inflows vary more or less cyclically. The scheduling may be updated
at each month (with reference to the following 12 months), so that the most
updated results concerning the next month can be available for the medium-term
scheduling, as time goes on.

Similarly, the choice τ = 1 week appears to be convenient, as it corresponds
to a significant duration with respect to load demands and maintenance require-
ments, without getting into too much detail for what concerns possible daily or
weekly generating-pumping cycles etc., according to the following.

With such choices and with R � T /τ (i.e., R = 52 or R = 53, excluding
truncations at the first and last weeks) we may assume as known, for each week
(r = 1, . . . , R):

• the set of generating units (thermal and hydroelectric ones);

• the total energy E(r)
c demanded by loads and, in a typical, properly simplified

form, the total load diagram or the corresponding “duration” diagram (see
footnote(12));

• the total energy E(r)
a at disposal, due to the whole set of inflows (both

natural and due to hydraulic coupling).

The maintenance scheduling (based on estimation of wear, as a function of
past operating conditions) allows definition of — at least broadly and apart from

(13) Assuming τ = 1 day for medium-term scheduling, any overlapping is avoided, with time detail,
between two consecutive schedulings. In fact, when passing from long- to medium-term scheduling,
the elementary interval becomes the total interval, as well as passing from medium- to short-term
scheduling.

However, smaller values of τ for medium term may look preferable, e.g., to schedule in a better
way (already on a weekly base) the operating hours of thermal units.
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the risk of outages — the set of available (i.e., not under maintenance) units within
each week(14).

In this regard, it is important to consider the following, within each time
interval:

• the set of available units must guarantee not only a sufficient spinning
reserve, but also an adequate “cold” reserve (i.e., available but not operating
units) to be capable of handling critical situations caused by loads much
larger than forecasted or lack of inflows, unit outages, loss of imported
powers, etc.;

• the cold reserve must (see also Section 1.7.1) be geographically spread in
a relatively uniform way (similar as per the spinning reserve);

• the cold reserve must furthermore include an adequate portion of “quick”
reserve — typically constituted by hydroelectric or gas-turbine units — capa-
ble of intervening within minutes (the slower reserve, constituted by steam-
turbine units, which can startup in hours, can be useful in case of critical
conditions which are foreseen in advance, such as systematic load increases
in the day, etc.).

The maintenance schedule also may be influenced by other requirements (e.g.,
to avoid overflows in a hydroelectric plant, the available power should not be
reduced for that plant when inflows are large), and it must be coordinated with
the availability of maintenance personnel, etc.

The maintenance schedule initially chosen may undergo corrections and refine-
ments in a shorter-term context.

The scheduling of water storage has the aim of defining, for each week,
the total energy E(r)

w (r = 1, . . . , R) to be hydroelectrically generated without
considering pumping. By indicating with V (0) the total (hydraulic) energy stored
at the beginning of the year, and with V (r) the value assumed for energy at the
end of the r-th week, with constraints:

V (r) ∈ [Vmin, Vmax] [2.4.1]

that will be discussed later, the full sequence V (1), . . . , V (R) is given by(15):

(14) The time required for maintaining a generating unit is weeks per year (e.g., approximately 2–5
weeks/year for hydroelectric or gas-turbine units, and 5–10 weeks/year or more for steam-turbine
thermal units).

The maintenance of other components (e.g., lines, transformers, etc.) requires instead smaller
durations and can be carried out during low-load intervals (night or weekends), consistently with the
medium- and short-term scheduling.
(15) Possible overflows and spillages, the effects of which would be equivalent to a decrement in
E

(r)
a , are disregarded here for simplicity. Furthermore, it is assumed that generating-pumping cycles

are daily or, at most, weekly. When pumping is present, by indicating with E
(r)
g � E

(r)
w + ∆E

(r)
g

the total energy hydroelectrically generated within the r-th week (Section 2.3.3), the term ∆E
(r)
g

corresponds to the use of pumped volumes of water (pumping inflows) within the r-th week itself,
so that Equation [2.4.2] remains valid.



146 CHAPTER 2 CONFIGURATION AND WORKING POINT

V (r) = V (r−1) + E(r)
a − E(r)

w = V (0) +
r∑
1

j

(
E(j)

a − E(j)
w

)
(r = 1, . . . , R)

[2.4.2]
It may be reasonable to impose that the stored hydraulic energy has the same
value at the beginning and at the end of the year, i.e., V (R) = V (0); thus it holds:

R∑
1

rE
(r)
w =

R∑
1

rE
(r)
a [2.4.3]

which states that the total annual hydroelectrically generated energy is equal to
that (known) available from inflows for the whole year.

The problem is then the choice of the subsequent values E(1)
w , . . . , E(R)

w , with
their sum known. If the storage capability is small, the solution cannot dif-
fer significantly from E(1)

w = E(1)
a , . . . , E(R)

w = E(R)
a , corresponding to the simple

use of inflows, week by week (see also the following Section (b), with refer-
ence to medium term). On the contrary, assume that the system also includes
large-capacitance reservoirs, specifically “multiweeks” or “seasonal” reservoirs
which, in the absence of inflows and for nominal conditions of initial storage
and (available) generated power, are characterized by an “emptying time” larger
than 1 week. To determine the sequence E(1)

w , . . . , E(R)
w it is then possible, for

each week:

• to consider some possible values of the energy E(r)
w ;

• to carry out, for each value E(r)
w (based on the presumed load diagram or

on the “duration” diagram), a preliminary scheduling of:

• the configurations (specifically, operating intervals of thermal units);

• the working points (specifically, generated powers of thermal units during
the week, with possible pumpings);

• the exchanged powers;

by adopting, in a simplified form, criteria similar to those adopted in
medium-term scheduling (specifically, a priority list based on (Ci/Pti )

∗
values; see Section (b));

• to determine the resulting total cost J (r) (and fuel requirements) for the
week, as a function of the energy E(r)

w .

The values E(1)
w , . . . , E(R)

w can be then determined by imposing:

min
R∑
1

rJ
(r)(E(r)

w )

with the equality constraint [2.4.3] and, for any given value V (0), with the inequal-
ity constraints [2.4.1], where each energy V (r) is defined by Equation [2.4.2].
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With conditions [2.4.1], it should be preliminarily assumed that they account for storage
limits of plants, with prudential margins caused by uncertainties on data (availability of
units and values of energy E(r)

c and E(r)
a ). For each admissible sequence V (0), V (1), . . . ,

V (R), with V (R) = V (0), it is possible, at the beginning of each interval r (monitoring data
uncertainties), to evaluate the risk of not meeting the energy demand (E(r)

c + · · · + E(R)
c )

for the rest of the year, with the actually available units and inflows.

Specifically, it is possible to define for any generic V (0) a “lower-limit” curve, corre-
sponding to a sequence V (0), V (1)∗, . . . , V (R−1)∗, V (0) at a constant risk (equal to the one
at the beginning of the year). To guarantee an always adequate “energy” reserve, with
risks not larger than the above-mentioned value, it must be imposed V (r) ≥ V (r)∗ (that is,
V (r) ∈ [V (r)∗, Vmax]), with V (r)∗ dependent on r(r = 1, . . . , R − 1). The larger values of
V (r)∗, i.e., of the strictly required hydraulic storages, correspond to weeks preceding the
heavier load periods.

The scheduling of configurations, working points, and power exchanges, ob-
tained for the whole year in correspondence with the chosen values of E(1)

w , . . . ,

E(R)
w , may be considered as largely preliminary ones, in view of the most adequate

corrections and refinements which can be achieved by medium- and short-term
scheduling.

However, the convenience of exchanges (active power imports or exports)
in given periods of the year may already suggest negotiations and preliminary
long-term agreements with the involved utilities (also the possibility of temporal
compensations, according to Section 2.3.4, should be considered).

Finally, the scheduling of fuel acquisition may already use valuable indications
concerning fuel needs along the year. Within multiyear agreements it is possible,
for example, to specify minimum and maximum amounts of fuel requested in
different months (with the possibility of further details and possible new contract-
ing, in a shorter-term scheduling), also accounting for possible cost fluctuations.
Additionally, the need of adequate storages (see Section 2.3.2b) must be consid-
ered, also with reference to nonforecasted increments in energy demands, risks
of interruptions in supply, delays in transportation, and so on.

(b) Medium-Term Scheduling
The fundamental problems to be solved in medium-term scheduling concern
configuration and water storages; precisely, the typical goals are:

• determination of water storages at the end of subsequent days (for any value
of the storage at the beginning of the week), for each hydroelectric plant;

• determination of the operating schedule of units (unit commitment), specif-
ically thermal units;

in addition to the revision and refinement of exchange programs, etc.
The choice of a total interval duration T = 1 week, as assumed in the follow-

ing, may be efficient and meaningful, as:

• it allows a good link with the long-term scheduling;
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• the operating schedule of thermal units (with possible startups and shut-
downs) must be chosen along a time interval including at least 1 week
because of the alternating working days and holidays, with significantly
different load demands;

• considering a period of 1 week, it is possible to use data reliable enough,
with respect to the described goals.

With the elementary interval, the duration τ = 1 day is significant for load
demands and water storage schedules, and for deciding thermal unit shutdowns
in the lower load days (e.g., holidays). However, when evaluating the efficiency
of shutdowns within the same day (typically at night), it is necessary to adopt
smaller values (e.g., 4 hours or 2 hours).

Data for medium-term scheduling are basically the following(16):

• from updated previsions:

• the load diagram (adequately sketched) along the week;

• the daily energy made available by natural inflows (having subtracted
possible spillages) in the different days of the week, for each hydroelectric
plant;

• based on long-term scheduling and updated information:

• the set of (thermal and hydro) generating units available for the whole or
partial week, considering maintenance schedules and forced outages;

• the (hydraulic) total energy stored for all hydroplants at the beginning of
the week (Vin), and the desired one at the end of the week (Vfin);

• a preliminary schedule of active power exchanges during the week.

It is possible to add particular constraints, caused by contingent reasons, for
example:

• assignments concerning the operating intervals of some units and, possibly,
their generated powers (assigned generation); for example, units belonging
to flowing water or geothermal or cogeneration plants, units under test-
ing, etc.;

• constraints on the geographical distribution of generated powers (accoun-
ting for that of loads); for instance to avoid excessively large currents in
lines surviving the loss of important network link.

The scheduling of water storages or of energy stored in hydroelectric plants
may be detailed as follows:

(16) Further data concerning fuels are not considered here for simplicity (forecasted incoming of fuel,
quantities used in the week, etc., similarly to data concerning hydraulic resources; see Section 2.3.2b),
by assuming that their availability is always guaranteed.
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• variations in energy (Vfin − Vin)(j)(j = 1, 2, . . .) stored in different plants
are selected, accounting for the constraint

∑
j (Vfin − Vin)(j) = Vfin − Vin;

• energy Ew(j) generated in the week by each plant (not considering pumping)
is deduced;

• each Ew(j) is subdivided between the different days of the week;
• finally, the storage values at the end of the different days are determined

for each plant.

The subdivision of (Vfin − Vin) between plants may be decided (at least as
a first approximation) based on respective storage capacities. Specifically, for
smaller-capacity plants it may be assumed (Vfin − Vin)(j) = 0, i.e., by imposing
the same storage at the beginning and end of the week; such a choice typically
concerns the so-called weekly basins for which the storage decrement during
weekdays is compensated at weekends, and (with all the reasons) daily basins
for which the storage decrements at the heavier load hours are compensated
during the remaining hours, so that the initial storage can be reset at the end of
each day.

Once the differences (Vfin − Vin)(j) are assigned, it is possible to derive each
energy Ew(j) by using the relationship Ew(j) = Ea(j) − (Vfin − Vin)(j), indicating
by Ea(j) the available weekly energy caused by water inflows (natural and due
to hydraulic couplings) in the j -th plant(17). The total energy

∑
j Ew(j) generally

differs from that forecasted in the long-term scheduling, because it is evaluated
from more realistic data.

If values Ew(j) are inconsistent with available unit power and other con-
straints — concerning for instance, the geographical distribution of generation —
the partition of (Vfin − Vin) should be rearranged.

Moreover, the partition of Ew(j) between days of the week must be deter-
mined, considering the requirement of satisfying the load diagram and storage
constraints, according to the following. However, this partition may be consid-
ered compulsory (or almost that) because of storage constraints (e.g., regarding
daily basin plants for which the energy generated in each day should practically
equal that corresponding to water inflows). Moreover, the need for adequately
coordinating generation schedules of the plants in the same valley is evident.

Once the initial storage is known, storages at the end of successive days can
be determined for each plant, based on daily generated energy and total inflow.
If these storage values are inconsistent with the respective constraints, the par-
tition of Ew(j) between the days of the week should be adequately modified.
For generating-pumping plants, the nondaily cycle pumping schedules must be
considered, according to the following.

(17) The energies Ew(j)’s can be computed at once only for isolated plants and for those at the top of
possible “valleys,” for which Ea(j) is a data, depending only on natural inflows. However, knowing
the energies generated through the top plants in each valley, enables evaluation of the total water
inflows to downstream plants supplied by them, and thus it is possible to know all corresponding
Ea(j)’s.
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Regarding the matching of load demand, the diagram of requested power P ′
c

during the week (having subtracted exchanges and assigned generations, and
disregarding network losses) must first be derived from available data. Once
this diagram is known, the hydroelectric generation can be scheduled in such
a way to minimize the total generation cost. Remember what is expressed in
Section 2.3.3b2 with reference to always insufficient hydroelectric generation,
specifically assuming that storage constraints are not activated and disregarding
pumping.

Under the hypothesis that the (until now unknown) operating thermal plants
remain unchanged for the whole week, each energy Ew(j) must be used to “level”
at maximum effort, during the whole week, the diagram of the total nonassigned
thermal power Pt , starting from the diagram of power P ′

c (accounting for power
limits of hydroelectric units and other constraints already considered).

Usually, it is efficient, if not necessary, to modify the set of operating thermal units,
for reasons specified later in this section. Indicating by P ′

t the total power generated by
thermal units in continuous operation, and by P ′′

t the total power generated by units in
noncontinuous operation, not considering assigned generation, it is possible to impose
that the hydroelectric generation “levels” at the best the diagram of P ′

t starting from the
diagram of (P ′

c − P ′′
t ). However, as the operating schedule of units and the time behavior

of P ′′
t are unknown, it is possible to proceed as follows (see Fig. 2.38):

• an adequate preliminary time diagram for P ′′
t is assumed (e.g., P ′′

t ≡ 0);

• the corresponding diagram for P ′
t is derived (by leveling it at the most, as already

said) and then that of Pt = P ′
t + P ′′

t ;

• based on the diagram of Pt , we may derive (according to the below information)
the operating schedule of thermal units and the subdivision of Pt between the units,
so that new diagrams for both P ′

t and P ′′
t may be found;

weekly energies generated
by the single hydroelectric
plants, apart from possible

pumpings

pumpings

water storages at the end of
the subsequent days, for each

hydroelectric plant

time behavior of
P ′c

time behavior
of P ′t

time behavior
of P ′′t

dispatching of
Pt among the

different thermal
units with non-

assigned generation

time behavior
of Pt determination of

the thermal unit
commitment

set of thermal units in
operation for each
elementary interval

leveling of the
time

 behavior of P ′t

time behavior of
(P ′c − P ′′t)  

Figure 2.38. A computational block diagram in the presence of thermal units in
noncontinuous operation.
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(P′c)

Figure 2.39. Example of weekly diagram of thermal generation. Power P ′
c is the

total load demand, having subtracted exchanges and assigned generations. Pow-
ers Pt and (P ′

c − Pt ) are, respectively, the total thermally and hydroelectrically
generated powers (apart from assigned generations).

• as a second attempt, the new P ′′
t diagram determined as above is adopted;

• new diagrams for P ′
t , P ′′

t , etc. may be derived, by iterating until the final solution(18).

The resulting thermal generation diagram of working days is significantly dif-
ferent from that of holidays (see the example of Fig. 2.39), essentially because of:

• significant differences between working day and holiday loads;
• efficiency or necessity (according to what is already mentioned) of using

inflows within short times (and thus of generating even in holidays) for
hydroelectric plants having small storage capability.

On the other hand, pumping actions, which will be considered later, may not
substantially reduce, in practice, the mentioned difference.

Once the diagram Pt(t) of thermal generation is known, the determination of
the unit’s operating schedule still requires the evaluation of the spinning reserve
requirements (see Section 2.3.1d) during the week, starting from the diagrams of
load and of exchanged powers.

More simply, it is possible to determine for each day the maximum value of
the strictly necessary spinning reserve or, in a better way (e.g., if τ = 2 hours),
the two maximum values respectively corresponding to daytime hours (the value

(18) If the operating intervals of each thermal unit remain unchanged in subsequent iterations (or if
they are assigned), the procedure may be used to determine the time behavior of generated powers;
however, this determination becomes more interesting in short-term scheduling.
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to be used, for instance, between 6:00 a.m. and 10:00 p.m.) and night hours (the
value to be used in the remaining 8 hours).

Once the spinning reserve supplied by hydroelectric plants (by assuming that
these units are stopped during intervals at no power) is known, it is possible
to derive the minimum spinning reserve required to thermal units (apart from
further checks, concerning the geographical distribution of spinning reserve, its
capability of coping with the largest plant outage, etc.), and thus the minimum
value of rotating power during the week.

To determine the operating intervals of thermal units (with these intervals
multiple of τ ), it is then possible to apply the following procedure as a first
approximation:

• by indicating (Ci/Pti )
∗ as the minimum value of the “specific cost” of the

generic i-th unit (see Fig. 2.31b), units are ordered so that (C1/Pt1)
∗ <

(C2/Pt2)
∗ < . . .;

• for each elementary interval τ , units are scheduled into operation adopting
the above priority list 1,2,. . ., until the total rotating power (generation and
spinning reserve) becomes sufficient for the whole interval considered(19).

The procedure illustrated is extremely simple and avoids consideration of time
dependency P ′

c(t), so that it can be usefully applied (e.g., in the long term) even
with only knowing the “duration” diagram of P ′

c (which is much easier to be
forecasted). As a partial justification of the procedure, it may be also noticed that:

• usually, the minimum specific cost (Ci/Pti )
∗ corresponds (exactly, or almost

exactly) to Pti = Pti max;

• if the total power Pt to be supplied is equal to Pt1 max, (Pt1 max + Pt2 max),

. . ., the generation cost is minimum when respectively using (at full power),
only unit 1, units 1 and 2, and so on (see also Section 2.3.3c).

On the other hand, one might easily object that, when using units only at
full power, they cannot contribute to spinning reserve. Moreover, the minimiza-
tion of the generation cost is not always guaranteed, for values of Pt different
from those considered above (see the elementary example in Fig. 2.40). Further-
more, variations in the demanded rotating power generally lead to modifying the
set of operating units during the week, through startups and shutdowns. Thus,

(19) If the operating intervals of some units are already assigned, this must be considered in advance
in a straightforward way.

Moreover, it is efficient to place “older” — and therefore less reliable — units at the end of the
list, possibly using them as cold reserve; the same applies, for different reasons, for gas-turbine units
(which have rather high (Ci/Pti )

∗ values and can serve as a possible “quick” cold reserve).
Generally, it must be considered that “equivalent” unit costs of fuels, and thus the above-

mentioned specific costs, may undergo changes related to the actual availability of fuels themselves
(see Section 2.3.2b).
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slopes

Figure 2.40. Example involving three units, with:

Pt1 min = Pt2 min = Pt3 min = a

C1(b) = C2(b)

Pt1 max = Pt2 max = c

Pt3 max = d

and furthermore:

(C1/Pt1)
∗ < (C2/Pt2)

∗ < (C3/Pt3)
∗

Indicating by Pt the total demanded power, the minimization of (C1 + C2 + C3)
is achieved by putting into operation:

• only unit 2, for Pt ∈ [a, b);
• only unit 1, for Pt ∈ (b, c];
• only unit 3, for Pt ∈ (c, d];
• only units 1 and 2, for Pt ∈ (d, 2c];
• all units, for Pt ∈ (2c, 2c + d].

additional costs (and constraints) related to such operations should be considered,
by accounting for the dependence on time.

More precisely, if a thermal plant is, after shutdown, left undergoing a natural cooldown,
there is a loss of energy E — approximately increasing with time according to an expo-
nential law E = Eo(1 − ε−t/T o

) — which must be supplied before the next restoration to
operation. Such energy supply must be provided gradually to avoid too fast variations of
temperatures. The startup then implies a consumption of fuel and a further time delay ∆t ,
both of which are nearly proportional to E and then increase with the duration t of the
cooldown. (The time constant T o may be 30–40 hours; in the worst conditions, i.e., after
a complete cooldown (E = Eo), the fuel consumption is not usually excessive, as it may
be the same amount necessary to generate the rated power for 30 minutes of operation,



154 CHAPTER 2 CONFIGURATION AND WORKING POINT

but the time delay ∆t can be significant, e.g., 5 hours.). As an alternative, the plant also
could be kept in a “warm” state, with fuel consumption proportional to the duration of
nonoperating condition. This can be efficient only if such a duration is relatively modest
(e.g., a few hours)(20). However, the cost to be considered is not only the cost related to
the fuel consumption. The different operations required, in fact, imply a personnel cost
and contribute to the deterioration process of the plant, which requires additional main-
tenance costs. Due to limitations in personnel, the maximum number of such operations
that can be performed for a given plant, within each assigned elementary time interval τ ,
should be considered.

Usually, the above-mentioned procedure is acceptable to determine the set of
units (thermal units, with nonassigned generation schedule) to be operated at the
most severe conditions, i.e., within the interval or intervals τ for which the rotating
power that is required to them is maximum. Then, it should be verified whether it
is efficient to stop the operation of some units in other time intervals, according
to the above procedure itself (by directly accounting for time constraints related
to startups and shutdowns, further than for constraint on spinning power), thus
translating the original problem into a unit decommitment problem starting from
the above-mentioned set(21).

In such a view, when stopping the h-th unit from operation in a generic
interval θh:

• startup and shutdown operations imply a cost (Ah);

• within the interval θh, the cost of generation for the h-th unit becomes
zero, but that of the remaining units increases because they must generate a
larger amount of power; as a consequence, denoting by the superscript “o”
the case in which the h-th unit is kept into operation, there is a saving:

Go
h =

∫
(θh)

Ch(P o
th) dt

and simultaneously an extra cost:

∆G′ =
∫

(θh)

∑
i �=h

(Ci(Pti ) − Ci(P
o
ti )) dt [2.4.4]

(whereas
∑

i P o
ti =∑i �=h Pti = Pt , and thus

∑
i �=h (Pti − P o

ti ) = P o
th ).

(20) The fuel consumption required to restore the kinetic energy lost at shutdown may be disregarded.
Note that for a hydroelectric unit the energy to be restored is, practically, only kinetic; this similarly
implies a negligible consumption of water.
(21) Even not considering startups and shutdowns, the leveling of Pt (t) can be positively judged not
only for the reason considered up to now (minimization of generation cost, for any given set of
units), but also for the possible reduction of the maximum value of rotating power requested and,
consequently, of the set of units to be operated.
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Consequently, it is efficient to remove the h-th unit from operation in the
interval θh, only if it results(22):

Go
h > ∆G′ + Ah [2.4.5]

When evaluating the generation costs, it is assumed that they are minimized, by
imposing (for units in operation, with nonassigned generation) the equality of the
incremental costs (see Section 2.3.1, neglecting specific constraints on currents
etc., which also could suggest some rearrangement to the set of considered units).

If P o
th � Pt , the argument within the integral of Equation [2.4.4], i.e., the

overcost per unit of time resulting from the increment of power P o
th required

to the remaining units, may be approximated by λoP o
th , assuming that λo is the

incremental cost when the h-th unit is in operation(23). It then results:

∆G′ ∼=
∫

(θh)

λoP o
th dt

and condition [2.4.5] can be approximated by:

∫
(θh)

(Ch(P o
th) − λoP o

th) dt > Ah

or even:
(Ch(P o

th) − λoP o
th)Th > Ah [2.4.6]

if P o
th , λo are nearly constant in the whole interval θh, lasting Th (i.e., with a

total power Pt slightly varying in θh, and the same assumption for the number
of units in operation). Therefore, to decide which units must be excluded in
a given interval, with λo known, it may be useful to evaluate the respective
values (Ch(P o

th) − λoP o
th); see for instance (under the assumption that (Ch, Pth )

are linear characteristics) Figure 2.41, by which the importance of the specific
cost (Ch/Pth)∗, as well as that of Ch(Pth min), Pth min, Pth max, is evident.

Alternatively, it is possible to adopt a procedure based on dynamic programming, by
applying a formula:

F o(r, Xk) = min
Xj

(F o(r − 1, Xj ) + A(r − 1, Xj ; r, Xk)) + G(r, Xk)

(22) The (connected) interval θh can, for instance, correspond to the two holidays in the weekend



2.4 PREVISIONAL SCHEDULING 157

• considering only preassigned sets, e.g., (1; 1,2; 1,2,3; . . .), which satisfy the priority
criterion based on values (Ci/Pti )

∗;

• considering at each r only the sets Xj that correspond to the smallest values of
F o(r − 1, Xj ).

Once the operating schedule for units is chosen, knowing the behavior of the
incremental cost λ during the week enables the evaluation of the efficiencies of:

• pumpings, with weekly and/or daily generating-pumping cycles,
• adjustments to the schedule concerning exchanged powers (which affect the

diagram of P ′
c(t)).

Since both actions modify the thermal generation diagram, it must be consid-
ered that the unit operating schedule might undergo some arrangements.

If pumping actions are performed in the interval (or set of intervals) θ(p), they
imply a thermal generation overcost ∆G(p) that can be approximated by:

∆G(p) =
∫

(θ(p))

λP(p) dt = λp

∫
(θ(p))

P(p) dt

assuming that power P(p) requested for pumping is small with respect to the total
generated power Pt , and indicating by λp a proper mean value of the incremental
cost in θ(p).

Then, indicating by θ(g) the interval or set of intervals in which the amounts
of water related to pumping are used for generation, at power P(g), the saving
obtained in θ(g) is similarly given by:

−∆G(g) =
∫

(θ(g))

λP(g) dt = λg

∫
(θ(g))

P(g) dt

with λg a proper mean value of the incremental cost in θ(g).
(Typically θ(p) includes night hours and/or holidays, whereas θ(g) corresponds

to workday load peaks; see also Figure 2.39.)
Therefore, pumping is convenient only if ∆G(p) + ∆G(g) < 0, or equivalently:

λp < ηλg [2.4.7]

where:

η �

∫
(θ(g))

P(g) dt

∫
(θ(p))

P(p) dt

represents the overall efficiency of generating-pumping cycles (η may be 0.6–0.7);
such a result agrees with that obtained (under the more stringent hypothesis of
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constant configuration) in Section 2.3.3b3, according to which the optimal solution
corresponds (if constraints allow it) to the condition λp = ηλg; see Figures 2.29
and 2.30.

However, the convenience of pumping must be evaluated in relation to con-
sequences on the operating program of thermal units. Specifically, the reduced
thermal generation required in θ(g) also may permit the permanent exclusion of
one or more thermal units from operation, provided that the requirements of rotat-
ing power are still met, with the contribution of the generating-pumping units
themselves. For instance, in the elementary case in Figure 2.42, the exclusion
of the h-th unit implies, assuming that the considered powers are small with
respect to Pt :

• a saving:

Ch(Pth(p))Tp + Ch(Pth(o))To + [Ch(Pth(g)) + λgP(g)

]
Tg

• an overcost:

λp

[
P(p) + Pth(p)

]
Tp + λoPth(o)To + λgPth(g)Tg

interval
(generation)

interval
(pumping)

without pumping
with pumping

Figure 2.42. Diagrams of the total thermal power Pt and power Pth generated
by the h-th unit.
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By assuming that P(p)Tp = P(g)Tg/η and, for simplicity, P(g) = Pth(g) — so
that the generation shortage caused by the absence of the h-th unit is exactly
compensated in θ(g) — the exclusion of the h-th unit is effective only if:

[
Ch(Pth(p)) − λpPth(p)

]
Tp + [Ch(Pth(o)) − λoPth(o)

]
To

+
[
Ch(Pth(g)) − λp

η
Pth(g)

]
Tg > 0

On the other hand, in θ(p) the augmented thermal generation demand may keep
some units in operation which, without pumping, might have been efficiently
excluded (recall condition [2.4.5]).

Finally, with the schedule of the exchanged powers, it may be possibly cor-
rected, with respect to what is arranged in the long-term scheduling, based on
the incremental costs and by means of agreements with other interested utilities
(see Section 2.3.4), by considering effects on the operating schedule of thermal
units.

(c) Short-Term Scheduling
The fundamental aim of short-term scheduling is to accurately define the hydro-
electrical and thermal generation schedules and, more generally, the working
points of the system with reference, for instance, to the next day.

The choice T = 1 day allows a precise connection with medium-term schedul-
ing, at least for water storages in hydroelectric plants; whereas errors in forecast-
ing load behavior, etc. may be considered acceptable, without adopting a shorter
duration, because their effects can be compensated by real-time scheduling.

Correspondingly, the duration of the elementary intervals may be chosen as
τ = 30 minutes (or 15 or 60), assuming that powers absorbed at load nodes, as
well as water inflows and exchange powers, have a stepwise temporal behavior
with constant values at each elementary interval. This avoids further detail that
would be difficult to forecast.

Short-term scheduling may be based on the following data:

• from updated previsions:

• the diagram of active and reactive powers absorbed during the day at each
load node (reference is made to a relatively small number of “equivalent
loads”);

• the diagram of natural inflows (considering possible spillages) during the
day, for different hydroelectric plants;

• based on medium-term scheduling and updated information:

• the set of available components (considering maintenance schedules and
forced outages);

• the set of thermal units scheduled for operation for the whole day or part
of it;
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• storage volumes at the beginning and at the end of the day, for
each hydroelectric plant (further than preliminary schedules of possible
pumping);

• a preliminary diagram of active exchange powers during the day for
boundary nodes.

Furthermore, it is possible to add particular constraints to such data (e.g.,
assigned generation), as indicated for medium-term scheduling; whereas it is
assumed, for simplicity, that the fuel availability is always guaranteed.

First, available data allow a coordinated choice of hydro- and thermal gener-
ation schedules, accounting for:

• minimum and maximum limits on powers Pwj and Pti , respectively, gener-
ated by hydro- and thermal units (possibly Pwj < 0 in case of pumping);

• the characteristics (qj , Pwj ) and (Ci, Pti ) concerning water consumptions
and generation costs, respectively, for hydro- and thermal units;

• minimum and maximum limits for storage volumes in hydroplants;

• network losses, adequately estimated (possibly as a function of the dispatch-
ing of powers Pwj and Pti ).

Recall Sections 2.3.3b1 and 2.3.3b3, assuming an always insufficient hydrogen-
eration.

The problem is then similar to that of the medium-term scheduling, but it
is now solved using less-simplified approaches (particularly, storage limits are
accounted for even within each day); on the contrary, the operating schedule
of thermal units may be now considered assigned(24), apart from the accidental
outage of some units and corrections that might appear efficient.

Actually, the solution must be adjusted if limits on currents and/or secu-
rity constraints are violated (see Sections 2.3.1c,d); particularly, requirements of
spinning reserve — also for what concerns its geographical distribution — may
impose some rearrangements to the unit operating schedule; for instance by avoid-
ing the shutdown of hydroelectric units or by increasing the set of thermal units
at peak load.

Further refinements may be required when powers generated by thermal units
undergo fast variations (see Section 2.3.2a).

Finally, corrections also may concern the exchange power schedule, under
conditions similar to those in medium-term scheduling.

What is reported up to now actually implies a solution of only the “active dis-
patching” in the subsequent elementary intervals, without considering interactions
with network voltage and reactive power steady-states.

(24) If some units are in operation only for a part of the day, the solution may be obtained by applying
an iterative procedure similar to Figure 2.38.
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For a detailed scheduling of working points, at least for the most critical situa-
tions it is optimal to use the combined solution of active and reactive dispatchings,
according to Section 2.2.6. This solution correctly accounts for network losses
and currents in the different branches and for their dependence on active power
dispatching. It may happen, more generally, that variations to system configu-
ration (and possibly operating schedule of units) become necessary because of
specific requirements from the reactive power dispatching to improve the “voltage
support” and increase the reactive power margins at network nodes.

2.5. REAL-TIME SCHEDULING

The goals to be achieved by means of real-time scheduling are:

• to check the actual working point with relation to quality, security, and
economy requirements, based on measurements performed on the system
during real operation;

• to determine necessary corrective actions (on control system set-points,
parameters, and system configuration itself), to obtain the most satisfying
working point.

First, system measurements must be adequately selected and processed, so
that a reliable “state estimation ,” i.e., estimation of the actual operating state
(configuration and working point), is achievable, according to the following.

The check and determination of corrections essentially imply the solution
of the two mentioned problems — active and reactive dispatching (recall
Fig. 2.15) — starting from:

• active and reactive powers absorbed by loads (apart from critical cases for
which it would be effective to disconnect some loads, to meet security
requirements);

• other possible assignments, e.g., concerning:

• active powers generated by hydrounits, according to previsional sche-
duling stage decisions (however, because of the difference between actual
and forecasted loads, powers actually generated may assume other values,
as a consequence of the f/P control);

• active powers exchanged through boundary nodes (these powers are kept
at scheduled values by means of the f/P control; see Section 3.4), apart
from rearrangements agreed in real-time.

Differently from the short-term previsional scheduling, the hydrogeneration may
be now considered as an input data. Therefore, active dispatching results as
purely instantaneous, apart from problems related to fast variations of thermally
generated powers; see Section 2.3.2a.
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Real-time scheduling assumes that the operating state is a steady-state that is
kept unchanged for a sufficiently long time interval, considering the unavoidable
delay between the measurement achievement and the corrective actions. This
delay may be some minutes, because of state estimation and dispatching (with
security checks, etc.), teletransmission of corrective signals, and their subsequent
actuation.

Specifically:

• it must be assumed that, in the meantime, powers absorbed by loads do not
vary significantly;

• measurements must be adequately filtered, to avoid the effect of transient
components overlapping the searched steady-state values.

According to Figure 2.43, the actuation of corrections also may be interpreted in terms
of a “tertiary” control, which acts on the set points of secondary (and primary) f/P

and v/Q controls, and possibly (by means of “adaptive” type actions) on parameters and
configuration. Such tertiary control is, of course, the slowest type of control, because it
is based on filtered and sampled (i.e., taken only at given instants) measurements and its
action is necessarily delayed, according to what is stated above.

Specifically, if the interactions between the active and reactive dispatchings are disre-
garded, the distinction between the tertiary f/P and v/Q controls, respectively involving
active and reactive dispatchings, is evident. In Section 3.3.2, an approximated type of
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Figure 2.43. General diagram for scheduling and control. Secondary regulators
are assumed to be located at the central dispatching office.
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tertiary f/P control will be referenced, based on the value of “level” signal of secondary
f/P regulator, without need for “state estimation.” Corrective actions for the two men-
tioned types of tertiary control also may be actuated at different times; for instance, every
5–10 minutes for the f/P control and every 30 minutes or more for the v/Q control.

State estimation and real-time scheduling may be performed into a single loca-
tion that we will generically denote by central “dispatching” office. The link with
plants may be achieved by a digital data teletransmission system, having a “tree”
structure. The central office is connected to several peripheral offices (e.g., at the
regional level) which are connected to other offices at the zonal levels and so on,
down to the single parts of the system. If measurements and corrections are “ana-
log,” they, respectively, require an analog-to-digital conversion and vice versa.

Peripheral offices, further than surveillance tasks on plants concerning respec-
tive areas (and interventions to handle incorrect operation or outages, etc.), must:

• collect different measurements from plants and transmit them to the cen-
tral office (available measurements must be selected, based on preliminary
checks of reliability; transmitted data also may be reduced by proper pro-
cessing, with reference to simplified “equivalents” adopted at the central
office location);

• receive corrective signals from the central office and route them toward
plants.

As indicated in Figure 2.43, the central office can additionally perform, by means of one
or more digital computers, the following tasks:

• updated information to the operator (with display and alarm in case of noncredible
measurements and/or critical situations, as nonacceptable voltages or currents, non-
adequate spinning reserve, etc.), for surveillance purposes and possible actions on
scheduling;

• operational data recording for reconstruction and interpretation of specific events,
for statistical analyses of different nature (also as an aid to load forecasting, etc.),
and so on;

• long-medium-short term previsional scheduling ;

• f/P secondary control (for instance, with a sampling period of seconds, for fre-
quency and exchanged powers measurements) and, possibly, v/Q secondary control.

With the perturbed operation (see Section 1.7), other facilities (achieved in more or less
simplified manners) may be added, such as:

• preventive determination of possible intervention plans ;

• real-time diagnosis ;

• choice of corrective actions.

Such functions can be, at least partially, delegated to peripheral offices; the actuation
of corrective actions (e.g., breaker opening or closing) may be performed through the
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Figure 2.44. Outline of the “state estimation” procedure.

teletransmission system. However, with insufficient rotating power, the diagnosis and the
actuation of corrective actions (typically load-shedding) also may be achieved by simple
devices located at the proximity of loads (see Section 3.5).

The “state estimation” may be performed according to Figure 2.44. Analog-
type measurements to be converted into digital may concern active and reactive
generated powers, active exchanged powers, voltage magnitudes, active and reac-
tive power flows and, rarely, active and reactive powers absorbed by loads. Digital
measurements typically concern the status (open or closed) of circuit breakers
and disconnectors, and the values of adjustable parameters (discontinuous ones,
such as transformer tap-changer position).

The preliminary checks of reliability consider, for instance:

• consistency between each measurement and the range of the measured
variable (similarly, a too fast varying measured value may not appear as
credible, and so on);

• consistency between different measurements; for instance, power flows that
are different from zero only if the relative breaker is closed, etc.

Apart from disregarding measured values, presumably affected by “abnormal”
errors (as considered in the following), the estimation of the working point of the
network is derived starting from:

• network equations;
• measured values.

Therefore, the estimation will be affected by errors, because of:

• approximations in network equations (recall Sections 1.2.2 and 2.1.2, e.g.,
physical dissymmetries, nonlinearities, inductive coupling between proximal
lines, etc.);
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• inaccuracy in measured values caused by overlapping of disturbances and/or
errors (normal and abnormal) in measuring devices and in conversion and
teletransmission systems.

Usually it is assumed that estimation errors are practically caused by inaccu-
rately measured values, which may be defined (with the exception of abnormal
errors) in terms of:

• systematic errors, that are assumed known;

• random errors, with zero mean and known probabilistic distributions.

Other uncertainties can be added because the operating condition is not exactly a steady-
state, and the measured values are not all taken at the same instant(25). It is then efficient to
reduce, as much as possible, the time interval within which all measurements are achieved
(e.g., 30 seconds or less). Generally, variables could be estimated with time, by attributing
to them a probabilistic model and applying a procedure based on the use of the “Kalman
filter.”

If by x1, . . . , xN and y1 = f1(x1, . . . , xN), . . . , yM = fM(x1, . . . , xN), one ge-
nerically indicates respectively the N independent variables defining the working
point — for the given network equations — and the M variables which are under
measurement, the estimation problem may be translated, by obvious notation,
to the determination of proper “estimated values” x̂1, . . . , x̂N , starting from the
“measured values” ym

1 , . . . , ym
M .

Based on the solution, it will be possible to determine the estimated
values of y1, . . . , yM ; i.e., ŷ1 � f1(x̂1, . . . , x̂N ), . . . , ŷM � fM(x̂1, . . . , x̂N ), as
well as those of any other dependent variable zj = gj (x1, . . . , xN); i.e.,
ẑj � gj (x̂1, . . . , x̂N)(j = 1, 2, . . .).

It is evident that:

• If M < N , measurements will be insufficient to solve the problem.

• If M = N , measurements can be used to derive x̂1, . . . , x̂N (apart from
singular cases), by assuming:

ŷk = ym
k − E

(
ym

k − yk

)
(k = 1, . . . , M)

where E(ym
k − yk) is the possible systematic error related to the measure

of yk , i.e., the “expected value” (or mean value in probabilistic terms) of
the error (ym

k − yk). In this case, it should be a question of solving network

(25) Furthermore, measured values do not reach the centralized computer simultaneously; it is possible
to process them in sequential blocks, which prevents waiting until all are at disposal, by using (at
each step) the last block for updating the estimation.
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equations, simply based on measured data and the knowledge of systematic
errors.

However, because of random measured values (and the risk of temporary
unavailability of some of them), it is efficient to use a number of measurements
M somewhat larger than N (measurement “redundancy”), to reduce by a sta-
tistical compensation the effects of errors affecting the measured values. Such
redundancy should be adequately spread among the different parts of the net-
work. Doing so reduces the effects of errors and helps to overcome the possible
lack of some measurements. Anyway, it is important to detect the presence of
abnormal errors and identify those measurements affected by them, so that they
can be disregarded.

If values of adjustable parameters can be considered known, it holds N = (2n − 1), with
n the number of terminal nodes (see Section 2.1.5a). The n voltage magnitudes v1, . . . , vn,
and (n − 1) phase shifts α21, . . . , αn1 may be assumed as independent variables.

Possible minimal solutions (i.e., with M = N) to be assumed as reference basis for achiev-
ing measurement redundancy, are:

• measurement of the voltage (magnitude) or injected reactive power at each of the
n nodes, and measurement of injected active powers at (n − 1) nodes (if there are
no other measurements, the “load-flow” problem illustrated in Section 2.2 can be
solved);

• measurement of voltage at just one node and measurement of active and reactive
power flows at only one side of (n − 1) branches, chosen in a “tree” configuration
to involve all nodes without any mesh.

However, the former solution implies measurements at all terminal nodes (including load
nodes), whereas the latter can be accepted as a starting point only if several voltage
measurements are added; in fact, to achieve reliable estimations, it is usually necessary
to have a sufficient number of accurate voltage measurements.

At a proper redundancy (M > N ), the estimation procedure may, for instance,
be based on the “weighted” least square method (apart from possible variations,
more or less approximated). In the following, for simplicity, systematic errors
are assumed to be zero, i.e., E(ym

k − yk) = 0 (k = 1, . . . , M). If this is not true,
each generic value ym

k should be replaced by (ym
k − E(ym

k − yk)). In matrix nota-
tion, if x denotes the column matrix constituted by x1, . . . , xN , and so on, the
estimated value x̂ is then defined by the value of x which minimizes a func-
tion like:

J (x) � (ym − f (x))T W(ym − f (x)) [2.5.1]

where W is a (M, M) symmetrical and positive definite matrix, to be properly
chosen.
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Usually it is assumed:
W = V −1

where V � E((ym − y)(ym − y)T ) is (because of the hypothesis E(ym − y) = 0) the
“covariance matrix” of errors related to measurements. This matrix can be assumed known,
based on characteristics of measuring, conversion, and teletransmission systems.

It is often simply assumed that each error (ym
k − yk) (k = 1, . . . , M) is “statistically

independent” of other errors, further than having zero mean; it then follows Vkh �
E((ym

k − yk)(y
m
h − yh)) = 0 for each h �= k, so that the matrix V is diagonal (its generic

element Vkk � E((ym
k − yk)

2) is the “variance” related to the k-th measurement, whereas√
Vkk is the so-called “standard deviation”).

Actually, errors may be instead correlated with each other because of concurring causes.
This is the case, for instance, of measuring devices partially shared, to evaluate active
and reactive powers at a given point of the network.

Furthermore, it often may be assumed that each error has a Gaussian distribution, i.e., a
probability density equal to:

Π(ym
k − yk) = ε−(ym

k
−yk)2/2Vkk

√
2πVkk

(it then results: ∫ +3
√

Vkk

−3
√

Vkk

Π(ym
k − yk) d(ym

k − yk) > 0.99

i.e., the standard deviation
√

Vkk is approximately one-third of the maximum error which,
in probabilistic terms, occurs in more than 99% of the cases).

The convenience of choosing W = V −1 may have several justifications; for instance, by
assuming that errors are statistically independent with a Gaussian distribution, and that
yk = fk(x), the use of the “maximum likelihood” criterion leads to assume, as estimation
x̂, the value of x which maximizes the following product:

Π(ym
1 − f1(x)) · . . . · Π(ym

M − fM(x))

(i.e., the probability density for the set of measured values ym
1 , . . . , ym

M ), and thus mini-
mizes the sum:

(ym
1 − f1(x))2

V11
+ · · · + (ym

M − fM(x))2

VMM

which is just the function defined by Equation [2.5.1] with W = V −1.

Under the hypothesis of convexity for the function J (x), it follows:

0 = dJ

dx
(x̂) = −2(ym − f (x̂))T WH(x̂)
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with H(x) � (df/dx)(x) ((M, N ) matrix), that is the matrix equation:

0 = H(x̂)T W(ym − f (x̂)) [2.5.2]

which is equivalent to N scalar equations, sufficient for deducing x̂1, . . . , x̂N

(apart from singular cases, which are not considered here)(26).
Note that, if y = f (x) = Hox, with Ho constant, the solution of Equation

[2.5.2] is:
x̂ = (HoT WHo)−1HoT Wym

from which ŷ can be derived (ŷ = Hox̂), as well as the other dependent variables.
In this case, moreover:

• the estimation errors concerning the independent variables are defined by:

x̂ − x = (HoT WHo
)−1

HoT W
(
ym − y

)
[2.5.3]

where (ym − y) is the column matrix of errors related to measurements (we
can also derive ŷ − y = Ho(x̂ − x), etc.);

• it holds: {
ym − ŷ = ym − Hox̂ � Aym

Ĵ = J (x̂) � ymT Bym

or even:
ym − ŷ = A(ym − y)

Ĵ = (ym − y)T B(ym − y)

}
[2.5.4]

(26) By means of numerical calculations, the solution x̂ may be derived by the gradient method,
considering that:

grad J (x) =
(

dJ

dx

)T

= −2H(x)T W
(
ym − f (x)

)

Alternatively, the equation 0 = grad J (x) may be solved by the Newton-Raphson method, by
imposing at the generic step:

x(i) = x(i−1) −
[

d grad J

dx

(
x(i−1)

)]−1

grad J
(
x(i−1)

)

or even more simply (disregarding the term with dH/dx, so that (d grad J )/dx ∼= 2H(x)T WH(x)):

x(i) = x(i−1) +
(

[H(x)T WH(x)]−1H(x)T W
(
ym − f (x)

))
x=x(i−1)

As initial value for x, the one adopted in the short-term scheduling can be assumed.
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with:

A � I(M) − Ho(HoT WHo)−1HoT W

B � AT WA = WA = W − WHo(HoT WHo)−1HoT W

}
[2.5.5]

(in fact, AHo = 0 and thus BHo = 0, HoT B = 0, so that Ay = By = 0,
yT B = 0);

• finally, from the hypothesis E(ym − y) = 0 (zero systematic errors), it fol-
lows:

E(x̂ − x) = 0, E(ŷ − y) = 0, . . . [2.5.6]

(i.e., estimation errors have zero mean) and similarly:

E(ym − ŷ) = 0 [2.5.7]

In the general case, assuming that the estimated value x̂ is close to the
“true” value x and thus f (x̂) ∼= f (x) + H(x̂)(x̂ − x) (where f (x̂) = ŷ, f (x) =
y), from Equation [2.5.2] it can be derived:

0 ∼= H(x̂)T W(ym − y) − (H(x̂)T WH(x̂))(x̂ − x)

so that finally the quantities given by Equations [2.5.3] and [2.5.4] can be ob-
tained, provided it is assumed that Ho = H(x̂) (which is a known matrix, once
x̂ has been evaluated); whereas Equations [2.5.6] and [2.5.7] may be accepted if
the dependence of Ho on x̂ (as well as the randomness of the matrix Ho itself,
which is related to the randomness of measured values) is disregarded.

By the adopted approximation, the estimation errors concerning the measured variables
are expressed by:

ŷ − y = Ho(HoT WHo)−1HoT W(ym − y) [2.5.8]

similarly, those concerning other dependent variables (generically defined by the column
matrix z = g(x)) are given by:

ẑ − z = Ko(HoT WHo)−1HoT W(ym − y) [2.5.9]

with Ko � (dg/dx)(x̂).

The quality of estimation may be worsened by the presence of “abnormal”
errors, related to one or more measurements. On the other hand, the possibility
of detecting such error presence and identifying the affected measurements is
based only on measured and estimated values (whereas “true” values still remain
unknown), further than on the knowledge of probabilistic distributions of errors
(ym

k − yk) in normal conditions, i.e., in the absence of abnormal errors. In this
concern, Equations [2.5.4] become useful, as they express the known quantities
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(ym − ŷ) and Ĵ as functions of (ym − y). Then, the probabilistic distributions
of (ym

k − ŷk) and Ĵ in normal conditions can be derived (in a simple way, if
the randomness of Ho is disregarded), and the probability of abnormal errors
affecting one or more measurements can be consequently detected.

If, for instance, in normal conditions:

E(ym − y) = 0, E((ym − y)(ym − y)T ) = V

(with V known) and W = V −1 is assumed, from the first part of Equations [2.5.4]
it is possible to derive — further than Equation [2.5.7], disregarding the random-
ness of Ho —

E((ym − ŷ)(ym − ŷ)T ) = AV AT = V − Ho(HoT V −1Ho)−1HoT

Letting, to shorten the notation, Cy � Ho(HoT V −1Ho)−1HoT , it results:

E(ym
k − ŷk) = 0, E((ym

k − ŷk)
2) = Vkk − (Cy)kk (k = 1, . . . , M)

so that the generic measured value ym
k can be considered less credible as the

larger is the ratio |ym
k − ŷk|/

√
Vkk − (Cy)kk . By means of the second part of

Equations [2.5.4], i.e.,

Ĵ =
M∑
1

k

[
Bkk (ym

k − yk)
2 +

M∑
1

h�=kBkh(ym
k − yk)(y

m
h − yh)

]

the mean value can finally be derived:

E
(
Ĵ
)

=
M∑
1

k

[
Bkk Vkk +

M∑
1

h�=kBkhVkh

]

to which Ĵ should be quite close, in normal conditions. In particular, if it is
assumed that errors (ym

k − yk) are statistically independent (and thus V is diag-
onal), it results:

E
(
Ĵ
)

= tr(BV ) = tr
(
I(M) − V −1Ho(HoT V −1Ho)−1HoT

)

= M − tr
(
V −1Ho(HoT V −1Ho)−1HoT

)

where:

tr
(
V −1Ho(HoT V −1Ho)−1HoT

) = tr
(
HoT V −1Ho(HoT V −1Ho)−1) = N

from which, very simply:
E
(
Ĵ
)

= M − N
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With estimation errors, further to Equation [2.5.6] it can be similarly derived:




E((x̂ − x)(x̂ − x)T ) = (HoT V −1Ho)−1 � Cx

E((ŷ − y)(ŷ − y)T ) = Ho(HoT V −1Ho)−1HoT � Cy

E((ẑ − z)(ẑ − z)T ) = Ko(HoT V −1Ho)−1KoT � Cz

and particularly:




E(x̂i − xi) = 0, E((x̂i − xi)
2) = (Cx)ii (i = 1, . . . , N)

E(ŷk − yk) = 0, E((ŷk − yk)
2) = (Cy)kk (k = 1, . . . , M)

E(ẑj − zj ) = 0, E((ẑj − zj )
2) = (Cz)jj (j = 1, 2, . . .)

Based on the value of Ĵ , it is possible to detect (at the desired probability,
evaluated from probability distributions) the presence of abnormal errors. In case
of positive answer, it is also possible to identify as wrong measurements those
that appear less reliable, in accordance with what was mentioned above. The esti-
mation procedure can be applied again, without considering such measurements,
and so on.

Before concluding, recall the risk of some unavailable measured values, be-
cause of the outage of measuring devices or of a peripheral system for mea-
surement collection or of a teletransmission channel, etc. In extreme situations,
it might happen that M < N . It may then be necessary to compensate for the
missing measurements with information of lower quality (with the possible aid
of the operator), such as:

• transmission from a power plant regarding active and reactive generated
powers;

• deduction of load active powers based on the “conformity” assumption,
evaluating the total active load as the difference between the total generated
active power and the estimated losses;

• substitution of a recently missing value ym
k , with its last estimation ŷk;

and so on, by obviously assuming that the “weight” of such data in J (x) is
reduced; for instance by attributing a sufficiently large variance(27).

With a part of the network that presents a limited redundancy or an uncertain
configuration, all measurements related to it may be disregarded and estimations
made only for the remaining part of the network. In this case, the power flows
between the two parts of the network, if measured, may be considered injections
for that under estimation; otherwise, the disregarded part must be accounted for
by means of a proper equivalent circuit.

(27) On the contrary, if active and reactive powers injected at a given terminal node are definitely
zero (for instance because neither load nor generator is connected to it), we may assume that exact
(zero) injection measurements are available, to which a significant weight in J (x) has to be assigned,
by means of sufficiently small variance values.
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CHAPTER 3

FREQUENCY AND ACTIVE
POWER CONTROL

3.1. SPEED REGULATION OF A SINGLE UNIT
IN ISOLATED OPERATION

3.1.1. Preliminaries

The regulation of the network frequency constitutes one of the essential elements
for the “quality” of operation; excessive frequency variations would not, in fact,
be tolerated by many end-users, nor by auxiliary equipment of the generating
power stations themselves.

As an introduction, let us consider a system with only one synchronous gener-
ator. Since the frequency generated in the network is proportional to the rotation
speed of the generator, the problem of frequency regulation may be directly
translated into a speed regulation problem of the turbine-generator unit. It will
be also assumed, for simplicity, that the system does not include other syn-
chronous machines, compensators, and/or motors; for the case with these devices
considered, refer to the end of Section 3.1.3.

More precisely, if Ωm is the mechanical angular speed (i.e., the effective rotation speed)
of the rotor, and Np is the number of pole pairs, the so-called “electric” angular speed
Ω = ΩmNp may be assumed as a measure of the generated frequency. If Ω is expressed
in rad/sec, the frequency f in Hz is then given by f = Ω/2π .

The hypothesis that the system includes only one generator cannot be consid-
ered realistic for practical cases. However, it makes it possible to dedicate greater
attention to the characteristics of the single generating station in relation to the

173
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fundamental requirements of frequency regulation. This is also important when
examining the role of each station in frequency regulation for multiple generator
systems.

In addition, the problem of one unit speed regulation is of direct interest as
far as start-up and “no-load” operation are concerned, before the machine is
connected to the network, or in operation after disconnection from the network;
in addition to temporary situations, in which the unit is called to operate alone
on a relatively small network.

The constancy of the speed of a turbine-generator unit implies that the mechan-
ical driving power provided by the turbine is exactly counterbalanced by the
active electrical power generated, increased by the mechanical-type losses that
occur in the unit itself.

Actually, this power balance may be altered for various reasons, such as
variations in the driving power (caused by disturbances in the supply system),
and above all, with the machine connected to the network, changes in the electric
power generated resulting from changes in the load demanded by users. If the
turbine valves were blocked, the speed of the unit, i.e., the frequency, would be at
the mercy of the above-listed “disturbances,” and it could easily reach intolerable
values. From here stems the necessity of acting on the turbine valves, to reset
the power balance at the desired frequency and to maintain the frequency, even
during transient operation, within an acceptable range of values.

To study the frequency regulation of only one unit, it is possible to make a
schematic reference to Figure 3.1, where the following notation is used:

• Ω = electrical angular speed, i.e., frequency (according to above);
• Ωrif = “frequency reference”;
• εf � Ωrif −Ω = frequency error;
• β = “output” of the speed governor (β can be for instance the position of

a mechanical device actuated by the governor, such as the rotation angle of
the so-called “regulation shaft,” which by itself acts on the valve positioning
system);

speed
governor

valve
positioning

system

supply
system

and turbine

electric
network and

users

inertia

frictions

mechanical
part
of the unit

Figure 3.1. Speed regulation of an isolated unit: broad block diagram.
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• A = opening of the turbine valves;
• Pm = driving mechanical power;
• Pe = active electric power generated (sum of the power absorbed by users

and of electrical losses);
• Pp = mechanical power losses of the unit;

whereas ua and uc generically indicate disturbances capable of altering the power
balance in accordance with what is indicated above.

In Figure 3.1, the dependent ties of Pm,Pe, and Pp with the speed (i.e., the
frequency) are qualitatively emphasized.

With the block termed “inertia,” it is to observe that the difference Pm − (Pe +
Pp) constitutes the accelerating power and therefore can be written as:

Pm − (Pe + Pp) = JΩm dΩm
dt

[3.1.1]

J being the inertia moment of the unit and Ωm the rotational speed of the rotor
(the torsional-type phenomena discussed in Section 4.3.4 are neglected as, due to
their quickness, they interact very little with frequency regulation). In practice,
the speed variations with respect to the nominal value Ωm nom are, due to the
regulation itself, fairly modest to enable Equation [3.1.1] to be replaced by(1):

Pm − (Pe + Pp) = JΩm nom
dΩm

dt

In terms of electrical angular speed, it can be then deduced that:

Pm − (Pe + Pp) = M dΩ

dt
[3.1.2]

where:

M � JΩ2
m nom

Ωnom
[3.1.3]

is the “inertia coefficient” of the unit, which is the ratio between:

• twice the kinetic energy of the unit at the nominal equilibrium condition,
• the nominal electrical angular speed (the value of Ωnom in rad/sec is 2π

times that of the nominal frequency in Hz; for instance, at a 50-Hz nominal
frequency, it corresponds Ωnom

∼= 314 rad/sec).

(1) In fact, for small variations with respect to a steady-state equilibrium condition at nominal speed,
it can be written that:

Pm − (Pe + Pp) = ∆
(
JΩm

dΩm
dt

)
∼= J∆Ωm

(
dΩm

dt

)
nom

+ JΩm nom∆
dΩm

dt

where (dΩm/dt)nom = 0.
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The coefficient M also can be posed in the form:

M = PnomTa

Ωnom
[3.1.4]

where:

Ta � JΩ2
m nom

Pnom
[3.1.5]

is the so-called “start-up” time (or “acceleration” time) of the unit. The usefulness
of Equation [3.1.4] derives from the fact that the start-up time Ta is normally
included in a relatively narrow range of values (e.g., Ta = 6–10 sec, and more
often Ta ∼= 8 sec), independent of the type of turbine and alternator.

The term “start-up” time can be justified by observing that, if the unit — initially at stand-
still — were subject to the nominal (accelerating) torque Pnom/Ωm nom, it would reach the
nominal speedΩm nom after the time Ta . In such conditions, it in fact results Pnom/Ωm nom =
J dΩm/dt , and thus ∆Ωm = Ωm nom for ∆t = JΩ2

m nom/Pnom = Ta . Therefore the term
“start-up” must be interpreted here in a purely mechanical sense, with reference only to
the inertia of the unit, disregarding problems associated with the supply system (startup
of the thermal part etc., see Section 2.4.2b).

3.1.2. Basic Criteria for the Control Loop Synthesis

Significant characteristics of most operating conditions may be obtained by exam-
ining the behavior of the system in Figure 3.1 for small changes around an
equilibrium condition (at nominal speed). Thus, it is possible to deduce the block
diagram of Figure 3.2, by assuming the following:

∆Pr � ∂Pm

∂A
(s)∆A = variation in the “regulating” (mechanical) power

∆PL = variation in the “demanded power of the unit” due to the
disturbances ua and uc indicated in Figure 3.1

Gc(s) � ∂Pe

∂Ω
(s)

Gg(s) � ∂(Pp − Pm)
∂Ω

(s)

and furthermore:

Gr(s) � ∆β

∆εf
(s) = transfer function of the speed governor

Gv(s) � ∆A

∆β
(s) = transfer function of the valve-positioning system
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Figure 3.2. Block diagram of the system in Figure 3.1 for small variations.

Ga(s) � ∂Pm

∂A
(s) = ∆Pr

∆A
(s) = transfer function of the supply system

and of the turbine (with reference to the only input ∆A)

Gf (s) � Gr(s)Gv(s)Ga(s) = ∂Pm

∂εf
(s) = ∆Pr

∂εf
(s)

If the unit is disconnected from the network (Pe = 0), ∆PL is caused by only the distur-
bance ua , and Gc(s) = 0.
If the unit is connected to the network, the effects of ua instead usually become negligible
with respect to those of uc, and therefore, in such conditions, we may assume ∆Pe =
∆PL +Gc(s)∆Ω . The term ∆PL can be interpreted as a consequence of the disturbances
inside the network, caused by loads etc.

Furthermore, as will be shown, the transfer function Gc depends essentially on the
power-frequency characteristics of loads, whereas Gg,Gv,Ga depend on the specific
type of plant.

To identify the fundamental characteristics of the transfer function Gf (s),
and therefore of the transfer function Gr = Gf /(GvGa) of the regulator, it is
convenient to disregard the usually minor effects of the transfer functions Gg(s)
and Gc(s), which will be considered in Section 3.1.3.

If a zero static error is desired, i.e., ∆εf = 0 under every possible steady-
state condition, it is necessary to include an “integral action” into Gf (i.e., in
the regulator) by realizing a transfer function Gf (s) with one pole at the origin.
However, it is easy to verify that a purely integral Gf (s)— even independently
of its feasibility, for the given Gv,Ga — would not be acceptable. In fact, if it
were Gf (s) = KIf /s, it would be possible to derive the following characteristic
equation for the system in Figure 3.2 (with Gg +Gc = 0):

Ms2 +KIf = 0

which has, assumingKIf > 0, two complex conjugate imaginary roots (s = ±̃ νo,
with νo �

√
KIf /M)(2), so that the system would be at the stability limit, with

(2) The symbol ̃ represents the imaginary unit in the phasors’ plane (see Appendix 1).
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possible persistent oscillations at the “resonance” frequency νo, even in the
absence of external signals(3).

However, a Gf of the “proportional-integral” type looks acceptable, i.e.,

Gf (s) = KIf
1 + sT2

s
[3.1.6]

where T2 is a “time constant” having a proper (positive) value. With such a Gf ,
in fact, the following characteristic equation can be derived:

Ms2 +KIf (1 + sT2) = 0

which has two roots with negative real part, in accordance with the stabil-
ity requirement. More precisely, the two characteristic roots can be written in
the form:

s = (−ζ ± ̃
√

1 − ζ 2)νo

where ζ � ν0T2/2. By assuming for instance that ζ ∈ (0.5,1), i.e., ν0T2 ∈ (1,2),
it is possible to obtain a behavior that is oscillatory but sufficiently damped (with
a “damping factor” equal to ζ ). In such conditions, the “Bode diagrams” (for
s = ̃ ν) of the loop transfer function:

G(s) = Gf (s) 1

sM

are like those indicated in Figure 3.3, with a “cutoff frequency” νt close to the
“asymptotic” one, given by νt = ν2

0T2, whereas the “phase margin” is positive
(as required by stability) and is:

γ = artg(νtT2)

for instance γ ∼= 52◦ for ζ = 0.5(νoT2 = 1, νt = ν0, νt ∼= 1.27νt ), and γ ∼= 76◦
for ζ = 1 (ν0T2 = 2, νt = 2νo, νt ∼= 1.03νt ).

For reasons clarified in Section 3.3.1 (in relation to the case of more than one
regulating unit), one may forsake to have a zero static error in response to the
disturbance ∆PL, by tolerating small deviations ∆εf at steady-state conditions.
Then, the transfer function Gf may be generalized as follows:

Gf (s) = KIf T1
1 + sT2

1 + sT1
[3.1.7]

(3) Actually, it would be possible to expect some stabilizing effects from (Gg +Gc), but it would
not be practical to rely on this effect since it is minor (and unpredictable, because of uncertainties
in the characteristics of the loads). In practice, the stability would be easily compromised by the
presence of various response delays which have not been considered here.
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Figure 3.3. Frequency response of the transfer function of the loop.

with T1 fairly large to have at steady-state conditions:

∆εf = ∆Pr

KIf T1
= ∆PL

KIf T1

sufficiently small, leaving the behavior of G around the “cutoff” (particularly
the values of νt and γ ) practically unchanged as indicated in Figure 3.3 (under
such an assumption, Equation [3.1.6] can be viewed as a particular case, for
T1 → ∞).

The static gain:

Kfp � Gf (0) = ∆Pr

∆εf
(0) =

(
−∆Pr
∆Ω

(0)
)
∆Ωrif=0

= KIf T1

which is equal to the ratio, at steady-state conditions, between the variation
of regulating power (i.e., of load power) and the corresponding variation of
frequency, with the sign changed, is termed “(permanent) regulating energy due
to the regulation” of the unit. (This is actually energy per radian, or even, by
premultiplying it by 2π , energy per cycle in units of MW/Hz.)
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On the other hand, the ratio between the relative variations of frequency and
power, with the sign changed, is:

bp �
(−∆Ω/Ωnom

∆Pr/Pnom
(0)
)
∆Ωrif=0

= Pnom

ΩnomKfp

which is termed “(permanent) speed droop due to the regulation” of the unit.
In an analogous way, by assuming s = ∞ (instead of s = 0) into Equa-

tion [3.1.7], the transient regulating energy may be defined:

Kft � Gf (∞) = ∆Pr

∆εf
(∞) =

(
−∆Pr
∆Ω

(∞)
)
∆Ωrif=0

= KIf T2

as well as the transient (speed) droop:

bt �
(−∆Ω/Ωnom

∆Pr/Pnom
(∞)

)
∆Ωrif=0

= Pnom

ΩnomKft

related to the previous definitions by Kft = KfpT2/T1, bt = bpT1/T2.
On the basis of these definitions, the transfer function in Equation [3.1.7] may

thus be rewritten as:

Gf (s) = Kfp
1 + sT2

1 + sT1
= Kft

1 + sT2

T2

T1
+ sT2

or even:

Gf (s) = Pnom

Ωnombp

1 + sT2

1 + sT1
= Pnom

Ωnom

1 + sT2

bp + sT2bt
[3.1.8]

whereas Equation [3.1.6] corresponds to the particular case T2/T1 = bp = 0; fur-
thermore, it can be derived:




νo =
√
Kft

MT2
=
√

1

btTaT2

ζ = 1

2

√
T2Kft

M
= 1

2

√
T2

btTa

νt ∼= νt = Kft

M
= 1

btTa

γ = artg(νtT2) ∼= artg
(
T2Kft

M

)
= artg

(
T2

btTa

)

where Ta is the start-up time defined by Equation [3.1.5].
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It is clear that, for given values of bt and T2, a permanent droop bp > 0
has a stabilizing effect, since the pole s = −1/T1 = −bp/(T2bt ) of Gf (s) corre-
sponds, in terms of frequency response, to a phase delay equal to 90◦ if bp = 0,
and smaller if bp > 0 (refer also to Fig. 3.3). However, as previously noted,
normally T1 is assumed to be fairly large, and hence we have T1 � T2 (that is
bp  bt : for example bp = 0–5%, bt = 25%–40%), so that the cutoff frequency
results much greater than 1/T1, and the above-mentioned stabilizing effect may
be considered negligible.

In particular, the response to the disturbance ∆PL is then defined by:

∂Ω

∂PL
= − 1

Gf + sM
that is, in relative terms:

∂Ω/Ωnom

∂PL/Pnom
= − bp + sT2bt

1 + s(bpTa + T2)+ s2btTaT2

where bpTa = T2/(νtT1) T2, so that the most interesting parameters, from
the speed of response point of view (besides stability), remain bt and T2. To
emphasize the effect of such parameters, the trends of ∆Ω/Ωnom following a step
change in the load power (having an amplitude ∆PL) are reported in Figure 3.4
as a function of time, for different values of T2/(btTa)(= 4ζ 2 = νtT2

∼= tgγ ) and
bp = 0. Nonzero, modest-sized values of the permanent droop may practically
modify only the final part of the transient, through which ∆Ω/Ωnom tends toward
the steady-state value (−bp∆PL/Pnom).

Note that, based on the above discussion (see also Fig. 3.4), it would appear that the
speed of response of the system could increase at will, with a satisfactory phase margin,
by assuming suitably small values of bt and T2. In practice, however, it is necessary

Figure 3.4. Response of the relative frequency error (∆Ω/Ωnom) to a step of
load variation (∆PL), under the assumption bp = 0.
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to bear in mind that, for values of νt that are not sufficiently small, the effect of other
phenomena (up to now neglected) related to the response delays of the valves and supply
system, other than those of the regulator itself, would lead to an unavoidable worsening
of the phase margin, with a negative impact on the stability. In other words, a Gf (s)
of the type considered up to now can be realized for s = ̃ ν only in a narrow band of
frequencies ν, such as ν < ∼0.5 rad/sec.(4)

In some cases (e.g., hydraulic plants with Pelton turbines), the destabilizing effect of such
phenomena increases so much for increasing values of the cut-off frequency, that one
is forced to maintain the latter within well-defined limits. Having chosen a reasonable
value of νt , or equivalently of νt , it is possible to derive bt and T2 in a very simple
manner (bt = 1/(νtTa), T2 = tan γ /νt ). Usually it may be assumed, for example, that
νt ∼= 0.3 rad/sec, Ta = 8 sec, so that it is necessary that bt ∼= 40%. Assuming T2

∼= 4 sec,
it is possible to have a phase margin γ ∼= 50◦, apart from negative contributions caused
by the above-mentioned delays.

In addition to the above considerations, it also must be remembered that, in general, large
and not sufficiently slow load variations cannot be tolerated by the plant. They would
cause, for example, excessive overpressures or underpressures in hydraulic plants and
heavy thermal stresses (and/or unacceptable operating conditions for the boiler) in steam
plants. As a consequence, each plant is generally protected (intrinsically or through proper
devices), so that the regulating power cannot increase or decrease too rapidly. It is evi-
dent that an excessive gain of the regulator, achieved to increase the speed of response,
would cause the intervention of these protections for (even moderate) load disturbances,
making unreliable the advantages foreseen based on the linearized analysis. Moreover, the
mechanical stresses in the elements driven by the regulator could be increased intolerably.
On the other hand, the analysis should also account for the effects of possible “insensi-
tivities” in the regulator and in the elements controlled by it, which will be discussed in
the following.

Finally, the static behavior of the regulation results defined by ∆Pr =
Gf (0)∆εf , that is by:

∆Pr = Kfp(∆Ωrif −∆Ω) = Pnom

Ωnombp
(∆Ωrif −∆Ω)

where ∆Pr = ∆PL (recall Fig. 3.2, with Gg +Gc = 0).
This corresponds, for large variations, to a static characteristic as indicated in

Figure 3.5, where Prif is the value of Pr for Ω = Ωrif. For varying Kfp (i.e., bp),
the characteristic rotates around the point (Prif, Ωrif), whereas for varying Prif or
Ωrif, the characteristic is simply translated in the direction of the axis Pr or Ω ,
respectively. However, if bp = 0, it simply follows Ω = Ωrif, and the value of
Prif has no effect; similarly, if it were bp = ∞, it would be Pr = Prif independent
of Ωrif.

(4) If the variable ν is regarded as the “inverse of a time,” it may be clearly expressed in sec−1 (as in
Figs. 3.15, 3.25, etc.). To keep the meaning of “frequency,” it is sufficient to replace “sec−1” with
“rad/sec.”
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slope

Figure 3.5. Static characteristic for a regulating unit.

Usually, it is convenient to keep the frequency reference “blocked” at the value
Ωrif = Ωnom and use Prif (power reference) as a further input of the regulator,
so that, for bp �= 0, it is possible to adequately set the static characteristic in the
plane (Pr,Ω). This opportunity is evident in a system with more than one unit.
By acting on the power references we can obviously realize the desired sharing
of active powers in the operation at nominal frequency (active dispatching) and,
as illustrated in Section 3.3.2, the frequency regulation itself, through the contri-
bution of the different units. The regulation scheme must be able to accept, in a
proper position, the signal Prif for each unit (see Section 3.2), and the previous
equation must be rewritten as:

∆Pr = ∆Prif +Kfp(∆Ωrif −∆Ω) = ∆Prif + Pnom

Ωnombp
(∆Ωrif −∆Ω) [3.1.9]

Instead of acting on Prif, it would be possible to act on Ωrif, since a varia-
tion ∆Ωrif is equivalent to a (∆Prif)eq = (Pnom/(Ωnombp))∆Ωrif. However, by
so doing, the value of bp also should be considered, and variations of it (e.g.,
motivated by local operating requirements for the unit) would act as undesired
power perturbations.

Actually, the definition of the (regulating) power Pr for large variations does not present
difficulties if the driving power Pm depends only on the opening A of valves, so that it
can be assumed Pr = Pm. On the contrary, it is necessary to intend that Pr is the driving
power, without considering the further contributions (assumed as separable) independent
of the opening of valves (see Fig. 3.1).

In addition, for simplicity of representation, it is assumed here as well as later that the
static characteristic is linear, i.e., that Kfp (or bp) is constant in the full variation range
[0, Pnom] of the regulating power. Generally, the static characteristic may be nonlinear,
above all because of the nonlinearities present, and not adequately compensated, in the
valve-positioning system and supply system. For small variations, this fact corresponds
to different values of the permanent droop, depending on the operating point.
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3.1.3. Influence of the Natural Characteristics of the Unit
and Characteristics of Network and Loads

Before concluding, it may be useful to provide general information on the trans-
fer functions:

Gg(s) � ∂(Pp − Pm)
∂Ω

(s) (which accounts for the “natural”

characteristics of the unit)

Gc(s) � ∂Pe

∂Ω
(s) (which accounts for the characteristics of the electric

network and of loads)

the effects of which have been neglected in the analysis presented above.

From Figure 3.2, it is evident that, in the response ∆Ω to a load disturbance ∆PL, the
effects of these transfer functions are added to those of Gf (s), since:

∂Ω

∂PL
= − 1

Gf +Gg +Gc + sM [3.1.10]

or alternatively, in relative terms:

∂(Ω/Ωnom)

∂(PL/PL nom)
= − 1

Ωnom

Pnom
(Gf +Gg +Gc)+ sTa

For this reason, the term “permanent regulating energy” is applied to the static gains
Gg(0), Gc(0), as already done for Gf (0). More precisely, the gain Gg(0) is termed
“natural permanent regulating energy of the unit,” and Gc(0)— which essentially depends
on the characteristics of the users — is called “permanent regulating energy of the load,”
whereas the sum:

E � (Gf +Gg +Gc)(0)

is the total permanent regulating energy.

Correspondingly, the dimensionless quantities bg � Pnom/(ΩnomGg(0)), and bc �
Pnom/(ΩnomGc(0)) can respectively be called “natural permanent droop of the unit” and
“permanent droop of the load,” whereas the “resulting permanent droop” is given by:

b � Pnom

ΩnomE
=
(

1

bp
+ 1

bg
+ 1

bc

)−1

The transfer function Gg(s) depends on the type of plant (particularly, of tur-
bine) and has usually modest effects, similar to those of the static gain Gg(0). On
the other hand,Gg(s) appears in the feedback path of 1/(sM ) (see Fig. 3.2), and it
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originates a closed-loop transfer function 1/(Gg(s)+ sM). This function may be
approximated by 1/(Gg(0)+ sM), as the cutoff frequency of this loop (the value
of which is approximately Gg(0)/M = 1/(bgTa)) is sufficiently smaller than the
critical frequencies of Gg(s) (see for instance (∂Pm/∂Ω)(s) for an hydroelec-
tric plant, in Section 3.2.2). The value of Gg(0), which can be deduced by the
“static” mechanical characteristics of the unit with turbine valves blocked, has a
relatively modest impact, as it corresponds to a very large natural droop (with
respect to the usual values of bp); for instance, bg = 200%–1000%, according to
the type of turbine and the operating point. As a first approximation, the transfer
function Gg(s) can be neglected without an appreciable error.

For reasons similar to those expressed above, the transfer function Gc(s) also
may be approximated by accounting for the slower components that characterize
the response of ∆Pe to ∆Ω . In particular, by neglecting the electrical-type tran-
sients, the electric part of the system can be represented by the same equations
that hold at steady-state (i.e., in terms of phase variables: sinusoidal opera-
tion of the positive sequence), but assuming that the frequency Ω is (slowly)
varying.

Despite these approximations, the determination of Gc(s) proves to be gen-
erally very complex, not only because of the large number (and the variety) of
loads, but also because the function Gc(s) can be viewed as the result of strictly
interacting phenomena.

In effect, a variation in the frequency Ω , with no changes in the system
configuration, can be translated into:

• a variation of the reactances in the electrical part;
• a variation of the slip for the asynchronous motors;

and it causes a variation in voltages and currents, with consequences on active
powers absorbed by loads and on losses, i.e., on the power Pe, which is their sum.
All this is further complicated by the overlapping effects of the speed transients
of electromechanical-type loads and the voltage regulations (more generally of
the v/Q control; see also Section 5.6.1).

Fortunately, the effects of Gc(s) usually may be considered modest with
respect to those of Gf (s), so that the uncertainties on Gc(s) are not a criti-
cal problem.

If, for simplicity, the variation of reactances is not considered, the active power Pcj

absorbed by the generic load can dynamically depend:

(1) on the voltage vcj applied to it, and on the frequency Ω;

(2) only on the voltage vcj .

The former case is typical for electromechanical-type loads that include asynchronous
motors. For them, the power Pcj (as well as the generated mechanical power Pmcj ) can be
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considered a function of vcj and the relative slip σ ′ � (Ω −Ωcj )/Ω , where the electrical
speed of the rotor Ωcj dynamically depends on the Pmcj itself, further than on the resis-
tant mechanical power. (Refer to the end of this section for synchronous motors and
compensators.)

The latter case is typical for loads of the “static” type (i.e., without rotating parts) that
can be assimilated to purely electrical equivalent circuits with Pcj function of only vcj .
Actually, it is also possible to consider within this category some electromechanical-type
loads, e.g., including dc motors, for which Pcj and Pmcj depend on the speed, which
however is dynamically related to Pmcj itself and to the resistant mechanical power, and
is not affected by the frequency Ω .

After these premises, a frequency variation generally causes voltage variations in the
whole system, and consequently variations in the absorbed powers also of (2)-type loads,
unless their voltages are not suitably regulated. This clearly holds even if reactances
remain unchanged, provided that the system includes (1)-type loads as well.

In general, the transfer function Gc(s) can be determined by using a block dia-
gram such as the one in Figure 3.6. This representation assumes that the “electri-
cal part” of the system (which hasΩ, . . . ,Ωcj , . . . as inputs, and Pe, . . . , Pmcj , . . .

as outputs) includes also the v/Q control. Considering the further possible inputs
(generically indicated by dotted lines) constant, the following equation can be
then written, for small variations:




∆Pe
...

∆Pmcj
...


 = H




∆Ω

...

∆Ωcj
...




mechanical part of
the generator

electrical part of
the generator

resistant power

network
and

“static”
users

electrical
part

mechanical
part

of the generic
“electro-
mechanical”
user

Figure 3.6. Effect of network and loads on the relationship between the gener-
ated power and frequency: broad block diagram.
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where H is a proper transfer matrix (or even, more simply, a constant matrix
if the v/Q control can be approximately accounted for by means of algebraic
equations).

For the mechanical part of the generic load (of the electromechanical type), it
may be assumed that(5):

∆Pmcj = (Dmj + sMcj )∆Ωcj [3.1.11]

where Dmj accounts for the dependence of the mechanical resistant power on
Ωcj , and where Mcj is the “inertia coefficient” of the load (electric motor and
mechanical load driven by it) similar to the coefficient M of the generating unit.

From the above equations, eliminating variations ∆Pmcj , ∆Ωcj , it is possi-
ble to derive the function Gc(s) � (∂Pe/∂Ω)(s). Note that, in the absence of
electromechanical users, the solution is simply Gc(s) = H , with H a scalar.

The problem is noticeably simplified if:

• the variations of the electrical losses (caused by variations of the frequency
Ω) are neglected;

• it is assumed that the loads are supplied in “radial way” from nodes having
a constant voltage (amplitude) vj , as indicated in Figure 3.7.

Actually, the nodes at constant voltage may be suitable “equivalent” ones; the
same applies for the parameters of the links between these nodes and the respec-
tive loads.

Under such conditions, it results (with the symbols of Figure 3.7) ∆Pe =∑
j ∆Pj = ∑

j ∆Pcj and thus:

Gc(s) =
∑
j

Gcj (s) [3.1.12]

where the single Gcj (s) � (∂Pcj /∂Ω)(s) can be evaluated separately in a
trivial way.

(equivalent)
link

load

( j = constant)

Figure 3.7. Basic example of an electrical system.

(5) It is assumed that the mechanical load is not defined by further parameters, e.g., concerning elastic
couplings etc.
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Figure 3.8. Example of an equivalent circuit in the case of “static” load.

For instance, in the case of a “static” load that may be viewed as an impedance
(R + jΩL), by representing the link as a simple series impedance jΩL0, it can
be obtained (see Fig. 3.8):

Pcj = v2
jR

R2 +Ω2(L0 + L)2

from which, assuming vj to be constant and indicating by the superscript “o” the
values corresponding to the operating point:

Gcj (s) = −aP
o
cj

Ωo
[3.1.13]

(independently of s) with:

a � 2µ2

1 + µ2
[3.1.14]

having set, for brevity, µ � Ωo(L0 + L)/R. The dependence of GcjΩ
o/P ocj =

−a on µ is represented by a dotted line in Figure 3.11.
By recalling Equations [3.1.10] and [3.1.12], it can be concluded that the load

examined contributes, in a negative way, only to the total (permanent) reg-
ulating energy; nevertheless this contribution, which is exclusively related to
the variations in the reactances, usually is negligible with respect to Gf (0) =
Pnom/(Ωnombp) (recall Equation [3.1.8]). For instance, if all the static loads were
of the present type with the same value of µ, and it were Ωo = Ωnom and∑
j P

o
cj = 0.4Pnom, it would follow

∑
j Gcj (0)/Gf (0) = −0.4abp, which is very

small in absolute value (intending, of course, that these last sums are extended
only to the static loads).

In the case of an electromechanical load with an asynchronous motor, by
adopting the well-known equivalent circuit indicated in Figure 3.9a (see also
Section 5.6.2), and representing the link by a simple series impedance jΩL0, it
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Figure 3.9. Case of an electromechanical load with an asynchronous motor:
(a) example of equivalent circuit; (b) reduction of the equivalent circuit.

follows (see Fig. 3.9b) that:

Pcj =
v′2
j

R

σ ′(
R

σ ′

)2

+Ω2(L′
0 + L2)2

, Pmcj = (1 − σ ′)Pcj

where:

v′
j � vj

Lm

L0 + L1 + Lm , L′
0 � (L0 + L1)Lm

L0 + L1 + Lm
whereas σ ′ � (Ω −Ωcj )/Ω is the relative slip.

It can be then derived, by assuming vj to be constant:

∆Pcj =
(
−a∆Ω

Ωo
+ (1 − a)∆σ

′

σ ′o

)
P ocj

where a is given by Equation [3.1.14], but now intending that µ � Ωo(L′
0 +

L2)/(R/σ
′o) (note that, for ∆σ ′ = 0, there would be only the term −a =

∆ΩPocj/Ω
o, resulting from the only variation of reactances); and furthermore:

∆Pmcj = (1 − σ ′o)∆Pcj − P ocj∆σ
′



190 CHAPTER 3 FREQUENCY AND ACTIVE POWER CONTROL

By considering that ∆σ ′ = ((1 − σ ′o)∆Ω −∆Ωcj )/Ω
o, it can be then derived

that:
∆Pcj = H0∆Ω −H3∆Ωcj , ∆Pmcj = H1∆Ω −H2∆Ωcj

with: 


H0 �
(

1 − a
σ ′o − 1

)
P ocj

Ωo

H1 � (1 − σ ′o)
(

1 − a
σ ′o − 2

)
P ocj

Ωo

H2 �
(

1 − a
σ ′o − 2 + a

)
P ocj

Ωo

H3 � 1 − a
σ ′o

P ocj

Ωo

Furthermore, the relationship between ∆Pmcj and ∆Ωcj can be represented using
Equation [3.1.11], where the inertia coefficient Mcj is (obviously) proportional
to the electrical speed Ωo

cj = (1 − σ ′o)Ωo at the operating point, as given by:

Mcj = (1 − σ ′o)Mcjo

in which Mcjo is the inertia coefficient evaluated for Ωo
cj = Ωo, i.e., for opera-

tion at null slip.
The previous equations are summarized in Figure 3.10, finally leading to the

following transfer function:

Gcj (s) = H0 − H1H3

H2 +Dmj + sMcj

which can be written in the form:

Gcj (s) = Gcj (0)+
sM∗

cj

1 + sTcj
[3.1.15]

Figure 3.10. Case of an electromechanical load: block diagram.
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in which:

Gcj (0) = H0 − H1H3

H2 +Dmj

and furthermore:

Tcj � Mcj

H2 +Dmj
, M∗

cj � H1H3

(H2 +Dmj )2
Mcj

If it is assumed that:

Dmj �
P omcjα

Ωo
cj

= P ocjα

Ωo

then the dimensionless quantities Gcj (0)Ωo/P ocj , TcjP
o
cj /(McjoΩ

o),M∗
cj /Mcjo can

be determined starting from a (or from µ; see Equation [3.1.14]), α and σ ′o;
see for example Figure 3.11, for the case α = 2, σ ′o = 1%. The value of α is
independent of the operating point if it is assumed that the resistant mechanical
power is, apart from a possible constant, proportional to (Ωcj )

α . Usually α ∼= 1–3,
depending on the type of mechanical load.

Moreover, the inertia coefficient Mcjo can be put in the form:

Mcjo = Pcj nomTac

Ωnom

electromechanical load

“static” load

Figure 3.11. Parameters of the transfer function Gcj (s) for varying µ (see text).
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(in all similar to Equation [3.1.4]), where the “start-up time” Tac , which is quite
variable from case to case, is much smaller than that of generating units. It may
be, for example, in the range of 0.5–6 seconds or smaller.

By accounting for the previous relationships, it is easy to ascertain that usually:

• the time constant Tcj is smaller than Tac (e.g., Tac /100) and equal to hun-
dredths of a second or less; within the frequency regulation problems,
Equation [3.1.15] may be approximated by:

Gcj (s) ∼= Gcj (0)+ sM∗
cj [3.1.16]

• the values of Gcj (0),M∗
cj are slightly smaller than Dmj ,Mcjo , respectively.

By recalling Equations [3.1.10] and [3.1.12], the effects of the considered load
can be then summarized into as:

• an increase, slightly smaller than Dmj , of the total (permanent) regulat-
ing energy;

• an increase, slightly smaller than Mcjo , of the resulting inertia coefficient.

If it is assumed that all the electromechanical loads are of the type discussed
above, with the same values α

′ � αP ocj /Pcj nom and Tac , and Ωo = Ωnom and∑
j Pcj nom = 0.4–0.6Pnom:

• the increment in the regulating energy is slightly smaller than:

∑
j

Dmj = (0.4–0.6) α′ Pnom

Ωnom

and thus much smaller than Gf (0) = Pnom/(Ωnombp);
• the increment in the inertia coefficient is slightly smaller than:

∑
j

Mcjo = (0.4–0.6) Tac
Pnom

Ωnom

and thus small, even if not negligible, with respect to M = TaPnom/Ωnom

(e.g., an increase of approximately 15%–20% for Tac
∼= 3 sec, Ta ∼= 8 sec).

On the contrary, the genericGcj (s)may significantly change in some (singular)
cases, particularly for relatively large values of µ, for which (Fig. 3.11) Gcj (0)
and M∗

cj may be further reduced, and Tcj may no longer be negligible (in qualita-
tive terms, the effect of Tcj is to make the increment of the inertia coefficient in
the faster parts of the transients practically zero, because of Equation [3.1.15]).
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Up to now, it was assumed that the system does not include other synchronous machines
apart from the considered generator. If an electromechanical load includes a synchronous
motor, it may be assumed, because of the synchronizing actions (Section 1.6):

∆Ωcj = ∆Ω

apart from relatively fast electromechanical oscillations, which, for practical purposes,
do not influence the frequency regulation. Because of Equation [3.1.11] (neglecting the
electrical losses variations), the effects of the load can be translated into an increase Dmj

of the total regulating energy and an increase Mcj of the inertia coefficient.

Similar considerations hold for the case of a synchronous compensator, for which we may
assume Dmj = 0.

3.2. TYPICAL SCHEMES FOR SPEED GOVERNORS

3.2.1. Preliminaries

The speed regulator (currently called “governor”) of a given unit must be con-
sidered necessary equipment of the unit itself, not only for its participation in the
frequency regulation, but also for requirements of a local nature, such as speed
regulation during the phases preceding the parallel connection to the network
(startup and no-load operation), or after a disconnection from the network, and,
generally, for the control of the driving power supplied by the turbine, e.g., to
follow the generation schedule.

The speed governor is thus also called “turbine (or machine) regulator” or
“primary frequency regulator,” since it constitutes a necessary equipment for the
frequency regulation.

Based on the discussions of Section 3.1.2, the primary regulator can be gen-
erally required to follow not only the frequency set point, but also the power
set point, in such a way to realize, through the control of the driving power, a
static characteristic as indicated in Figure 3.5. Therefore, if it is not imposed that
the permanent droop is zero (bp = 0), the primary regulator can no longer be
considered purely a frequency regulator (and by imposing bp = ∞, it is even
possible to use it as a purely power regulator).

In whichever manner the primary regulator is used, it is clear that its effects
on the driving power are influenced strictly by the characteristics of the valve-
positioning system, the supply system, and the turbine (recall Fig. 3.1), which
must then be considered in regulator synthesis.

The objectives of this section are to:

• summarize the characteristics of typical hydroelectric and thermal plants
with particular reference to the frequency range relevant to regulation;

• illustrate the most common schemes of primary regulators and their respec-
tive transfer functions.
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In generic terms, by recalling Section 3.1, it is useful to consider that:

• the cutoff frequency νt of the primary regulation may be, for example,
within the range of 0.3–0.5 rad/sec, whereas larger values of νt are practi-
cally unacceptable for the reasons above (e.g., risks of instability, excessive
stress);

• at least within the frequency range (0, νt ), it is convenient to realize a
transfer function Gf (s) � (∂Pm/∂εf )(s) of the type [3.1.8], i.e.,

Gf (s) = Pnom

Ωnombp

1 + sT2

1 + sT1
= Pnom

Ωnom

1 + sT2

bp + sT2bt

with T2 approximately 3–5 sec, and T1 = btT2/bp significantly larger (e.g.,
15–25 sec if bt = 25% and bp = 5%, or even T1 = ∞ if bp = 0).

Such conclusions have come about by assuming that the system includes only
a single generating unit. However, they can be generically extended to more than
one unit, as presented in Section 3.3.1.

3.2.2. Case of Hydrounits

(a) Dependence of the Driving Power on the ‘‘Output’’
of the Speed Governor
In the case of a hydroelectric unit, the relationship between β (“output” of
the speed governor) and Pm (driving power) can be generically represented by
Figure 3.12.

The rotation angle of the so-called “regulation shaft,” that governs the turbine
gate by means of an adequately powered positioning system, may be represented
as variable β.

Particular reference will be made to the case of “high-head” plants (equipped with Pelton
turbines), which is the most interesting case when considering the control of the driving

hydraulic
system

gate
governing

system

gate
and turbine

deviators'
positioning

system

partiali-
zation

law

Figure 3.12. Dependence of the driving power on the output of the primary
regulator, for a hydroelectric unit: broad block diagram.
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close open

needle
injector

turbine

deviator

close open

regulation shaft

Figure 3.13. Example of the system that governs the gate and the deviators, for
the case of a Pelton turbine.

power and the participation to the frequency regulation. In such a case, the gate is generally
constituted by several injectors and the respective needles, actuated in parallel (through
the same number of servomechanisms) by the regulation shaft. In the following, reference
will be made to only a single “equivalent” pair injector-needle. For a more complete
analysis, which is of interest for large variations, it is, however, necessary to consider the
control of the deviators (directly linked to the regulation shaft, to avoid response delays)
and “partialization” of the driving power when the deviators intercept the respective jets
(refer to Figs. 3.12 and 3.13).

“Opening” A may be assumed to be the “useful cross section” of the water
flowing into the turbine. The other variables indicated in Figure 3.12 are:

Q = water flow (volume per unit of time) at the gate output;

H = water energy per unit of weight within the distributor.

The operation of the plant also depends on the water level in the supply
reservoir, basin, or tank, and for the case of reaction turbines on the level at the
water discharge. In the following, it will be assumed that such levels are constant,
thus neglecting their variations with Q and with (possible) inflows and spillages.

The transfer function Gv(s) � (∆A/∆β)(s) (see Fig. 3.2), which specifically
accounts for the above-mentioned servomechanism, may be considered to be:

Gv(s) = Kv

1 + sTv [3.2.1]

where:

• the static gain Kv � Gv(0) may depend on the operating point, if the static
characteristic (β,A) is nonlinear;

• the time constant Tv may be, for example, 0.1–0.3 seconds.
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For large variations, it also is necessary to consider that the speed of the
servomechanism is actually limited, in the opening and the closing phase, to
avoid excessive pressure stresses in the hydraulic plant.

The nonlinearity of the static characteristic (β,A) also can be achieved intentionally,
through the use of proper “cams,” e.g., to make Kv = dA/dβ smaller for small opening
values so to reduce automatically Gf (0) in the operation at “no-load”; see Figure 3.2
and the following footnote(7) (Section 3.3.1). The dependence of A on β may present an
“insensitiveness” (which may not always be negligible), which in terms of β can be, for
example, 0.2%–0.5% with respect to the value that corresponds to the full opening.

With reference to the block “gate and turbine,” it may be assumed that Pm and
Q depend on A, Ω , H according to algebraic-type relationships, i.e., without any
dynamic delay. For small variations around a given operating point, characterized
by the superscript “o,” it can be then generally written:

∆Pm = P om
(
KPA

∆A

Ao
+KPΩ ∆Ω

Ωo
+KPH

∆H

Ho

)
[3.2.2]

∆Q = Qo
(
KQA

∆A

Ao
+KQΩ ∆Ω

Ωo
+KQH

∆H

Ho

)
[3.2.3]

with proper values (generally variable with the operating point) of the coefficients
KPA,KPΩ , etc. Note that ∆H/Ho also represents the relative pressure variation
in the gate if the kinetic energy per unit of weight is, in H , negligible with
respect to the potential energy, as it occurs, for instance, in plants equipped with
Pelton turbines.

If it is assumed that:
Pm = ηγQH

where:

η= turbine efficiency
γ = water specific weight

and the variations of η and γ are considered as negligible, Equation [3.2.2] can
be substituted by:

∆Pm

P om
= ∆Q

Qo
+ ∆H

Ho

(whereas KPA = KQA,KPΩ = KQΩ,KPH = KQH + 1).

The hypothesis that∆η = 0 is acceptable if the operating point is close to that at maximum
efficiency. With Kaplan turbines, it is possible to reduce the efficiency variations by acting
not only on the opening of the gate, i.e., on A, but also on position (B) of the blades. In
such a case, it is necessary to simultaneously account for the effects of A,B on Pm,Q.
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The blades control may be subjected to that of the gate, or the two controls may be
realized in parallel, by two distinct, adequately interacting servomechanisms.

Furthermore, in the case of a Pelton turbine, it can be stated that, per weight
unit, the energy H is converted into the kinetic energy (Q/A)2/(2g) of the
outflowing jet, where g is the acceleration due to gravity (the potential energy
of the jet is zero, assuming that the pressures are referred to the atmospheric
pressure, and the heights to that of the gate). As a result:

Q = A√2gH

and Equation [3.2.3] becomes:

∆Q = Qo
(
∆A

Ao
+ 1

2

∆H

Ho

)

(KQA = 1, KQΩ = 0, KQH = 1/2).
Finally, regarding the block “hydraulic system,” the dynamic dependence of

H on Q can be generally expressed for small variations by the equation:

∆H = −Zw(s)∆Q [3.2.4]

where Zw(s) is the “impedance” of the hydraulic system as viewed from the gate.
Once Zw(s) has been derived, Equations [3.2.2], [3.2.3], and [3.2.4] allow the

derivation of the transfer function Ga(s) � (∂Pm/∂A)(s), which can be usefully
put into the form:

Ga(s) = KPA
P om

Ao

1 − a1
Qo

Ho
Zw(s)

1 + a2
Qo

2Ho
Zw(s)

[3.2.5]

where: 

a1 � KQAKPH

KPA
−KQH

a2 � 2KQH

In the case of a Pelton turbine, it then holds that a2 = 1, and KPA = a1 = 1 if the
efficiency variations are negligible; in the other cases, the values of KPA, a1, a2

are slightly different from unity. Moreover:

∂Pm

∂Ω
(s) = P om

Ωo


KPΩ −

KPHKQΩ
Qo

Ho
Zw(s)

1 + a2
Qo

2Ho
Zw(s)




which contributes, usually in a modest way, to the Gg(s) (Fig. 3.2).
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reservoir
surge tank

pressure
tunnel

penstock

Figure 3.14. Example of a “high-head” hydraulic system. The scheme does not
respect the geometrical proportions. Furthermore, the section variations in the
single parts are not represented, particularly for the surge tank.

As a first approximation, the impedance Zw(s) can be derived:

• assuming that the gate is supplied, through only the penstock, by a reservoir
with a constant level (with reference to the typical scheme of Fig. 3.14, it
is assumed Hv = Hi = constant, thus ignoring the presence of the pressure
tunnel and of the surge tank);

• neglecting the head losses in the penstock and the compressibility of the
water (moreover, supposing as rigid the walls of the penstock).

Using generally acceptable simplifications (and by symbols that are known or
defined in the figure), it is possible to write:

Hv −H = Lc sinα + pv − p
γ

Moreover, because of the assumptions made:

γAcLc sinα + (pv − p)Ac = γAcLc

g

d(Q/Ac)

dt

where the left side term, resulting from the weight of the water column in the
penstock and the difference between the mean pressures at the terminal sections,
constitutes the accelerating force that acts on the column itself, the mass of which
is (γLcAc)/g, and the speed of which is Q/Ac.

It then follows:

Hv −H = Jc dQ

dt
[3.2.6]
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thus Ho = Hv , and furthermore:

Zw(s) = sJc [3.2.7]

where Jc � Lc/gAc is the so-called “inertance” of the penstock. It has been
assumed, for simplicity, that the penstock is cylindrical. Generally, if the section
Ac depends on the abscissa x, the inertance is given by Jc = 1/g

∫ Lc
0 dx/Ac(x).

Substituting into Equation [3.2.5], it can be finally obtained:

Ga(s) = Ka 1 − a1sTw

1 + a2s
Tw

2

[3.2.8]

where a1, a2 have the values already seen (equal to one or almost so), whereas:

Ga(0) = Ka � KPA
P om

Ao
∼= P om

Ao
, Tw � Qo

Ho
Jc

In terms of frequency response, the magnitude of Ga(̃ν) then increases from Ka
(for ν = 0) to 2a1Ka/a2 (for ν → ∞), whereas the phase delay increases from
0◦ to 180◦, passing through the value 90◦ at the frequency ν = √

2/(Tw
√
a1a2);

see Figure 3.15.
For a Pelton turbine, if the efficiency variations are neglected:

• the power Pm is proportional to QH and thus to AH 3/2;
• because of the adopted assumptions, it then holds Ho = Hv = constant,
Ka = P om/Ao.

Consequently, the static gain Ka � Ga(0) is independent of the operating point;
in actual cases, Ka may significantly vary because of the efficiency variations (it
may be reduced for small Ao).

The quantity Tw, called “water inertia time” of the penstock, is proportional
to Qo for any given Ho, so that:

Tw = Qo

Qnom
Twn

where Qnom is the nominal flow, and Twn is the corresponding water inertia
time; the usual values of Twn (particularly in the case of Pelton turbines) are
0.5–1.5 seconds. Note that Tw also can be written in the form:

Tw = (γ /g)LcAc(Q
o/Ac)

2

γQoHo

thus it is equal to the ratio between twice the kinetic energy of the water in the
penstock (at the speed Qo/Ac) and the power (γQoHo) of the outflowing jet.
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with elasticity without elasticity

effects of pressure
tunnel and surge
tank without

elasticity

with elasticity

Figure 3.15. Frequency response of the transfer function Ga(s) (supply system
and turbine): case of a hydroelectric plant having Te = 1.57 sec (νr = 2 rad/sec),
Kc = 0, Jc = 16 sec2/m2, a1 = a2 = 1 (see also footnote(4)).

It may be observed that Tw also represents the time taken for a mass, placed on an inclined
plane with a slope α′ � arsin(Ho/Lc) (note that α′ is different from α; see Fig. 3.14), to
reach the speed Qo/Ac in the absence of friction.

For a better approximation, the impedance Zw(s) can be derived considering:

(1) the head losses (caused by friction effects) in the penstock;
(2) the elasticity of the water and the penstock walls;
(3) the presence of other elements of the hydraulic plant, i.e., (for high-

head plants, with Pelton turbine; see Fig. 3.14) the pressure tunnel and
the surge tank.
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To account for (1), a term Kc|Q|Q (head losses of the quadratic type) may
be added to the right-hand side of Equation [3.2.6] to obtain:

Hv −H = Kc|Q|Q+ Jc dQ

dt

from which Ho = Hv −KcQo2 and furthermore, by linearizing:

Zw(s) = 2KcQ
o + sJc [3.2.9]

Therefore, it is sufficient to formally replace sTw by ((2KcQo2)/Ho + sTw)
into Equation [3.2.8]. However, the relative head loss (KcQo2)/Ho can be a few
percentages at the nominal flow, so that the effect of the head losses on Ga(s) can
be considered negligible (in particular, the static gain Ga(0) is slightly reduced
with respect to the value KPAP

o
m/A

o previously found).
In any case, if energies per unit of weight and flows are respectively correlated

to electric voltages and currents, the linearized behavior of the penstock is similar
to that of a “series” branch having a resistance 2KcQo and an inductance Jc.

To account for the effects (2) of the elasticity, it must be generically assumed
to be h = h(x, t), q = q(x, t), where h is the energy per unit of weight, q the
flow, and x the abscissa defined in Figure 3.14. Assuming, for simplicity, that
the penstock is cylindrical and that its characteristics are independent of x (and
neglecting the head losses), the Equation [3.2.6] can be substituted for the generic
element of the penstock by:

−∂h
∂x

= 1

gAc

∂q

∂t
[3.2.10]

to which the continuity equation must be added, of the type:

−∂q
∂x

= cc ∂h
∂t

[3.2.11]

whereas h(0, t) = Hv , q(Lc, t) = Q(t), h(Lc, t) = H(t). The effects of the elas-
ticity are of more practical interest for high-head plants with Pelton turbines. For
such plants, the kinetic component in h is negligible, and thus h is almost equal
to the piezometric head (p/γ + z), being p = pressure and z = height. It may
be further assumed that cc = d(γAc)/dp = constant.

By again correlating the variables h and q, respectively, to electric voltages
and currents, the penstock behaves as an electric line, for which 1/(gAc) and cc
are, respectively, the (series) inductance and the (shunt) capacitance per unit of
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length. Through developments similar to those in Section 5.4 with reference to
electrical lines, from Equations [3.2.10] and [3.2.11], it is possible to deduce:

H(s) = Hv(s)

chθc
− Zoc thθcQ(s) [3.2.12]

where Ho = Hv , and further:

Zw(s) = Zoc thθc [3.2.13]

where:

Zoc � 1√
gAccc

, θc � s
√
cc

gAc
Lc

Such relationships specify the well-known phenomena of perturbation propagation
along the penstock; more precisely, the speed of propagation is given by:

ac �
√
gAc

cc

which is within 700–1200 m/sec (typical value: approximately 1000 m/sec),
whereas it can be written Zoc = ac/gAc, θc = sLc/ac. Finally, substituting the
above into Equation [3.2.5] it follows:

Ga(s) = Ka
1 − a1

Qo

Ho
Zoc thθc

1 + a2
Qo

2Ho
Zoc thθc

= Ka
1 − a1

Qo

Ho

ac

gAc
th
sLc

ac

1 + a2
Qo

2Ho

ac

gAc
th
sLc

ac

[3.2.14]

instead of Equation [3.2.8], whereas it still holds Ga(0) = Ka � KPAP
0
m/A

0.
In terms of frequency response, by writing:

νr � π

2

ac

Lc

(usually, 1–10 rad/sec), it can be deduced that the magnitude of Zw(̃ν) becomes
infinite at the frequencies ν = νr , 3νr , . . ., called “resonance frequencies” of the
penstock, and zero at the frequencies ν = 0, 2νr , 4νr , . . ., called “antiresonance
frequencies” of the penstock. Consequently, the magnitude of Ga(̃ν) varies
alternatively between Ka at the antiresonance frequencies, and 2a1Ka/a2 at the
resonance frequencies, whereas the phase delay increases from 0◦ (at ν = 0) to
180◦, 360◦, 540◦

, . . ., respectively at ν = νr , 2νr , 3νr , . . ., (see Fig. 3.15). Such a
behavior, which is quite different from the one corresponding to Equation [3.2.8],
is independent (as well as νr ) of the value of Qo.



3.2 TYPICAL SCHEMES FOR SPEED GOVERNORS 203

These conclusions remain practically unchanged in the presence of head losses,
the effects of which, although rather modest, particularly affect the static gain
Ga(0) as already pointed out. To account for Kc �= 0, the term Kc|q|q/Lc can be
added at the right-hand side of Equation [3.2.10], and for small variations, this
term corresponds to a series resistance per unit of length, equal to 2KcQo/Lc.

The hypothesis of zero elasticity corresponds to cc→0, ac→∞, νr →∞, and furthermore
θc → ∞, Zw(s) = Zoc thθc → Zocθc = sLc/gAc = sJc, according to Equation [3.2.7].

The quantity Te � 2Lc/ac = π/νr , equal to the time required by the generic perturbation
to go through the whole penstock in the two senses, going back to the starting point, is
called “reflection time” (usually, Te = 0.3–3 sec). To avoid excessive pressure variations
in the penstock it is necessary, based on the “water hammer” theory, that the times of
complete opening or closing of the turbine gate are sufficiently longer than Te.

Another typical parameter is the so-called “Allievi parameter” (or “water hammer num-
ber”) as given by:

ρ � Qo

2Ho

ac

gAc
= νrTw

π
= Tw

Te

the value of which determines the type of transient (oscillatory or aperiodic) of the vari-
ation ∆Pr of the regulating power, following a hypothetical opening step ∆A. More
precisely, Ga(s) can be put into the form:

Ga(s) = Ka
1 − a1 2ρ th

sTe

2

1 + a2 ρ th
sTe

2

Assuming, for simplicity, that a1 = a2 = 1, it can be recognized that the response is oscil-
latory if ρ < 1, and aperiodic if ρ > 1; see the examples of Figure 3.16. According to what
is shown in the same figure, if instead (disregarding the elasticity) the transfer function
of Equation [3.2.8] was assumed, with a1 = a2 = 1, a simple exponential response would
result, which starts from the initial value ∆Pr = −2Ka∆A at t = 0+.

Finally, the effects (3) of the other hydraulic plant elements, such as the pres-
sure tunnel and the surge tank, are generally modest and limited to a range
of low frequencies (e.g., ν < 0.1 rad/sec), where the amplitude of the term
(Qo/Ho)Zw(̃ν) is fairly small, with little effect on Ga(̃ν); refer to Figure 3.15
for a qualitative example. It is in fact intuitive that, with the normal values of the
surge tank cross section (or, more generally, of the tank feeding the penstock), the
piezometric head at the inlet of the penstock (or the water level in the tank) may
be subject to relatively slow variations, whereas fast variations are necessarily of
reduced magnitude.

The magnitude of the slow variations (e.g., oscillations with a 150–250 second period)
may, however, not be negligible. It is necessary to check that the opening and/or closing
of the turbine gate, do not cause excessive oscillations of the water level, such as to empty
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with elasticity
without elasticity

with elasticity

without elasticity

Figure 3.16. Response of the variation of regulating power to an unit step open-
ing of the gate.

the tank, with serious damage to the plant because of introduction of air into penstock
and tunnel, etc.

Regarding the cross section of the surge tank in high-head plants, too small a value
might cause significant effects on the Ga(s) and even prejudice the regulation stability.
To determine the minimum admissible cross section, the elasticity in the penstock and the
pressure tunnel can be reasonably neglected, because of the slowness of the phenomena
in which the pressure tunnel and surge tank are mostly involved. Thus, we can assume
that the penstock has an impedance (2KcQo + sJc) (see Equation [3.2.9]) and the tunnel
similarly has an impedance (2KgQo + sJg). Representing the surge tank by the (capaci-
tive) impedance 1/(sAp), shunt connected between the above impedances (where Ap is
the surge tank cross section, assumed to be constant within the range of variation for the
water level), an approximate expression of Zw(s) useful for describing the considered
phenomena can be derived. Usually, the penstock impedance can be disregarded, so it
holds that:

Zw(s) ∼= 2KgQo + sJg
1 + (2KgQo + sJg)sAp

which, by Equation [3.2.5], corresponds to function Ga(s) with two zeros and two poles.
If, as it usually occurs, the total transfer function of the regulating loop (see Fig. 3.2)
has, with s = ̃ ν, a large magnitude in the low-frequency range, then the two zeros of
Ga(s) are practically translated into two closed-loop poles. By imposing (for stability
requirements) that these zeros have a negative real part, the following condition, called
“Thoma condition,” can be derived:

Ap > a1
Jg

2KgHo

(besides 2a1KgQ
o2 ≤ Ho, which can be undoubtedly considered as verified). Such a

condition can be improved, by also accounting for the penstock parameters.



3.2 TYPICAL SCHEMES FOR SPEED GOVERNORS 205

(b) Typical Regulation Schemes
Based on the above information, it may be concluded that, for primary regulation:

• For sufficiently low frequencies, e.g., ν < νt with νt = 0.3–0.5 rad/sec, it
is possible to assume Gv(̃ν) ∼= Gv(0), Ga(̃ν) ∼= Ga(0). In fact, the vari-
ations of Ga(̃ν), caused by pressure tunnel and surge tank (see Fig. 3.15),
are confined in a frequency range where the gain of the primary regulation
loop is very high. Therefore, provided that the Thoma condition or a simi-
lar one holds, their consequences on the regulation characteristics are quite
negligible.

• For higher frequencies, one should consider Equation [3.2.1] for the
effects of the gate-positioning system, and Equation [3.2.14] (or even
Equation [3.2.8], provided that ν  νr ) for the effects of the supply system
and the turbine.

Therefore, the desired form for the function Gf (s)— which is given, at least
within the frequency range (0, νt ), by Equation [3.1.8] — must be essentially
achieved through the primary regulator, by imposing:

Gr(s) � ∆β

∆εf
(s) ∼= Gf (s)

Gv(0)Ga(0)
= Pnom

Gv(0)Ga(0)Ωnom

1 + sT2

bp + sT2bt
[3.2.15]

(whereas, by known notation, it then holds T1 = btT2/bp).

It is evident that, as to the cutoff frequency νt and then the rapidity of regulation, the
most restrictive effects are a result of Ga(s), which is a “nonminimum-phase” function,
responsible for phase delays that progressively increase with frequency, without a corre-
sponding magnitude decrease. By considering, for simplicity, the case of an isolated unit,
it is clear that νt must be:

• sufficiently lower than 1/Tw (e.g., νtTw < 0.4 to have a phase delay <33◦ in
Ga(̃νt ), having assumed Equation [3.2.8] with a1 = a2 = 1);

• in addition, sufficiently lower than the resonance frequency νr (Equation [3.2.14]
and Fig. 3.15 should be remembered).

This latter condition may be determinant in the case of high-head plants (large Lc, small
νr ), at least for small values of the flow Qo (small Tw, with 1/Tw of the same order
as νr ). In this connection, it may be noted that according to both Equations [3.2.8]
and [3.2.14], the magnitude and the phase delay of Ga(̃ν) decrease as Qo decreases
for every given value of ν < νr (refer to Fig. 3.15), but Equation [3.2.8] corresponds to
the assumption νr = ∞ and thus it may be optimistic. For example, if Qo is such that
Tw <

√
2/(νr

√
a1a2), the phase delay of Ga(̃νr ) is lower than 90◦ by Equation [3.2.8],

whereas it is already equal to 180◦ by Equation [3.2.14].
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Figure 3.17. Block diagram of the regulator with tachoaccelerometer for small
variations.
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Figure 3.18. Block diagram of the regulator with transient feedback for small
variations.

The implementation of a transfer function as per Equation [3.2.15] is tradi-
tionally obtained with comparable approximations through one of the follow-
ing solutions:

• regulator with tachoaccelerometer: see Figure 3.17;

• regulator with transient feedback: see Figure 3.18.

The block diagrams refer to the linearized behavior for small variations, disregard-
ing “insensitivities” in the tachometer and in the servomotor distributing valve. In fre-
quency terms, at steady-state there can be insensitivities of approximately 0.05 Hz for
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mechanical regulators of more ancient production, and 0.005 Hz or lower for regulators
with electric/electronic tachometer or tachoaccelerometer.

For large variations, it is necessary to consider the limits on the servomotor stroke, which
correspond to the full opening and closing, and of the speed limits (in opening and closing)
of the servomotor itself. The output of the amplifier and the input (1/KSM ) dβ/dt of the
servomotor are related by a nonlinear characteristic, having

• a possible deadband around the origin (responsible for the insensitivities, as already
said), due to an overlapping in the servomotor distributing valve;

• saturations (responsible for the speed limits of the servomotor), corresponding to
the extreme positions of the distributing valve in one or in the other sense.

Furthermore, in the case of Pelton turbines, such a characteristic is usually nonsymmetri-
cal, in such a way to force, during the closing action, the intervention of deviators (whereas
the speed of the needles remains limited through the respective servopositioners).

By the symbols in the figure, and having set for brevity:

K ′
T � KTGv(0)Ga(0)

Ωnom

Pnom

in the case of the regulator with tachoaccelerometer it follows:

Gr(s) = KTKAKSM
1 + sTn

KAKSMKp + s
and thus, by comparison with Equation [3.2.15]:




T2 = Tn
bp = Kp

K ′
T

bt = 1

KAKSMK
′
T Tn

whereas T1 = 1/(KAKSMKp). However, the transfer function of the tachoac-
celerometer can be approximated by KT (1 + sTn) as in Figure 3.17 (thus neglect-
ing any delay) only for frequencies lower than, for example, 2–10 rad/sec, where
the smaller and the larger values, respectively, correspond to the mechanical and
the electrical tachoaccelerometers.

Instead, in the case of the regulator with transient feedback it holds that:

Gr(s) = KTKAKSM
1 + sTd

KAKSMKp + s(1 +KAKSM (Kp +Kt)Td)+ s2Td

which is a transfer function with one zero and two poles, and thus not exactly
referable to Equation [3.2.15]. Nevertheless, the cutoff frequency (∼KAKSMKt )
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of the transient feedback loop (Fig. 3.18) — limited only by the presence of further
small delays in the loop, which were neglected in the figure — can be assumed to be
quite high, with KAKSMKt � 1/Td (e.g., KAKSMKt = 10 rad/sec, Td = 3 sec),
whereas it is Kp  Kt , so that it results in:

Gr(s) ∼= KT 1 + sTd
Kp + sTd(Kp +Kt)

1

1 + sT3

with T3
∼= 1/(KAKSMKt) negligible (e.g., T3 = 0.1 sec). Then, the functionGr(s)

can be still considered as in Equation [3.2.15], with:



T2 = Td
bp = Kp

K ′
T

bt ∼= Kp +Kt
K ′
T

whereas T1
∼= ((Kp +Kt)/Kp)Td .

The possible dependence of Gv(0)Ga(0) on the operating point, as a result
of the (already mentioned) nonlinearities between the regulator output and the
driving power, also affects (for both the schemes, and for given values of the
different parameters) K ′

T and thus bp and bt .
Furthermore, the operation with bp = 0 (purely frequency regulation) can be

obtained by excluding the permanent feedback (Kp = 0). Similarly, the oper-
ation with bp = ∞ (purely power regulation, for example through the signal
βrif as specified below) can be obtained by excluding the tachometer or the
tachoaccelerometer (KT = 0). It is, however, convenient that such an exclusion
is made by means of a dead-zone for a limited range of frequencies, so that it
is possible to reconnect the regulator to the frequency error when this exceeds
determined limits.

To act on the driving power independent of the frequency error, so as to realize
(by the desired value of Prif) a static characteristic as reported in Figure 3.5, it is
possible to use the opening reference βrif onward to the permanent feedback block
(see Figs. 3.17 and 3.18). For small variations it then results, at steady-state:

∆β = ∆βrif + KT

Kp
(∆Ωrif −∆Ω)

to which, accounting for the expressions of K ′
T and bp, the following variation

of regulating power corresponds:

∆Pr = Gv(0)Ga(0)∆β = Gv(0)Ga(0)∆βrif + Pnom

Ωnombp
(∆Ωrif −∆Ω)

as if it were (by obvious symbols recalling Equation [3.1.9]):

(∆Prif)eq = Gv(0)Ga(0)∆βrif
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The schemes under examination can seem insufficient, as the setting of βrif

(in terms of Prif) usually remains subject to some uncertainties, because of:

• the nonlinearities downward to the regulator, because of which the product
Gv(0)Ga(0) somewhat depends on the operating point;

• disturbances on the supply system etc., that lead to operating conditions
different from the ones foreseen.

To counteract the effects of the nonlinearities, or at least to reduce them, it
is possible to impose a proper nonlinear relationship between the values of βrif

and the desired ones of Prif. Alternatively, it is possible to insert a nonlinearity
(similar to the one that must be compensated) in the permanent feedback path,
onward to the βrif comparing node. By this latter solution, it is also possible to
eliminate the dependence of the permanent droop bp on the operating point.

To eliminate, at steady-state, all the mentioned inconveniences (thus making also bp
independent of the operating point), the permanent feedback with a proper gain K ′

p may
instead be realized starting from the difference between the active power delivered by the
unit and the (exact) power reference Prif, instead of the difference between β and βrif,
with a gain Kp, as discussed up to now.

Neglecting the variations of the electrical losses in the unit, the delivered active power
variations can be confused with those of the generated power, i.e., (neglecting also the
effects of the possible disturbance ua , indicated in Figure 3.1):

∆Pe = ∆Pr − (Gg(s)+ sM)∆Ω

Therefore, with the solution under examination, which is similar to that in Section 3.2.3b
for thermal units, it is as if:

(1) the permanent feedback were connected to the difference between Pr and Prif, so
as to produce a permanent droop equal to bp = (K ′

pPnom)/(KTΩnom);

(2) the signal K ′
p(Gg(s)+ sM)∆Ω ∼= K ′

p(Gg(0)+ sM)∆Ω was added to the ampli-
fier input (Section 3.1.3).

Both the circumstances (1) and (2) may actually imply a destabilizing effect, respectively
on the permanent feedback loop and on the frequency regulation loop; in fact:

• because of (1), the permanent feedback loop now includes the transfer functions
Gv(s) and Ga(s), which are responsible of further response delays;

• because of (2), the frequency regulation loop includes, between the frequency and
the amplifier input, the transfer function −KT (1 + sTn)+K ′

p(Gg(0)+ sM) =
−KT (1 − bp/bg + s(Tn − bpTa)) instead of −KT (1 + sTn) (with Tn = 0 in the case
of regulator with transient feedback), where the ratio (1 − bp/bg + s(Tn − bpTa))/
(1 + sTn) practically implies some further delays (and moreover an increase of the
droop, according to the ratio 1/(1 − bp/bg)).

However, such effects can be usually disregarded because of the modest value of bp and
thus the cutoff frequency of the permanent feedback loop.
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For a comparison between the regulator with tachoaccelerometer and the one
with transient feedback, the following can be noted:

• With the transfer function Gr(s), the two solutions can be considered prac-
tically equivalent, as the time constant T3 (which cannot be avoided in
regulators with transient feedback) may represent a modest delay, compa-
rable to the tachoaccelerometer delay.

• In response to the opening set-point, the transfer function (∂β/∂βrif)(s) is
equal to 1/(1 + sT1) in the case of the regulator with tachoaccelerome-
ter, and to (Kp/KT )Gr(s) ∼= (1 + sT2)/((1 + sT1)(1 + sT3)) in the case of
regulator with transient feedback (if βrif were put into both (permanent and
transient) feedback paths, the transfer function would become about equal
to 1/(1 + sT3), which would correspond to a very fast response). Note
that in the frequency range for which Gv(s) ∼= Gv(0) and Ga(s) ∼= Ga(0),
such expressions also hold for the transfer function (∂Pr/∂(Prif)eq)(s), by
intending (∆Prif)eq = Gv(0)Ga(0)∆βrif.

• The closure of the transient feedback loop allows operation with relatively
large values of KA thus reducing the effects, in terms of frequency Ω ,
of possible disturbances and insensitivities in the servomotor and in its
control. In this regard note, particularly, that the product KAKSMK

′
T is

equal to 1/(btT2) with the tachoaccelerometer and ∼1/(btT3) with the tran-
sient feedback. At equal bt ,KSM and K ′

T , the amplifier gain KA is then,
with transient feedback, approximately T2/T3 times larger than that with
tachoaccelerometer, where T2/T3 can be, for instance, 30–50.

• Following perturbations which are not small, the presence of the speed limits in
the regulating servomotor causes different effects for the two types of regula-
tors. For a purely qualitative comparison, refer to the diagrams of Figure 3.19,
which refer to the response to a step-load variation ∆PL in the case of a sin-
gle unit, with bp = 0, T2/(btTa) = 3, T3/(btTa) = 0.1, Tv = 0, a1 = a2 = 1,
Tw/(btTa) = 0.4 (see Equations [3.2.1], [3.2.8], and [3.2.15]), where Ta is the
start-up time of the unit, and Tmin is the minimum time for a complete opening
or closing of the regulating servomotor.

The simultaneous use of a tachoaccelerometer and transient feedback might
give some benefits, provided that it does not cause an increase of the cutoff
frequency (νt ) near to the resonance frequency (νr ) of the penstock, with a con-
sequent impact on the stability margins.

Before concluding, the progressive improvement of the regulator’s functional
characteristics, which has been achieved through the implementation of low-power
electric or electronic components, should be considered. Significant advantages
have been obtained in the past, by passing from traditional “mechanical-hydraulic”
regulators to “electrohydraulic” ones. In the latter, both the tachoaccelerometer (or
the tachometer) and the permanent and transient feedbacks, are electrically imple-
mented, and the first stages of the amplifier are electronic, whereas the servomotor
is still used as an integrator in the implementation of the function Gr(s).
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without speed limits

Figure 3.19. Response of the relative frequency error (∆Ω/Ωnom) to a step of
load variation (∆PL): effect of the speed limits of the regulating servomotor, with:
(a) regulator with tachoaccelerometer; (b) regulator with transient feedback.

Further advantages may be obtained by electronically implementing the desired
whole function Gr(s) and by using the servomotor (with a suitable feedback)
simply as a positioner, with a relatively wide bandwidth. In this way, the effect
of disturbances, insensitivities, etc. can be greatly reduced.

The opportunity of sending other signals to the regulator should be considered,
to achieve a more coordinated use of the plant. Signals sensitive to the penstock
pressure or to the reservoir storage, are examples of these signals.

3.2.3. Case of Thermal Units

(a) Dependence of the Driving Power on the ‘‘Output’’
of the Speed Governor
Because of the relative complexity of thermal plants, we will limit discussion
here to the basic characteristics relating to the problems of f/P control. More
precisely, reference will be made to the typical plant in Figure 3.20a, with a
reheater and three turbine sections (respectively, HP, MP, and LP, i.e., high,
medium, and low pressure). For this plant type, it is possible to associate, in
the sequence 1, . . . , 10 and apart from obvious details, the thermodynamic cycle
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Figure 3.20. Typical example of a thermal plant: (a) broad scheme; (b) thermo-
dynamic cycle.

reported in Figure 3.20b (where T and S are, respectively, fluid temperature and
entropy). Based on the following considerations, the changes to be adopted for
plants different from the one considered may be obvious (e.g., plants without
reheater, more than one reheater, etc.).

The generic plant includes several valves, with different functions, and not only between
the superheater and the HP turbine section, but also between the reheater and the MP
section, etc. In particular, between the superheater and the HP section there may be
a “throttling” valve, followed by more “partial admission” valves, each one of which
supplies a circular sector of the first stage, of the “impulse” type, of the HP section. To
obtain a better efficiency, the supply is usually done in a “partial arc” mode, by keeping
the throttling valve fully open and by sequentially operating the partial admission valves.
In some situations — for instance, at startup or at low load — the supply is instead done in
a “full arc” mode, by simultaneously operating the partial admission valves, or by keeping
them fully open and by operating the throttling valve. With the partial arc mode, the static
characteristic that relates the steam flow to the opening signal exhibits a so-called “valve
point,” with an abrupt increase in the slope (e.g., three to four times) every time that the
opening of a new valve is initiated. The operation of further valves, located downward to
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Figure 3.21. Dependence of the driving power on the output of the primary
regulator (and on the pressure set point; see the text), in the case of a thermal
plant: general block diagram.

the reheater, may be related to the opening signal, particularly under emergency conditions.
The terminology concerning the valves varies. However, according to Figure 3.20a, we
will simply consider a single equivalent valve, called “admission” valve, located between
the superheater and the HP turbine section.

The relationship between β (“output” of the primary regulator) and Pm (driving
power) may be generically drawn schematically, as in Figure 3.21.

The variable β may be assumed to represent the position β ′ of an actuator
that governs the turbine valves through a servopositioner (the actuator itself may
be constituted by a servopositioner, having a smaller power and a relatively
negligible response delay).

As an alternative, the servopositioner may be inserted in a closed loop, with
a feedback from the pressure pH in the “wheel chamber” (i.e., in the chest
downstream of the impulse stage of the HP section). In such a case, it can be
seen that the output β of the regulator is constituted by the signal β ′′ (e.g., an
electric voltage), indicated in Figure 3.21.

The “opening” A can be assumed to be the “useful cross section” of the fluid
jet into the admission valve. The further variables used in the figures are:

• pG = pressure at the outlet of the evaporator
• pS = pressure at the outlet of the superheater
• pR = pressure at the outlet of the reheater
• qS = (mass) flow at the outlet of the superheater
• qR = flow at the outlet of the reheater
• qH , qM, qL = flows, respectively, at the outlet of the HP, MP, LP tur-

bine sections
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• PmH , PmM , PmL = driving powers that respectively correspond to the HP,
MP, LP turbine sections

whereas Pm = PmH + PmM + PmL is the resulting driving power, and Ω the elec-
trical speed.

If β = β ′, the transfer function Gv(s) = (∆A/∆β)(s) (see Fig. 3.2), which
particularly accounts for the above-mentioned servopositioner, can be considered
to be:

Gv(s) = G′
v(s) = Kv

1 + sTv [3.2.16]

where:

• the static gain Kv � G′
v(0) may depend on the operating point, if the static

characteristic (β ′, A) is nonlinear;
• the time constant Tv can be, for example, 0.1–0.3 seconds or even smaller.

For large variations, the limitations on the servomotor speed must be con-
sidered, both in opening and closing. They prevent excessive stresses that can
result from abrupt variations of the thermal exchanges, in the turbine and in other
elements of the plant.

Usually, the possible nonlinearities are adequately compensated (e.g., through comple-
mentary nonlinearities, realized by means of “cams”) so as to obtain a static characteristic
(β ′, A) (or alternatively (β ′, qH )∆ps=0) that is sufficiently linear. The dependence of A on
β ′ can furthermore present an “insensitivity,” that is not always negligible, and which in
terms of β ′, can be 0.5% with respect to the value corresponding to the full opening.

The possible closed loop indicated in Figure 3.21, with a feedback from
the pressure pH , usually includes a proportional-integral element (electronically
implemented) in the “forward” path, onward to β ′, and a simple transducer in the
feedback path. The cutoff frequency of such a loop may be, e.g., 3–7 rad/sec,
so that (even if the dynamic relationship between ∆A and ∆pH , or between ∆A
and ∆qH , is accounted for) the resulting response delays between ∆β ′′ and ∆qH
also may be considered as negligible, as a first approximation, because of the
relative slowness of the primary regulation. More specifically, at steady-state,
the dependence of the pressure pH on β ′′ is only determined, because of the
integral action of the forward element, by the characteristic of the transducer. If
this is linear, the considered loop allows then to directly obtain a linear static
characteristic (β ′′, pH ). The same can be said for the (β ′′, qH ), as at steady-state
qH can be considered proportional to pH .

With the block “admission valve and HP section,” as a first approxima-
tion, accounting for the relative slowness of the primary regulation, it can be
assumed that:
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• the temperature of the superheated steam (because of the rapidity of its
regulation), and the temperature distribution along the turbine remain con-
stant;

• the flows qS and qH are equal to each other, even during transients;
• the flow (qS = qH ) depends algebraically on A,pS, pH , according to the

static characteristics of the valve and the impulse stage of the HP section;
• the pressure pH and the flow are proportional to each other (in particular, it

is assumed that in the reaction stages down to the wheel chamber, the flow
is “critical,” i.e., reaches the sound speed);

• the power PmH is itself simply proportional to the flow (actually, the “work”
done by the fluid per unit of mass, i.e., the “total” enthalpic head, may vary,
but the effects of such variations can be disregarded with respect to those
of flow variations; the variations of PmH with Ω , already mentioned in
Section 3.1.3, are furthermore disregarded for simplicity).

Consequently, the variables qS = qH , pH , PmH (all proportional to one another)
can be considered algebraic functions of A,pS , and for small variations around a
given operating point it is possible to write equations of the form:

∆qH = ∆qS = hA∆A+ ∆pS

Rv
[3.2.17]

∆pH = RH∆qH
∆PmH =

(
PmH

qS

)
nom
∆qS [3.2.18]

according to Figure 3.22.
With the thermal system onward, as a first approximation it also may be

assumed, as specified in the following, that the pressure pG at the output of the
evaporator is constant. Also, in such a case it is necessary to account for the
block “superheater,” the effect of which (predominantly of the resistive type) is
translated into a pressure drop according to an equation such as:

∆pS = ∆pG − RS∆qS
As a result of Equation [3.2.17], it can be finally deduced that:

∆qH = ∆qS = RvhA∆A+∆pG
Rv + RS [3.2.19]

that is, a reduction of the gain ∆qS/∆A, as:

(
∆qS

∆A

)
∆pG=0

= Rv

Rv + RS hA < hA

where Rv/(Rv + RS) can be, for example, in the range of 0.8–1.0.
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The flow variations ∆qS reverberate down through the block “reheater,” the
effect of which (predominantly capacitive) can be defined by an equation such as:

∆q ′
H −∆qR = VR d∆ρR

dt
� CR

d∆pR
∆t

where q ′
H is the input flow (and it will be assumed q ′

H = hqH , with h a proper
constant, smaller than unity in the presence of bleeds), VR is the reheater volume,
ρR is the fluid density (evaluated at a proper temperature, such as a mean value
along the reheater), and CR � VR(dρR/dpR)o.

Finally, with the block “MP and LP sections,” by approximations similar to
those already adopted, and disregarding for simplicity the existence of further
bleeds, it may be assumed that:

• the flows qR, qM, qL equal one another;

• the pressure pR is proportional to qR = qM = qL (hypothesis of critical
flow);

• the powers PmM , PmL are themselves simply proportional to the considered
flow (neglecting the effects of the variations of the “work” done by the fluid
per unit mass, and of the variations of Ω).

It can be then derived:

∆qM = ∆qL = ∆qR
∆pR = RML∆qR

∆PmM =
(
PmM

qR

)
nom
∆qM

∆PmL =
(
PmL

qR

)
nom
∆qL

where qR nom = q ′
H nom = hqS nom, and thus, accounting for the equation of the

reheater (being ∆q ′
H = h∆qS):

∆qR = h 1

1 + sTR ∆qS

∆PmM +∆PmL =
(
PmM + PmL

qR

)
nom
∆qR =

(
PmM + PmL

qS

)
nom

1

1 + sTR ∆qS
[3.2.20]

having posed TR � RMLCR (TR is usually termed the “reheater” time constant,
and it results within the range of 5–15 sec).
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Finally, by intending that Pnom = (PmH + PmM + PmL)nom, α � PmH nom/Pnom

(usually α is within the range 0.25–0.30), from Equations [3.2.18] and [3.2.20]
it follows:

∆Pm

∆qS
(s) = ∆PmH +∆PmM +∆PmL

∆qS
(s)

= Pnom

qS nom

(
α + 1 − α

1 + sTR
)

= Pnom

qS nom

1 + sαTR
1 + sTR

where ∆qS is given by Equation [3.2.19]. Therefore, if the pressure at the output
of the evaporator was constant (∆pG = 0) — as it also may be assumed, apart
from the slower phases of the transients — the transfer function:

Ga(s) � ∂Pm

∂A
(s) = ∆Pm

∆qS
(s)
∆qS

∆A
(s)

would result to be:

Ga(s) = K ′
a

1 + sαTR
1 + sTR [3.2.21]

in which, for simplicity:

K ′
a � hARv

Rv + RS
Pnom

qS nom

In terms of frequency response, Equation [3.2.21] leads to diagrams as indi-
cated by the continuous line in Figure 3.23.

With reference to the faster parts of the regulation transients, further capacitive effects may
be accounted for, particularly between the valve and the HP section (and in its “wheel
chamber”) and in the connections between the MP and LP sections (and within the LP

effects of the variations of pG 
and of the regulation of pS

effects of further
capacitive elements

(see text)

Figure 3.23. Frequency response of the transfer function Ga(s) (supply system
and turbine): case of a thermal unit.
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section). These effects are, respectively, responsible for some dynamic delays between
∆qS and ∆qH , and between ∆qR (= ∆qM ) and ∆qL. With powers it can be assumed, for
instance, instead of Equations [3.2.18] and [3.2.20], that:

∆PmH =
(
PmH

qS

)
nom

1

1 + sTA∆qS

∆PmM +∆PmL =
[(
PmM

qS

)
nom

+
(
PmL

qS

)
nom

1

1 + sTL
]

1

(1 + sTR)(1 + sTH )∆qS

(TH may be, for example, 0.1–0.4 sec, and TL 0.3–0.6 sec), from which, through simple
derivations:

∆Pm

∆qS
(s) = ∆PmH +∆PmM +∆PmL

∆qS
(s) = Pnom

qS nom

(1 + sα′TR)(1 + sT ′
L)

(1 + sTR)(1 + sTH )(1 + sTL)

∼= Pnom

qS nom

1 + sα′TR
(1 + sTR)(1 + sTH )

where α′ is slightly smaller than α (α′ ∼= α − (PL nom/Pnom)TL/TR , for example α′ ∼=
0.28 for α = PH nom/Pnom = 0.30, PL nom/Pnom = 0.40 and TL/TR = 0.05), whereas T ′

L is
very close (slightly smaller) to TL; in particular, for ∆pG = 0, Equation [3.2.21] can be
then replaced by:

Ga(s) ∼= K ′
a

1 + sα′TR
(1 + sTR)(1 + sTH ) [3.2.22]

to which corrections like those indicated by the dotted-dashed line in Figure 3.23 corre-
spond. For higher frequencies, further delays should be considered.

However, during the slower transients, and particularly during the phase of
approaching the steady-state conditions, the hypothesis ∆pG = 0 no longer is
applicable. In fact, the block “economizer and evaporator” has a predominantly
capacitive effect, by which a variation in the flow qS tends to cause a progres-
sively increasing variation, in the opposite sense, in the pressure pG. Within
an acceptable approximation for the present aims, this can be accounted for by
equation:

∆qi −∆qS = CG d∆pG
dt

where ∆qi is an equivalent variation in the flow that inlets the boiler, as a
consequence of the overall action of the auxiliary equipment (refer again to the
block diagram of Fig. 3.22).

If it were ∆qi = 0, by reminding Equation [3.2.19], we would obtain:

∆qS

∆A
(s) = shARvCG

1 + sTG
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and thus, instead of Equation [3.2.21]:

Ga(s) = K ′
a

sTG(1 + sαTR)
(1 + sTG)(1 + sTR)

where TG � (Rv + RS)CG is several tens of seconds for once-through boilers
and hundreds of seconds for drum boilers.

It then becomes essential to consider the effects of the “boiler auxiliaries” and
the “pressure regulator,” according to Figures 3.21 and 3.22.

The transfer function Gaux(s), equivalent to the whole set of the auxiliary
equipment, is variable with the type of plant and often not easily determined.
It can be generically stated, in terms of frequency response, that it can imply
significant delays at low frequencies, for example, 0.05 rad/sec for once-through
boilers, and even lower frequencies for drum boilers (in particular, for the coal
supplied plants a “transportation” delay in tens of seconds may result).

The transfer function Grp(s) of the pressure regulator is usually of the
proportional-integral type, such that the regulation loop with ∆A = 0 has a cutoff
frequency, e.g., 0.01–0.03 rad/sec (comparable, as in Section 3.3.2, with that of
the secondary regulation loop), or even smaller.

The pressure to be regulated is that (pS) at the output of the superheater, i.e.,
the pressure at the admission onward to the valve. Because of the integral action
of the regulator, at steady-state (for ∆pS rif = 0) ∆pS = 0, so that the static gain
of Ga(s) is given by:

Ga(0) = hA Pnom

qS nom

(recall Equations [3.2.17], [3.2.18], and [3.2.20]), somewhat larger thanK ′
a . More

generally:
∆qS

∆A
(s) = hARv(sCG +GrpGaux)

1 + sTG + RvGrpGaux

and thus:

Ga(s) = hA Pnom

qS nom

Rv(sCG +GrpGaux)(1 + sαTR)
(1 + sTG + RvGrpGaux)(1 + sTR) [3.2.23]

instead of Equation [3.2.21]; refer to the corrections made by the dashed line in
Figure 3.23.

The elements that constitute the pressure regulation loop have an effect on Ga(s), similar
to that of a pressure tunnel and surge tank for a hydraulic plant (Fig. 3.15). In this
latter case, on the other hand, the pressure (as well as the piezometric head) at the
turbine gate may be considered intrinsically regulated, as a result of the presence of the
reservoir.
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(b) Typical Regulation Schemes
Based on the discussions above and with reference to Figure 3.20, the following
conclusions can be drawn.

• For sufficiently low frequencies (e.g., ν < νt , being νt = 0.3–0.5 rad/sec),
it also may be written that:

∂Pm

∂β
(s) ∼= ∂Pm

∂β
(0)

1 + sαTR
1 + sTR [3.2.24]

as:

• in the absence of feedback from the pressure pH (β = β ′): the trans-
fer function Gv(s) can be approximated by its static gain Gv(0) = Kv,
whereas for Ga(s) the Equation [3.2.21] can be assumed to hold (in fact,
the corrections related to the boiler dynamics — variations of pG and reg-
ulation of pS — lay in a frequency range (Fig. 3.23) for which the primary
regulation loop gain is quite high, and thus they have modest influence
on the regulation characteristics), so that finally Equation [3.2.24] with
(∂Pm/∂β)(0) = KvK ′

a can be deduced;

• in the presence of feedback from the pressure pH (β = β ′′): the effects
of the boiler dynamics are even more attenuated, and the transfer
function (∆qS/∆β)(s) ∼= (∆qH/∆β)(s) can be approximated by its static
gain (∆qH/∆β)(0), whereas it can be assumed that (∆Pm/∆qS)(s) =
(Pnom/qS nom)(1 + sαTR)/(1 + sTR), so that the Equation [3.2.24] is again
obtained, with (∂Pm/∂β)(0) = (∆qH/∆β)(0)Pnom/qS nom.

By accepting Equation [3.2.24], the difference between the two cases then
consists into the static gain (∂Pm/∂β)(0); it must be remembered that Kv
and K ′

a may vary significantly with the operating point, whereas this does
not happen for (∆qH/∆β)(0). Therefore the feedback from the pressure
pH also prevents, or at least acts to reduce, the nonlinearities of the static
characteristic (β, Pm).

• For higher frequencies, we must also consider the delays associated with
the time constants Tv, TH (recall Equations [3.2.16] and [3.2.22]), or alter-
natively those between β ′′ and qH , and moreover the effects of TL and of
further delays of the thermal system.

Therefore, the desired form of the transfer function Gf (s) � (∂Pm/∂εf )(s),
defined, at least within the frequency range (0, νt ), by Equation [3.1.8], is that
of Equation [3.2.24] with T1 = TR and T2 = αTR . Because the values of TR and
αTR actually are comparable to those required for T1 and T2, it is also possible
to adopt a primary regulator of the purely proportional type, by writing:

Gr(s) � ∆β

∆εf
(s) ∼= Gf (0)

(∂P /∂β)(0)
= Pnom

Ωnombp(∂Pm/∂β)(0)
� G′

r (0) [3.2.25]
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power
regulator

pressure
regulator

Figure 3.24. Block diagram of the regulation for small variations: (a) elementary
solution, for a first level approximation; (b) solution with a power regulator and
its interactions with the pressure regulation.

according to the block diagram of Figure 3.24a. The variations for plants different
from the one considered may be obvious; for example, in the absence of the
reheater it can be specified that TR = 0, so that the situation becomes similar to
that described in Section 3.2.2b with reference to hydroelectric units.

By this simple solution, the desired value of Prif (recall the static characteristic
of Fig. 3.5) can be realized through the opening reference βrif as indicated in the
block diagram, to obtain for small variations:

∆β = ∆βrif +G′
r (0)(∆Ωrif −∆Ω)

At steady-state, the variation in the regulating power then results in:

∆Pr = ∂Pm

∂β
(0)∆β = ∂Pm

∂β
(0)∆βrif + Pnom

Ωnombp
(∆Ωrif −∆Ω)
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as if it were (recalling Equation [3.1.9]):

(∆Prif)eq = ∂Pm

∂β
(0)∆βrif

Generally, the dynamic effects of βrif on the regulating power then are equal
to those of β, so that (by Equation [3.2.24]) it also can be written that:

∂Pr

∂(Prif)eq
(s) = 1 + sαTR

1 + sTR
The previous scheme may seen unsatisfactory, as the setting of βrif (in terms

of Prif) remains affected by noticeable uncertainties, caused by:

• nonlinearities down to the regulator, because of which the gain (∂Pm/∂β)(0)
somewhat depends on the operating point (recall the beneficial effect of the
feedback from the pressure pH );

• model approximations, for which the actual value of the above-mentioned
gain may be different from the assumed one (recall in particular the vari-
ations of the enthalpic heads, of the efficiencies etc., up to now neglected,
which cannot be efficiently counteracted even by the feedback from pH );

• possible disturbances on the thermal system etc., which lead to operating
conditions different from the assumed ones.

Furthermore, the dependence of (∂Pm/∂β)(0) on the operating point affects (at
equalG′

r (0)) also the resulting value of the permanent droop bp (and thus also the
value of the transient droop bt = bpT1/T2). Finally, the operation with bp = ∞
(purely power regulation) can be obtained by imposing G′

r (0) = 0, whereas the
operation with bp = 0 (purely frequency regulation) cannot be realized.

It is then convenient to resort to a scheme as indicated in Figure 3.24b, which
includes a power regulator of the proportional-integral type (with a transfer
function KP (1 + sTP )/(sTP )), sensitive to:

• the difference between the (exact) power reference Prif and the active power
delivered by the unit (the variations of the latter can be taken as the vari-
ations of the electric power generated Pe, apart from the variations in the
electrical losses of the unit);

• the signal (Pnom/(Ωnombp))(Ωrif −Ω) (also named “frequency bias”).

Because of the integral action of the regulator, it is possible to obtain, at
steady-state, the Equation [3.1.9], i.e.,

∆Pr = ∆Prif + Pnom

Ωnombp
(∆Ωrif −∆Ω)



224 CHAPTER 3 FREQUENCY AND ACTIVE POWER CONTROL

without any uncertainties on the values of Prif and bp (at steady-state it can be
assumed∆Pr = ∆Pe, also disregarding the variation of the mechanical losses and
the dependence of the driving power on the speed, and thus assuming Gg(s) = 0);
furthermore, it is possible not only to operate at bp = ∞ (by excluding the
“frequency bias”), but also at bp = 0 (by excluding the signals Prif, Pe).

With transfer functions, if the (even transient) differences between ∆Pr and
∆Pe are disregarded and Equation [3.2.24] is accepted, it then follows that:




Fp(s) � ∂Pr

∂Prif
(s) = (1 + sTP )(1 + sαTR)

1 + s(TP + αTR + T ′)+ s2TR(αTP + T ′)

Gf (s) � ∂Pr

∂εf
(s) = Pnom

Ωnombp

1 + sT ′′

1 + sTP Fp(s)

= Pnom

Ωnombp

(1 + sT ′′)(1 + sαTR)
1 + s(TP + αTR + T ′)+ s2TR(αTP + T ′)

where, for simplicity:

T ′ � TP

KP (∂Pm/∂β)(0)
, T ′′ �

(
1 + G′

r (0)Ωnombp

KPPnom

)
TP

As a simplified example, if TP = TR it follows that:




Fp(s) = 1 + sαTR
1 + s(αTR + T ′)

Gf (s) = Pnom

Ωnombp

(1 + sT ′′)(1 + sαTR)
(1 + sTR)(1 + s(αTR + T ′))

as indicated in the frequency response diagrams of Figure 3.25. Note that
the frequency error acts also through the (faster) path constituted by G′

r (0);
actually, as a result of the presence of G′

r (0) it holds that Gf (s)/Fp(s) =
(Pnom/(Ωnombp))(1 + sT ′′)/(1 + sTP ), with T ′′ > TP , so that the response to
∆εf is less delayed than that to ∆Prif.

Because of the effect of the differences between ∆Pr and ∆Pe, by more
generally assuming (see also Section 3.2.2b):

∆Pe = ∆Pr − (Gg(s)+ sM)∆Ω

with Gg(s) ∼= Gg(0), it may be seen, as indicated in Figure 3.24, that the signal
(Gg(0)+ sM)∆Ω is added to the “frequency bias” (Pnom/(Ωnombp))(∆Ωrif −
∆Ω); the resulting signal then depends on ∆Ω according to the transfer function:

− Pnom

Ωnombp
+Gg(0)+ sM = − Pnom

Ωnombp

(
1 − bp

bg
− sbpTa

)
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Figure 3.25. Frequency response of the transfer functionsGf (s) and Fp(s) (sim-
plified example; see text).

responsible for some response delay and for an increase in the droop (in the
ratio 1/(1 − bp/bg)). Such effects usually are negligible, because of the small
value of bp.

Furthermore, the cutoff frequency of the power regulation loop is relatively
low (on the order of 1/T ′: e.g., approximately 0.05 rad/sec). Actually, the func-
tions Fp(s) and Gf (s) may be affected in a nonnegligible way by the effects
of the boiler dynamics, at least when the feedback from the pressure pH is
not present (the Equation [3.2.24] may then be inadequate, as it ignores such
dynamics).

Finally, based on the previous derivations, the intervention of the primary regu-
lation causes, through ∆β, perturbations in the pressure ∆pS (Figure 3.22) which
only later are corrected by pressure regulation. For this reason, this operation is
called “boiler following” mode. Better performance may be obtained by sending
into the pressure regulation loop proper signals sensitive to Prif, εf , Pe. As illus-
trated by a dashed line in Figure 3.24b, with this approach (named “coordinated
control”) it is possible to “force” the intervention of the boiler controls, thus
accelerating the response of the driving power. Conversely, the power regulator
and the valve-positioning system may be enslaved through threshold devices to
the pressure pS and the pressure error (pS rif − pS), to avoid unacceptable values
of such variables.

3.3. ‘‘f/P’’ CONTROL IN AN ISOLATED SYSTEM

3.3.1. Characteristics of the Primary Control

With a system of multiple units, the frequency regulation is called “primary”
when it is the result of more local speed regulations, achieved by means of
primary regulators.
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According to the following sections, the “secondary” frequency regulation is instead
assigned to a unique centralized regulator, called secondary regulator, which acts on
the power (or opening) references of the primary regulators, to realize the desired sharing
of the regulating powers.

Usually it is assumed that the electric speed is, even during transients, equal
for all the units, as if they were, at the same number of pole pairs, mechani-
cally coupled one another. This hypothesis, which is a simplifying one, appears
generally acceptable since, if the network is not too large, the transient slips
between the machines vanish quite rapidly because of the synchronizing actions.
On the other hand, the slower components of the speed transients (on which
the intervention of the regulations essentially depends) may be evaluated, with
an approximation that is often satisfactory, by assuming that the units maintain
synchronism (see also Section 8.5.1).

With this simplification, the variations of the electric speed Ω , common to all
the units, become dependent on a mechanical balance as per Equation [3.1.2],
i.e.,

Pm − (Pe + Pp) = M dΩ

dt

applied to all the units as a whole, so that:

Pm �
N∑
1

iPmi , Pe �
N∑
1

iPei, Pp �
N∑
1

iPpi , M �
N∑
1

iMi

where N is the number of units. Furthermore, the resulting inertia coefficient M
can be expressed as in Equation [3.1.4], i.e.,

M = PnomTa

Ωnom

where Pnom �
∑N

1 iPnom i represents the total nominal power; consequently, the
“start-up time” Ta relative to the whole set of units results defined by:

Ta �

N∑
1

iPnom iTai

N∑
1

iPnom i

which is a weighted mean of the single start-up times Tai . (Usually Ta is approx-
imately 8 sec, since the single Tai are distributed regularly around this value.)
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(inertia of
all the
units)

Figure 3.26. Primary frequency regulation for more than one unit: broad block
diagram.

Figure 3.27. A block diagram of the system in Figure 3.26 for small variations.

To analyze the primary regulation, Figures 3.1 and 3.2 can be generalized
to Figures 3.26 and 3.27, respectively (in the latter, it is Gg(s) �

∑
i Ggi(s),

Gc(s) �
∑
j Gcj (s), and the disturbance ∆PL may be caused by load perturba-

tions, generator trip etc.).

However, the situation is different for units fed by the same supply system through
separate valves, since the driving power Pmi of each of these units (and that of the ones
for which the valves are kept blocked) generally may depend on the opening of all the
unit valves. In this case, it is necessary to consider the dependence of the overall driving
power on the frequency errors εfi acting on the corresponding regulators (or rather the
dependence on the frequency Ω , for given values of the references Ωrif i).
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In response to the disturbance ∆PL, the set of transfer functions Gf 1(s), . . . ,

GfN(s) may be replaced by only one equivalent transfer function of the form:

Gf (s) �
∑
i

Gfi (s) [3.3.1]

so that it can be deduced that:

− ∂Ω
∂PL

= 1

Gf +Gg +Gc + sM [3.3.2]

as in the case of only one generator (see Equation [3.1.10]).
Hence it is evident that, because of the approaches discussed, the problem

of the primary frequency regulation in a multimachine system can be managed
with the same considerations made in Section 3.1 for a single generator, provided
that one considers the problem of the distribution, among the different genera-
tors, of the overall regulating power required for the regulation itself (“primary”
regulating power).

With respect to a single generator, the increase in Pnom as a result of the
presence of the other units, even if accompanied by a larger total load power
demanded, may already have, on its own account, a beneficial effect on the
maintenance of the frequency value; in fact:

• by Equation [3.3.2] it is possible to determine that, in the absence of regu-
lation — or even in the initial response to sudden disturbances, which is
practically dominated only by the inertias of the units — the frequency vari-
ations are practically proportional to ∆PL/Pnom (in fact M , because of the
modest variability of Ta , can be considered proportional to Pnom, as well as
Gg and Gc);

• therefore, as the value of Pnom increases, smaller values of ∆Ω can be
expected, not only following a single disturbance corresponding to a given
value of ∆PL (e.g., the trip of a generator), but also under the effect
of normal load disturbances, which statistically tend to compensate one
another among the users, hence the average value (in a probabilistic sense)
of ∆PL/Pnom decreases.

The above-mentioned beneficial effect, caused by the increase of Pnom, would
then maintain itself practically unchanged even in the presence of regulation, if
Gf (s) were selected by the same criteria indicated for a single unit, i.e., (for
given values of the cutoff frequency νt and of the phase margin γ ) proportional
to PnomTa , or rather approximately to Pnom.

It has been assumed up to now that all the units remain in synchronism even during
transients; however, the f/P control and the electromechanical oscillations may somewhat
interact with each other. Let us assume that the system is comprised of two subsystems A
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Figure 3.28. Interaction with the electromechanical oscillations: elementary
example of block diagram.

and B oscillating against each other, because of the synchronizing actions (Section 1.6),
and that the units in each subsystem can be considered synchronous, with electrical speeds
ΩA and ΩB , respectively. For small variations, and disregarding the variations in the
electrical losses, it is possible to refer to Figure 3.28 (in which PAB is the active power
exchanged from A to B, and ∆PLA and ∆PLB are assumed to depend only on network
perturbations). Disregarding for simplicity the transfer functions GgA,GcA and GgB,GcB ,
the effects of which are respectively similar to those of GfA and GfB , it follows that:

∆ΩA =

(
s2 + K

MB

)
(∆PrA −∆PLA)+ K

MB

(∆PrB −∆PLB )

MAs

(
s2 + K

MAB

)

and similarly for ∆ΩB (it only requires to interchange each other the indices A
and B), with:

MAB � MAMB

MA +MB

Under the adopted hypotheses, such equations reveal the presence of an undamped
resonance, at the frequency

√
K/MAB , which is the frequency of the electromechanical
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oscillation between A and B (such a frequency usually results in 3–10 rad/sec, and
thus much larger than the cutoff frequency of the primary regulation). By imposing
∆PrA = −GfA(s)∆ΩA, ∆PrB = −GfB (s)∆ΩB , it is possible to derive that:

∆ΩA =
−
(
s2 + s GfB

MB

+ K

MB

)
∆PLA − K

MB

∆PLB

MA

[
s

(
s + GfA

MA

)(
s + GfB

MB

)
+ K

MAB

(
s + GfA +GfB

MA +MB

)]

(and analogously for ∆ΩB ), where the polynomial inside squared parenthesis at the
denominator is the characteristic polynomial, the roots of which (in s) define the dynamic
behavior of the linearized system.

Because of the relatively high value of the frequency ν = √
K/MAB , at which the functions

GfA(̃ν), GfB (̃ν) usually have a very small magnitude, the above-mentioned polynomial
can, for all practical purposes, be approximated by:

(
s + GfA +GfB

MA +MB

)(
s2 + s

(
GfA

M2
A

+ GfB

M2
B

)
MAB + K

MAB

)

so that the characteristic roots can be evaluated by:

0 = s + GfA +GfB

MA +MB

0 = s2 + s
(
GfA

M2
A

+ GfB

M2
B

)
MAB + K

MAB

These results become exact in the case (not far from usual practice) in which GfA/MA =
GfB/MB .

The former of these equations is the characteristic equation obtained under the hypothesis
of synchronism between A and B; the latter equation accounts for the oscillatory phe-
nomenon and the damping effect (positive or negative) that the f/P control has on it.
Regarding this last aspect, the stability condition, i.e., a positive damping of the oscillation,
can practically be translated into:

Re

((
GfA

M2
A

+ GfB

M2
B

)
(̃
√
K/MAB )

)
> 0

which must be properly accounted for in the synthesis of GfA(s) and GfB (s) if the system
did not actually include other damping elements (see also Sections 7.2.2a and 8.5.1).

However, primary regulation alone is not sufficient enough to achieve a zero
frequency error and an acceptable load sharing between units, at steady-state.

In fact, if the frequency regulation were achieved by the speed regulation of
one unit, letting the other unit speeds conform to the regulating unit under the
effect of the synchronizing actions, this unit would be requested to face, alone,
the total load variation ∆PL. Besides the consequences associated with the risk
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of a regulating unit outage, this situation would not be acceptable in practice for
various reasons, including:

(1) the power of the regulating unit may be insufficient to cover the total
load variations;

(2) the rapidity of the regulation may be poor, even for relatively modest load
disturbances, since as already mentioned the power of the regulating unit
cannot vary too rapidly(6);

(3) allowing a single unit to provide all variations in regulating power, with
the generation of the other units fixed at the scheduled values, can lead
to an unsatisfactory sharing of the generated powers, with overloads on
some lines and possible detrimental impacts on stability itself.

The suitability of sharing the burden of the regulation among several units,
which have sufficient power and are conveniently located, thus remains confirmed.

On the other hand, if the regulation is performed by means of more units
of which only one has a zero permanent droop (bp = 0), the slowest compo-
nents of the load variations (as the corresponding transients exhaust) still tend
to charge only the zero-droop unit, with the same inconveniences (1) and (3)
mentioned above.

Purely for illustrative purposes, some examples of trends of ∆Pr1, ∆Pr2 in response to
a step ∆PL are shown in Figure 3.29, assuming that the regulation is provided only by
units 1 and 2, with:

Gf 1(s) = Pnom 1

Ωnom

1 + sT2

sT2bt1
(i.e., bp1 = 0)

Gf 2(s) = Pnom 2

Ωnom

1 + sT2

bp2 + sT2bt2

and disregarding the effects of Gg(s) and Gc(s).

In the initial part of the transient — of a relatively short duration, approximately 5–10
btTa , with:

bt �
[

1

Pnom

(
Pnom 1

bt1
+ Pnom 2

bt2

)]−1

(see Equation [3.3.5]) — the regulating powers vary in the ratio of ∆Pr1/∆Pr2 ∼=
(Pnom 1/bt1)/(Pnom 2/bt2), with a peak in (∆Pr1 +∆Pr2) that is slightly larger than ∆PL,
to bring back the frequency error (not indicated in the figure) to relatively negligible

(6) For given values of νt and γ , the gain of the regulator should be approximately proportional to
Pnom and, therefore, should usually assume very large values. On the other hand, because of limits
on the regulating power rate of change, there is no practical value in increasing the gain of the
regulator beyond prefixed values, hence one should be forced to accept a relatively low value of the
cutoff frequency νt .
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Figure 3.29. Response of the regulating power variations (∆Pr1, ∆Pr2) to a step
of load variation (∆PL), in the case of two units, with:

bt =
[

1

Pnom

(
Pnom1

bt1
+ Pnom2

bt2

)]−1

νt = 1

btTa

and furthermore:

Pnom1/bt1

Pnom/bt
νtT1 = bt2T2

bp2btTa
νtT2

1 0.7 150 3
2 0.5 150 3
3 0.7 60 3
4 0.5 60 3

values; after which the transient exhibits a long “tail,” during which the second unit
“discharges” itself at the expense of the zero-droop unit, which then ends up by taking
all the load variation.

To share the load among several units at steady-state conditions as well, one
might decide to assume bpi = 0 for more than one unit. However, even such
a solution would not be acceptable because the load sharing over the zero-
droop units would, in practice, be indeterminate and extremely sensitive to the
frequency references of such units. More precisely, because of unavoidable dif-
ferences between the frequency references Ωrif i on the various zero-droop units,
the frequency Ω would conform to the frequency reference of only one unit,
whereas the remaining units would go to the full open position or to the full
closed position (according to whether Ωrif i ≷ Ω).

Therefore, with only primary regulation it is usually necessary to renounce
attempts to ∆εf = 0 at steady-state, and to assume nonzero permanent droops
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for all the regulating units. By generically posing that:

Gfi (s) = KIfiT1i
1 + sT2i

1 + sT1i
= Pnom i

Ωnom

1 + sT2i

bpi + sT2ibti
[3.3.3]

(see Equations [3.1.7] and [3.1.8]), the permanent regulating energy caused by
the whole set of regulators is then given by the static gain:

Gf (0) �
∑
i

Gfi (0) =
∑
i

KIfiT1i = 1

Ωnom

∑
i

Pnom i

bpi

and corresponds to a permanent droop:

bp �
(

1

Pnom

∑
i

Pnom i

bpi

)−1

[3.3.4]

The transient regulating energy and the transient droop are similarly respectively
given by the following:

Gf (∞) �
∑
i

Gfi (∞) =
∑
i

KIfiT2i = 1

Ωnom

∑
i

Pnom i

bti

bt �
(

1

Pnom

∑
i

Pnom i

bti

)−1

[3.3.5]

The summations above must be extended only to the regulating units; therefore,
for example, if the regulating units have equal permanent droop values bpi =
3%, and an overall power Pnom/3, then it follows bp = (bpiPnom)/(

∑
i Pnom i) =

3bpi = 9%, and so on.
By selecting the regulators’ parameters using criteria similar to those already

illustrated with a single unit, the cutoff frequency of the primary regulation is
then still expressed by:

νt ∼= νt = 1

btTa

and, therefore, it is approximately proportional to 1/bt because of the slight
variability of the resulting start-up time Ta(7).

Finally, with reference to Equation [3.3.3], it is possible to state that, in
response to load disturbances:

(7) However, the regulating units usually constitute only a part of the units of the system, whereas
the remaining units are kept at a fixed load, and it is thus opportune that the gain of their regulators
(and in particular 1/bti ) is larger than the value selected for isolated operation, to avoid too small
values of 1/bt and therefore of νt .
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• during the relatively rapid phases of the frequency transients (e.g, under the
normal fluctuations of the load, or in the initial part of the transient caused
by a step of load), the regulating units react roughly proportionate to the
respective values of Pnom i/bti , i.e., to the respective transient regulating
energies (see also Fig. 3.29);

• during the slowest phases of the frequency transients (e.g., in response
to slow load variations, or in the final part of the transient caused by a
step of load), the regulating units tend instead to react to the disturbance
proportionate to the respective values of Pnom i/bpi , i.e., to the respec-
tive permanent regulating energies (usual values of the permanent droop:
e.g., bpi = 2%–5% for thermal units and for hydrounits with Pelton tur-
bines, and much larger values, e.g., 15%–20% for other units in primary
regulation).

At steady-state conditions, it then holds:

∆Pri = − Pnom i

Ωnombpi
∆Ω,

∑
i

∆Pri = ∆PL

and therefore:

∆Ω = −Ωnombp

Pnom
∆PL, ∆Pri = Pnom i

bpi

bp

Pnom
∆PL

in accordance to Figure 3.30, by using the static characteristics (Ω, Pri ) of the
different regulating units.

In particular, the static frequency error is not zero, and to overcome this
drawback, other actions must be taken in the form of “secondary” regulation, as
discussed in the following sections.

Figure 3.30. Static characteristics of units under primary regulation and sharing
of the regulating powers for varying frequency.
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system A system B

f/P control for
the system A

teletransmission
         system

control of the
transmitted

power

f /P control for
the system B

Figure 3.31. Control of the power transmitted through a direct current link, as
a function of the frequencies at the two terminals: broad block diagram.

Figure 3.32. Example of block diagram for the system in Figure 3.31 for small
variations. (The dashed inputs indicate possible signals from the secondary f/P
controls.)

In the case of two systems A and B connected through a dc link (see Fig. 3.31 and
Section 5.5), by acting on the transmitted power PAB it is possible to realize a recip-
rocal support between the two systems, even at the primary regulations level. In this
concern, it is clearly convenient that the power PAB increases for increasing values of
ΩA and diminishes for increasing values of ΩB . A possible control scheme is shown
in Figure 3.32, for which the transfer functions GNA � (−∂ΩA/∂PLA)∆PAB =0, GNB �
(−∂ΩB/∂PLB )∆PAB =0 are defined as in Equation [3.3.2], and therefore they account for
the primary frequency regulations in the two systems. The loss variations in the link
are disregarded for simplicity. The control of PAB implies also a communication sys-
tem between the two stations; in case of an outage in such system, the control must be
properly “locked.”
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If the “deadband” between∆α and∆β is omitted (thus assuming∆β = ∆α, see Fig. 3.32),
assuming GA � KAgfc,GB � KB gfc it follows that:




∆PAB = −GAGNA∆PLA +GBGNB∆PLB

1 +GAGNA +GBGNB

∆ΩA = −GNA [(1 +GBGNB )∆PLA +GBGNB∆PLB ]

1 +GAGNA +GBGNB

∆ΩB = −GNB [GAGNA∆PLA + (1 +GAGNA)∆PLB ]

1 +GAGNA +GBGNB

In the absence of control on PAB it would be ∆PAB = 0, ∆ΩA = −GNA∆PLA, ΩB =
−GNB∆PLB , as in separate operation. If the link were in ac, disregarding the transient
differences between ΩA and ΩB , it would instead hold:

∆PAB = −GNA∆PLA +GNB∆PLB

GNA +GNB
, ∆ΩA = ∆ΩB = −GNAGNB (∆PLA +∆PLB )

GNA +GNB

without the possibility of adjusting the reciprocal support between the two systems.

By means of a proper choice of GA and GB , the effect of ∆PLA on ∆ΩA can be con-
veniently reduced (with respect to the case ∆PAB = 0), but at the cost of a perturbation
on the system B, accompanied by an “induced” variation ∆ΩB ; similar conclusions then
hold in response to ∆PLB . The frequency variations induced in the two cases relate to
each other by:

∂ΩA/∂PLB

∂ΩB/∂PLA
= GB

GA
= KB

KA

and this must be considered in the choice of the ratio KB/KA. In this concern,

• the assumption KA = KB may appear to penalize the system in which the load
perturbation (∆PLA or ∆PLB ) is likely minor, i.e., in practice for the system with
smaller power;

• by assuming that system B is the one with smaller power, it is then convenient to
choose KB adequately larger than KA, thus giving more importance to the frequency
variations that occur in the system B (remember that ∆α = KA∆ΩA −KB∆ΩB ).

In the extreme case in which A is much larger than B, and it is assumed KA = 0, it
specifically follows that:

∆PAB = −GB∆ΩB = GBGNB

1 +GBGNB
∆PLB

so that the link behaves, for the system B, as an additional unit under primary regulation.
A form similar to Equation [3.3.3] can be imposed to the function gf c(s), at least within
the frequency range of interest for the primary regulation.
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Generally, the interposition of the deadband between ∆α and ∆β (see Fig. 3.32) avoids
the control of PAB when the perturbations are relatively modest. In any case, restoring
the desired frequency values in the two systems is then left to the respective secondary
regulations, with or without involving the PAB control.

Furthermore, it may be useful that ∆β also depends on the speeds of variation of ∆ΩA
and ∆ΩB , particularly when facing relatively large perturbations, or perturbations that
might even lead one of the two systems to emergency conditions. In such a way, in fact,
the support of the other system may be conveniently anticipated.

However, it is important to avoid the situation in which, under large perturbations, one of
the two systems drags the other to unacceptable frequency values (and more specifically
to a frequency collapse, when the total available power results to be insufficient; see
Section 3.5). It is then convenient to limit the variation range of the transmitted power
and not allow further increases of PAB when ΩA is already too low (or ΩB too high), and
further decreases when ΩB is already too low (or ΩA too high).

3.3.2. Characteristics of the Secondary Control

In Section 3.3.1, it was seen that the primary regulation alone does not permit
the load to be distributed over several units, under steady-state conditions with
∆εf = 0. The zero-droop unit could benefit only temporarily from other regu-
lating units, hence the available regulating power for the entire system, under
steady-state conditions, would only be the regulating power of this unit. Such an
inconvenience may be overcome by using a proper “secondary” regulation, in
accordance with Figure 3.33.

The “secondary regulator” (also called “network regulator”) is unique for the
whole system and is generally located at the central dispatching office, men-
tioned in Section 2.5. The input of the secondary regulator is constituted by the
frequency error εR = ΩRIF −Ω , where ΩRIF is the “secondary” frequency refer-
ence usually locked at the nominal value, whereasΩ is the actual frequency value
(locally measured, or possibly deduced as a mean value from several measure-
ments, performed at different network locations). The output yR of the regulator
(also called “level” of the secondary regulation) is then translated by the block
called “dispatcher” into the power references Prif i of the primary regulators, to
act on the driving powers of the respective units.

The scheme implies the existence of a communication system (not shown in the
figure) that connects the central office to different generating units. The dispatcher
functions may be partially delegated to the peripheral offices (Section 2.5), thus
realizing the passage from yR to each Prif i according to a scheme having a tree
structure, with a more and more increasing detail. Usually, only some of the
units may be on secondary regulation, whereas the remaining units might be
under (only) primary regulation or maintained at locked generation.

To have a zero frequency error under steady-state conditions, it is no longer
necessary to impose that the permanent droop bp of the primary regulation be
zero, since it is sufficient to have an “integral” action in the secondary regu-
lator. In this way, under steady-state, it follows that εR = 0 (provided that the
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frequency
reference

frequency

secondary
regulator

level

dispatcher
to primary
regulators

generation schedule
(from the active dispatching)

Figure 3.33. Secondary regulator and dispatcher: block diagram in the case of
isolated system.

total available regulating power sufficiently covers load variations), and thus the
frequency Ω is driven to the desired value ΩRIF.

By assuming bpi �= 0 for all the units (and that the frequency references are
constant and equal one another), the power variations caused by the primary
regulation are zero because ∆Ω = 0, whereas the distribution of the load power
over the various units depends (at steady-state) only on the signals Prif i , and then
it may be achieved as desired through the suitable selection of such signals.

For units at the same power plant or pertaining to neighboring plants, and operating in a
more or less occasional way on a relatively small network, it would be possible to think
of regulating the frequency by a single zero-droop unit, by “interlocking” the primary
regulators of the other (nonzero droop) units with the output of the regulator (or with the
generated power) of the zero-droop unit. In this way, such a regulator would behave as a
primary regulator for its own unit, and as a secondary regulator for the others. However,
this solution — conditioned to a precise choice of the roles of the different units — must
be properly corrected to avoid unacceptable operation whenever the zero-droop unit is
disconnected from the network.

For small variations, the dependence of the single Prif i’s on yR can be generally
defined by equations such as ∂Prif i/∂yR = Ri , where R1, R2, . . . are suitable
constants that determine the sharing of the active power generated at steady-
state(8).

Such a share must account for both the generation schedule determined at the
active dispatching stage, and the differences between the actual load situation and
the foreseen one; it then seems reasonable to assume the following equations:

∆Pdi = ∆Pbi + ri(∆Pd −∆Pb) [3.3.6]

(8) Actually, transfer functions Ri(s) should be considered to account for the response delays of the
communication system. Nevertheless, such delays may be considered negligible in the present anal-
ysis, since their effects, in terms of frequency response (s = ̃ ν), fall into a range of relatively high
frequencies (e.g., ν > 0.3 rad/sec) with respect to the cutoff frequency of the secondary regulation.
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with: ∑
i

ri = 1 [3.3.7]

where:

Pdi = (“desired”) power demanded to the i-th unit

Pbi = (“base”) power scheduled for the i-th unit

Pd �
∑
i

∆Pdi

Pb �
∑
i

∆Pbi

and where ri , called “participation factor” of the i-th unit, may be chosen based
on an economic criterion (recall the factors gi defined in Section 2.3.1a).

By assuming ∆Prif i = ∆Pdi , the desired share can be then realized by:

∆Prif i = ∆Pbi + Ri∆yR
and furthermore (where R �

∑
i Ri):

∆yR = ∆Pd −∆Pb
R

,
Ri

R
= ri

For a thermal generation system, the economic dispatching also can be achieved by assum-
ing the level yR as the “incremental cost” (see Section 2.3.1) equal for all the units under
secondary regulation, and thus imposing that the single Pdi ’s vary with yR according to
their respective incremental cost characteristics, which are generally nonlinear. The values
Pdi ’s then become directly dependent on yR , avoiding any preventive scheduling of the
base values Pbi ; the result is a completely automatic updated dispatching, which, how-
ever, is based only on the economic criterion. The scheme may be modified, at the cost of
evident complications, to include the network losses by means of a suitable “loss formula.”

The variation of the regulating power ∆Pri of the generic i-th unit also may
be seen as the sum of two contributions ∆P ′

ri and ∆P ′′
ri , which respectively define

the variations of the “primary” regulating power (which depends on the primary
frequency error εfi ) and of the “secondary” one (which depends on∆Prif i = ∆Pdi ).
The block diagram of Figure 3.34 finally results, in which GF(s) � Go(s)/R =
(∆yR/∆εR)(s) is the transfer function of the secondary regulator, with a pole at
the origin, whereas Gfi (s) � (∂Pri/∂εfi )(s) and Fpi (s) � (∂Pri/∂Prif i)(s) are the
transfer functions (already considered in previous sections) realized by the primary
regulator of the i-th unit, with:

Fpi (0) = 1 [3.3.8]

(it then follows at steady-state: ∆PR �
∑
i ∆P

′′
ri = ∑

i ∆Pdi = ∆Pd ).
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Figure 3.34. Block diagram of the system in Figure 3.33 for small variations
(and interactions with the primary regulation).

Figure 3.35. Overall block diagram for small variations, corresponding to the
solution of Figure 3.34.

Finally, the overall control scheme is as shown in Figure 3.35, with:

GR(s) � GF (s)
∑
i

RiFpi (s) = Go(s)
∑
i

riFpi (s) [3.3.9]

where Ri = ri = 0 for those units which do not take part into the secondary
regulation, and where

∑N
1 i∆P

′
ri and ∆PR �

∑
i ∆P

′′
ri are the total variations of

the primary and secondary regulating powers, respectively. The former summa-
tion must be extended to all the units under primary regulation, and the latter to
those under secondary regulation. Thus, in general, only a portion of the units
takes part to both the summations. A unit also might be active only under the
secondary regulation, i.e., without taking part to the primary regulation. It is,
in fact, sufficient that its regulator was used purely as a power regulator, with
frequency thresholds, according to Section 3.2.

Actually, each single ∆P ′′
ri also contains a “tertiary” component that depends on possible

variations ∆Pbi decided under the real-time scheduling (see Section 2.5). However, at
steady-state, the tertiary components have influence on ∆yR and the different ∆P ′′

ri ’s,
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Figure 3.36. Block diagram equivalent to that of Figure 3.35 for ∆Ωrif i = 0 and
∆Pbi = 0 ∀i.

but not on the total variation ∆PR (in fact, because of the only ∆Pbi , it follows ∆Pd =
∆PR = ∆PL = 0, ∆yR = −∆Pb/R, ∆P ′′

ri = ∆Pbi − ri∆Pb).
By the real-time scheduling, the base powers Pbi and the participation factors ri themselves
are actually updated, e.g., every 5 minutes or more. Such an update may be determined
based on the “state estimation” of the system operation (Section 2.5) or, more simply, by
accounting for the value Pd (total desired power) deducible from Pb and from the value
of the “level” yR at the output of the regulator.

From Figure 3.35, and by assuming all ∆Ωrif i and ∆Pbi to be zero, it is
possible to derive Figure 3.36, which is particularly suitable for examining the
dependence of the system behavior on the characteristics of the secondary regu-
lator. In such a block diagram, for simplicity, it has been assumed that:

GN(s) � 1

Gf (s)+Gg(s)+Gc(s)+ sM [3.3.10]

where Gf (s) �
∑N

1 iGfi (s) (recall Equations [3.3.1] and [3.3.2]). The transfer
function GR(s) is defined by Equation [3.3.9].

In general, because of the integral action of the secondary regulator, at steady-state it
holds that ∆εR = 0 and thus:

∆Ω = ∆ΩRIF

whereas:

N∑
1

i∆P ′
ri =

N∑
1

iGfi (0)(∆Ωrif i −∆ΩRIF) [3.3.11]

∆Pd = ∆PR = ∆PL + E∆ΩRIF −
N∑
1

iGfi (0)∆Ωrif i [3.3.12]

where:

E � Gf (0)+Gg(0)+Gc(0) = 1

GN(0)
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is the total (permanent) regulating energy of the system (Section 3.1.3), from which sim-
ply ∆Ω = 0,

∑N
1 i∆P

′
ri = 0, ∆Pd = ∆PR = ∆PL, if all the frequency references are

maintained locked. In any case, at steady-state, it then holds that:

∆Pdi = ∆P ′′
ri = ∆Pbi + ri(∆PR −∆Pb) [3.3.13]

(i.e., ∆P ′′
ri = ri∆PR if the base powers are kept constant), so that the total variation ∆PR

is shared among the units according to Equation [3.3.6].

As to the synthesis of the secondary regulator (with reference to Fig. 3.36),
the function GN(s) has generally a very high dynamic order (since the number
of units under primary regulation is very large) and can be actually known only
with some approximation. Also for this reason, it is convenient to accept a cutoff
frequency νt relatively low (e.g., 0.01–0.02 rad/sec) so that, for the synthesis
of Go(s), the functions GN(s) and

∑
i riFpi (s) may be approximated by their

respective static gains, which can be known in an easier way:

{
GN(0) = 1/E∑
i riFpi (0) = 1

As seen in Section 3.2, the functions Gfi (s), which contribute to the GN(s), and Fpi (s)

may somewhat be affected by slow phenomena that occur at the same low-frequency
range in which the secondary regulation operates. These slow phenomena may be related,
for example, to boiler controls or to the behavior of pressure tunnel and surge tank.

By adopting a Go(s) of the purely integral type, i.e.,(9):

Go(s) = Ko

s
[3.3.14]

with Ko sufficiently small, it then results that νt ∼= νt � Ko/E, so that it must
be simply assumed that:

Ko = Eνt [3.3.15]

with νt within the above-mentioned range. For the secondary regulator, the fol-
lowing transfer function (see Fig. 3.34) finally holds:

GF(s) � Go(s)

R
= Ko

sR
[3.3.16]

(9) The use of a proportional-integral regulator, i.e., a Go(s) of the type Go(s) = Ko(1 + sTo)/s,
does not appear to be strictly justified; on the contrary, it may adversely affect the stability if it
implies an excessive increase of the cutoff frequency.
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With Equation [3.3.16], the gain of the secondary regulator must be inversely
proportional to R �

∑
i Ri ; this must be considered, e.g., with a disconnection

from the network of one or more units under secondary regulation, with conse-
quent reduction of R (at the same values Ri for the units which remain connected).

From the realization point of view, the most traditional solution is directly
based on the scheme of Figure 3.34, with:

• communications (at least for the largest distances) only of the level sig-
nal yR;

• dispatching (according to the agreed values R1, R2, . . .) delegated to the
peripheral offices or even to the power plants;

• timely communication, to the central office, of possible modifications in the
participation to the secondary regulation, so that the gain of the regulator
can be adjusted (see Equation [3.3.16]) based on the updated value of R.

More updated solutions require communication of several signals to realize a
complete control by the central office of the active powers delivered by the units
under secondary regulation, and thus of the total power dispatching (“automatic
generation control”). The involved signals are useful for the real-time scheduling
(Section 2.5).

Apart from possible variations with specific details, such solutions may be of
the form shown in Figure 3.37, in which Pei represents the active power delivered
by the generic unit under secondary regulation (i.e., being the losses in the unit
negligible, the generated power), and Pe �

∑
i Pei is the active power delivered

(or even generated) as a whole by these units.
The scheme includes, for each unit under secondary regulation, an integral

“power regulator” (ki/s), which acts on the primary regulator. The functions
Gpi (s), Gfi (s) are achieved by means of the primary regulator. The output of the
power regulator also may be Prif i , in which case it holds Gpi (s) = Fpi (s) and
thus, because of Equation [3.3.8], Gpi (0) = 1.

Figure 3.37. Variation of the block diagram of Figure 3.34 with centralized con-
trol of the active powers generated (“automatic generation control”).
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As a consequence of the integral action of the power regulators, at steady-state
∆Pdi = ∆Pei − Bi∆εR, and thus ∆Pd = ∆Pe −∑i Bi∆εR . As it holds that
∆Pd = ∆Pe + Bo∆εR , it follows, as desired, that ∆εR = 0 (i.e., ∆Ω = ∆ΩRIF),
independently of the disturbance ∆PL and variations ∆Pbi .

Furthermore it can be written:

∆P ′
ri = Gfi (s)(∆Ωrif i −∆Ω)

∆Pei = ∆P ′′
ri +Gfi (s)∆Ωrif i − 1

GNi (s)
∆Ω

where:
1

GNi (s)
� Gfi (s)+Ggi(s)+ sMi

At steady-state Equation [3.3.11] holds, and Equations [3.3.12] and [3.3.13] are re-
placed by:



∆Pd = ∆Pe = ∆PR +

∑
i

Gfi (0)∆Ωrif i −
∑
i

Ei∆ΩRIF = ∆PL + Eo∆ΩRIF

∆Pdi = ∆Pei = ∆Pbi + ri(∆Pe −∆Pb)

where Ei � 1/GNi (0), Eo � E −∑i Ei . Based on these relationships, it can be observed
that the dispatching defined by Equation [3.3.6] is now achieved, more suitably, with
reference to the total variation ∆Pe, rather than with reference to the total variation
∆PR (which is relative only to the secondary regulating power). However, the results are
coincident if all the frequency references remain locked.

For ∆Ωrif i = 0:

∆Pei = ∆P ′′
ri − 1

GNi (s)
∆Ω [3.3.17]

∆Pe = ∆PR −
∑
i

1

GNi (s)
∆Ω

so that the variation ∆Ω = GN(s)(∆PR −∆PL) also can be written as:

∆Ω = GNo(s)(∆Pe −∆PL) [3.3.18]

where:
1

GNo(s)
� 1

GN(s)
−
∑
i

1

GNi (s)

Recalling Equation [3.3.10], it is evident that 1/GNo(s) is constituted by the sum of Gc(s)
and of all the functions (Gfi (s)+Ggi(s)+ sMi) which concern the units excluded by the
secondary regulation.
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If it were possible to assume:

Bo = 1

GNo(s)

Bi = 1

GNi (s)




[3.3.19]

then, the signals ∆Pd , (∆Pei − Bi∆εR) shown in Figure 3.37 would, because of Equations
[3.3.17] and [3.3.18], then be given by:

∆Pd = ∆Pe + Bo∆εR = ∆PL + 1

GNo(s)
∆ΩRIF

∆Pei − Bi∆εR = ∆P ′′
ri − 1

GNi (s)
∆ΩRIF

so that the overall control scheme might turn into that shown in Figure 3.38, which is
typical of a simple open-loop regulation with a “compensation” for the disturbance ∆PL.

Assuming, for simplicity, all ∆Ωrif i and ∆Pbi to be zero, the block diagram
of Figure 3.39a can be derived, in which:




H1(s) �
∑
i

(riBo + Bi) kiGpi (s)

s + kiGpi (s)

H2(s) � 1

s
∑
i

ri

s + kiGpi (s)

H3(s) �
∑
i

(
ri
∑
k

1

GNk (s)
− 1

GNi (s)

)
kiGpi (s)

s + kiGpi (s)

Figure 3.38. Overall block diagram for small variations, corresponding to the
solution of Figure 3.37 under the assumptions indicated in text.
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Figure 3.39. Overall block diagram for small variations, corresponding to the
solution of Figure 3.37 for∆Ωrif i = 0 and∆Pbi = 0 ∀i. From (a), one can derive
the block diagram (b), which is more directly comparable to that of Figure 3.36.

from which the block diagram shown in Figure 3.39b, with:



G′
(R)(s) � H1(s)H2(s)

G′
(N)(s) � GN(s)

1 +H2(s)H3(s)GN(s)

and ∆P ′
R � ∆PR +H2(s)H3(s)∆Ω . In particular, in H2(s), there is a pole at the

origin that is also present in G′
R(s).

For relatively low frequencies, which may be of interest for the synthesis of the
control system, if it is assumed that Gpi (s) ∼= Gpi (0) and imposing kiGpi (0) = K
for all the units, it can be simply written that(10):




G′
R(s)

∼= (Bo +
∑
i

Bi)
K

s

G′
N(s)

∼= 1

GNo(s)
+
∑
i

1

GNi (s)
= GN(s)

(10) More generally, if kiGpi (s) = K(s) for all the units, then H3(s) = 0, G′
R(s) = H1(s)H2(s) =(

Bo +∑i Bi
)
K(s)/s,G′

N (s) = GN(s), and furthermore:

∆PR = ∆P ′
R = G′

R(s)∆εR =
(
Bo +

∑
i

Bi

)
K(s)

s
∆εR

which also can be directly derived from the scheme shown in Figure 3.37, observing that the signals
∆Pe , ∆Pei would evidently have no overall effect on ∆PR .
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As G′
N(s)

∼= GN(s), the function G′
R(s) may be chosen as the function

GR(s) previously considered, or even (by Equation [3.3.9], with
∑
i riFpi (s) ∼=∑

i riFpi (0) = 1) as the function Go(s). Therefore, by writing, according to
Equations [3.3.14] and [3.3.15]:

G′
R(s) = Ko

s
∼= Eνt

s

it can be derived that: (
Bo +

∑
i

Bi
)
K ∼= Eνt

where νt ∼= νt � Ko/E is the cutoff frequency (which is quite low) of the sec-
ondary frequency regulation.

The above condition may be satisfied, for example, by assuming that:



Bo = 1

GNo(0)
= Eo

Bi = 1

GNi (0)
= Ei

to realize Equations [3.3.19] at least in the low-frequency range. It then follows
that Bo +∑i Bi = 1/GN(0) = E, and thus:

K ∼= νt

The schemes discussed above are primarily for illustrative purposes, and there are a variety
of schemes in actual use. Furthermore, for simplicity, it has been assumed that the control
is realized “in continuous time.” The most updated solutions use digital computers as
elements of the controlling system, and this may allow the realization of further particular
functions, which can overlap the ones described above. The control by computer can,
for example, enable the adaptive setting of limits or thresholds on some signals, and the
possible interlocking of the power regulators for which the error (∆Pdi −∆Pei + Bi∆εR)
does not have the same sign as ∆εR , and so on. Furthermore, the input signals must be
adequately filtered, according to the sampling period adopted (e.g., 2–5 sec).

As a concluding remark, the following provides a description of the overall
operation, concerning frequency and active power:

• By means of the previsional scheduling adequately corrected in real time,
a dispatching of the generated active powers is determined. This is defined,
for all the units, by the “base” values Pbi .

• However, the actual operating situation may differ from the foreseen one
because of different reasons, which may be classified into:
(1) random fluctuations of the load having zero mean and which may be

relatively fast;
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(2) structural perturbations (particularly, connection or disconnection of a
group of loads, disconnection of one or more units), which determine,
through an initial discontinuity, a variation in the mean load and/or in
the generation;

(3) slow variations of the mean load or of the generation (load rampings,
etc.).

• The consequent imbalance between the driving powers and active powers
generated by the individual units cause speed variations which, because
of the synchronizing actions, tend to have (in relatively short time frames
and assuming that there is no loss of synchronism) the same time behav-
ior, which can be assimilated to that of the variation ∆Ω(t) of the net-
work frequency.

• With a good approximation it is then possible to write, disregarding
the fastest phenomena for which the synchronizing transients should be
accounted for, and disregarding the mechanical lost powers Ppi , that:

Pmi − Pei = Mi

dΩ

dt
[3.3.20]

for all the units (i = 1, 2, . . .). The sharing of the generated powers Pei
is then determined by the values of the inertia coefficients Mi and of the
driving powers Pmi (which vary because of the control actions), through a
consequent readjustment of the phase-shifts between the units.

• Furthermore, regarding the driving powers, the intervention of the pri-
mary control:

• limits the transient frequency variations, particularly those caused by the
slower fluctuations (1) and by the perturbations (2), by means of a sharing
of the regulating powers (primary variations ∆P ′

ri of the driving powers)
substantially determined by the values of the transient droops bti ;

• tends to lead the system, in response to the perturbations (2) or (3), to a
quasi–steady-state situation, with ∆Ω constant but nonzero, and a sharing
of primary regulating powers determined by the values of the permanent
droops bpi .

• The much slower intervention of the secondary regulation, in response to the
perturbations (2) or (3), finally results in the conditions ∆Ω = 0, ∆P ′

ri = 0,
with a sharing of the regulating powers (secondary variations ∆P ′′

ri of the
driving powers) determined by the values of the participation factors ri .

With practical effects, the result of the frequency regulations usually can be
considered satisfactory. For example, the frequency in Europe usually remains
within the range of 49.95–50.05 Hz, with a relative deviation smaller than 10−3,
approximately 99% of the time.

The satisfactory operation of the secondary regulation nevertheless requires
caution in a few situations.
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secondary
regulator

subsystem
A

subsystem
B

Figure 3.40. Example of conditions for the possible exclusion of secondary reg-
ulation in a part of the system.

If the disconnection of the system into two parts as indicated in Figure 3.40
might be possible, the secondary regulator should be sensitive to both the fre-
quency values ΩA and ΩB (normally coincident, apart from small and fast slips).
Let us assume, for example, that PAB > 0 during the normal operation, so that the
disconnection causes an increase in ΩA and a decrease in ΩB . If the secondary
regulator were sensitive only to ΩA, it would then command a reduction of the
driving power for all the units, whereas the units in B should be commanded in
the opposite sense. By measuring both frequencies ΩA and ΩB , the secondary
regulation instead can be properly excluded, at least in one of the two subsys-
tems, when such frequencies are very different from each other. In the above
example, the intervention of the emergency control in the subsystem B also may
occur, if the deficit of power were excessive (see Section 3.5).

Furthermore, it is necessary that the total regulating power PR available for
secondary regulation may vary within a sufficiently large range [PRmin, PRmax],
to efficiently face the variations of mean load (caused by forecasting errors), the
unavailability of some units, etc. (otherwise a steady-state frequency error results,
depending also on the primary regulation).

Therefore, also this range of variation (called “secondary regulating power
band”) must be adequately scheduled (in the short-term and in real time, and
in a measure possibly varying along the day). From the behavior of the “level”
yR, useful indications may be deduced for the updating of the values Pbi , ri
(as already seen) and of the above mentioned “band” and the set of operating
units itself.

Usually, the various types of units contribute in differing measures to the secondary
regulating power band. Typical relative values are as follows:

• for hydroelectric units:

• with Pelton turbine: Pmi = 0 − 100%;

• with Francis turbine: Pmi = 25 − 100%;

• fluent water: Pmi = constant (that is ∆Pmi = 0);

• for thermal units:
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• with traditional fuel:

Pmi = P omi ± 10%(that is (∆Pmi )max = 20%) for not large P omi , e.g., P omi = 50%,

Pmi = P omi ± 5%(that is (∆Pmi )max = 10%) for large P omi , e.g., P omi = 90%;

• nuclear units: Pmi = 100% (that is ∆Pmi = 0), if the total nuclear generation is
relatively modest.

3.3.3. Identification of the Power-Frequency Transfer Function

It has been noted that the function:

∆Ω

∆PR −∆PL (s) � GN(s) � 1

Gf (s)+Gg(s)+Gc(s)+ sM [3.3.21]

(see Equation [3.3.10]), named the “power-frequency transfer function” of the
system, generally has a very high dynamic order, and can be known only approx-
imately. In effect, the function Gf (s) �

∑
i Gfi (s) references to the large number

of units under primary regulation, and the sum (Gg(s)+Gc(s)+ sM) is made
up of the contributions of all units (with their respective inertias and “natural”
characteristics), the network, and all the loads.

Nevertheless, it also has been seen that it is usually possible to assume, within
acceptable approximation, relationships like the following:

Gf (s) =
∑
i

Gfi (0)
1 + sT2i

1 + sT1i

with time constants T1i of the same order of magnitude (e.g., 15–25 sec), and
furthermore:

Gg(s) = Gg(0), Gc(s) = Gc(0) + sM∗
c

(where M∗
c represents the overall contribution of the electromechanical loads to

the resulting inertia coefficient).
Assuming that T1i

∼= T m1 for all the units under primary regulation, it can be
deduced, as if formally there were a single regulating unit:

Gf (s) ∼= Gf (0)1 + sT m2
1 + sT m1

with Gf (0) = ∑
i Gfi (0), T m2 �

∑
i Gfi (0)T2i/Gf (0). Thus:

GN(s) ∼= 1

E

1 + sT m1
1 + 2ζ

s

νo
+ s2

ν2
o

[3.3.22]
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where:
E � Gf (0)+Gg(0)+Gc(0)

is the total (permanent) regulating energy of the system, whereas:




νo �
√

E

T m1 (M +M∗
c )

ζ � νo

2

(
T m2 + (Gg(0) +Gc(0))(T m1 − T m2 )+M +M∗

c

Gf (0)

)

respectively define the resulting resonance frequency and damping factor, which
are practically in the same order of magnitude as those defined in Section 3.1.2
when referring to a single unit (e.g., νo = 0.2–0.4 rad/sec, ζ = 0.6–0.9).

The adopted hypothesis might appear too simple; on the other hand, relatively precise
estimations of GN(s) would introduce complexities that are unnecessary for practical
purposes. It also must be considered that the linearized models of the individual equipment
are susceptible to variations under operation, with a consequent dispersion in the parameter
values, because of the different nonlinearities (particularly, the insensitivities in the valve
positioning systems etc. may constitute an important cause of dispersion, just in the small
variation range). Furthermore, it should be remembered that the definition itself, GN(s) �
∆Ω/(∆PR −∆PL), is based on the simplifying hypothesis of “coherency” between all
the machines of the system.

In particular, it can then be presumed that the response of ∆Ω to a step
(∆PR −∆PL) applied at the instant t = 0, exhibits an initial slope equal to:

d∆Ω

dt
(0+) = ∆PR −∆PL

M +M∗
c

[3.3.23]

and then, if Equation [3.3.22] is acceptable, a single damped “dominant” oscil-
lation, up to the final value:

∆Ω(∞) = ∆PR −∆PL
E

[3.3.24]

On the other hand, even a general (but sufficiently credible) knowledge of
GN(s) appears to be appropriate, at least for:

• the synthesis of the secondary regulator, particularly for evaluating the pos-
sibility of increasing the gain Ko and, thus, the cutoff frequency (and the
response speed) of the secondary regulation (recall Equations [3.3.14] and
[3.3.15]);

• the diagnosis of emergency conditions and the choice of possible load shed-
ding, according to Section 3.5.
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The use of experimental tests may overcome the difficulties and uncertain-
ties related to the updated knowledge of the large amount of data required;
nevertheless, particular problems may arise, both in the organization of the tests
and in the interpretation of their results.

Through tests of the deterministic type it is necessary to cause frequency varia-
tions that are clearly distinguishable from those caused by the casual perturbations
under normal operation. Such tests may be realized, as specified in the following,
by imposing a sudden disconnection of a power plant (or of the interconnection
with other systems, assumed as the unique one), with the secondary regulator
locked (∆PR = 0). Sudden disconnections or connections of loads having suffi-
cient power, would imply greater difficulties, whereas tests in response to ∆PR
(caused by a suitable variation in the level yR) would require estimation of the
actual behavior ∆PR(t) itself (which might be quite slow, because of limits in
the response speed of the plants involved).

Instead, the use of statistical identification methods does not imply any large
programmed perturbation; such methods are based on the normal casual pertur-
bations (which are assumed to be characterized in a statistical sense) and may
even, theoretically, allow an on-line identification through continuous measuring
and processing of the operating system data. However, the computations required
are much more complex than those of the deterministic methods, and significant
uncertainties may arise from inadequate knowledge of statistical properties of the
load demands. Furthermore, the choice of long recording durations (e.g., hours)
to reduce the truncation errors in statistical analysis, may be made useless by the
variability of the system during the operation itself.

The effects of insensitivities may have a determinant weight in theGN(s) identified by sta-
tistical methods, usually based on very small fluctuations, whereas they may even scarcely
affect the results obtained by deterministic methods. The two methods can, therefore,
provide different information with an equally significant meaning in defining the system
behavior when reacting to perturbations of different amplitude.

By tests based on a generating plant (or tie-line) disconnection, with the sec-
ondary regulator locked (∆PR = 0), it is possible to verify with sufficient approx-
imation that a GN(s) of the type like Equation [3.3.22] is usually acceptable, with
reasonable values of parameters (particularlyM +M∗

c , E, ν0, ζ ), notwithstanding
the simplifications made for its deduction.

Usually it is convenient for the perturbation size to be some percent of the
total nominal power Pnom, as in Figure 3.41 (e.g., if the resulting permanent
droop (Pnom/ΩnomE) is 10% and the nominal frequency is 50 Hz, a perturbation
equal to 2% of Pnom leads, at steady-state conditions, to a variation of 0.1 Hz).

Higher perturbation values might be undesirable, not only because of the
disturbance to the system operation, but also for a significant identification of the
linearized model. On the other hand, modest perturbations would be inadvisable,
because of the difficulties in distinguishing their effects from those of accidental
perturbations present in the system.



3.3 ‘‘f/P’’ CONTROL IN AN ISOLATED SYSTEM 253

Figure 3.41. Italian electrical system under isolated operation and with sec-
ondary regulator locked; response of the network frequency to the trip of the
S. Massenza power plant (at 10.30 a.m. of November, 9, 1964), with a predistur-
bance output of: P = 300 MW,Q = 34.4 MVAr, and with a total rotating power
equal to approximately 13,000 MW (see reference 154).

However, some caution may be necessary to avoid large errors in the inter-
pretation of the test results. In particular:

• During transient conditions, the measurable frequencies in the different
network points have the same average trend, to which however, even
ignoring the accidental perturbations, components different from point to
point (caused by unavoidable slips between the machines) are superim-
posed. Therefore, the response ∆Ω(t) must be evaluated as a significant
estimate of only average trend (see also Section 8.2.5).

• The magnitude of the actual perturbation applied to the system must be
suitably evaluated, considering the transients (of voltages and currents) pro-
duced in the network.

With reference to the latter consideration, a structural change in the net-
work (corresponding, for example, to the disconnection here considered) causes
a redistribution of voltages and currents, such that the active power perturbation
∆PL actually produced may be quite different from the value of disconnected
active power. Furthermore, the phenomena surely call into action the voltage
regulations, so that ∆PL(t) generally does not result exactly constant after the
disconnection. In other words, the hypothesis that the actual perturbation has a
step-wise behavior may be accepted only from a simplified point of view.

In effect, the results obtained assuming that ∆PL is simply equal to the active power dis-
connected have often revealed themselves to be surprising ones, of doubtful interpretation:
e.g., values of the resulting start-up time much larger — even twice or more — than the
expected (which cannot reasonably be much larger than 8–10 sec, even with the contri-
bution of the loads). Furthermore, the unreliability of the above hypothesis, and therefore
of the consequent interpretations, has been confirmed by performing different subsequent
tests at the same node and for the same system configuration, and by observing the large
dispersion of the results.
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Figure 3.42. Representation of the electrical system for evaluating the total per-
turbation caused at the instant of disconnection.

To justify the above statements, it may be sufficient to examine the total
perturbation ∆PL(0+) of active power on the machines, caused by the sudden
disconnection (at t = 0) of power P + jQ in accordance with Figure 3.42. To
determine the response at t = 0+, each synchronous machine can be reasonably
represented by an emf. ei of constant amplitude and phase, in series with a proper
impedance, whereas it is possible to disregard the effects of the voltage regulation.
By assuming that the above-mentioned emfs are connected to one another and
to the node at which the disconnection is operated, by a linear passive network
(including also loads), it is possible to write equations:




ı = Y oov +
N∑
1

kY okek

ık = Y kov +
N∑
1

iY kiei (k = 1, . . . , N)

with ı(0−) = (P − jQ)/v∗(0−), ı(0+) = 0; it then follows:

∆v(0+) � v(0+)− v(0−) = P − jQ
−Yoov∗(0−)

∆ık(0
+) � ık(0+)− ık(0−) = Y ko∆v(0+) = Y ko(P − jQ)

−Yoov∗(0−)
(k = 1, . . . , N)

and therefore:

N∑
1

k(∆Pek + j∆Qek)(0+) =
N∑
1

kek∆ı
∗
k(0

+) =
(
N∑
1

kY
∗
koek

)
P + jQ

−Y ∗
oov(0

−)
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By observing that:

v(0+) =
(
N∑
1

kY okek

)
1

−Y oo
and posing, for brevity:

mεjβ �
∑N

1 kY
∗
koek∑N

1 kY okek

Y oo

Y
∗
oo

[3.3.25]

it can be written:

N∑
1

k(∆Pek + j∆Qek)(0+) = mεjβ(P ′ + jQ′) [3.3.26]

where P ′ + jQ′ � v(0+)ı∗(0−), that is:

P ′ + jQ′ = v(0+)
v(0−)

(P + jQ) [3.3.27]

or also, as v(0+)/v(0−) = 1 +∆v(0+)/v(0−) = 1 + (P − jQ)/(−Y oov(0−)2):

P ′ + jQ′ = P + jQ+ P 2 +Q2

−Yoov(0−)2
[3.3.28]

Finally, as ∆PL(0+) = ∑N
1 k∆Pek(0+) (see also Figures 3.26 and 3.27), from

Equation [3.3.26] it can be derived:

∆PL(0
+) = m(P ′ cos β −Q′ sin β) [3.3.29]

or also, because of Equation [3.3.28]:

∆PL(0
+) = m

(
P cosβ −Q sin β + σ P

2 +Q2

v(0−)2

)
[3.3.30]

where σ � Re
(
εjβ/(−Y oo)

)
.

It is evident that ∆PL(0+) depends not only on P but also on Q (and on
v(0−)). The computation of the parameters m and β (and σ ), from the given
system configuration and operating point, and for the assigned disconnection
node, may however not be trivial.

The difference (∆PL(0+)− P ) represents the variation of the resulting active power
injected into the network (which includes also the loads). Therefore, if the variation
in the losses is disregarded, such a difference constitutes the variation of the total active
power absorbed by the loads, caused by the voltage variations on the different loads.
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Figure 3.43. Deduction of the parameters β and σ in an elementary case (see
text): (a) reference equivalent circuit; (b), (c), (d) particular examples.



3.3 ‘‘f/P’’ CONTROL IN AN ISOLATED SYSTEM 257

In an illustrative way, some elementary numerical examples are reported in Figure 3.43,
assuming that the system includes a single machine (N = 1) and a single load, with zero
transmission losses. The diagrams of m are not reported as, for N = 1, it is simply m = 1
(as it can be deduced by Equation [3.3.25]). It is interesting to note that, by e.g., assuming:

Q

P
= 0.75 (power factor equal to 0.8),

P

v(0−)2/R
= 0.05,

R

X
∼= 3

it follows ∆PL(0+)/P ∼= 0.82,∆PL(0+)/P ∼= 0.49, and even ∆PL(0+)/P ∼= 0.36, res-
pectively in the cases of Figures 3.43b,c,d.

On the other hand, from Equations [3.3.23] (with ∆PR = 0) and [3.3.29], it
can be derived:

−d∆Ω

dt
(0+)

P ′ = m

M +M∗
c

(
cosβ − Q′

P ′ sin β
)

[3.3.31]

where P ′,Q′ (defined by Equation [3.3.27]) and (d∆Ω/dt)(0+) can be experi-
mentally determined.

By performing two (or more) tests with different values of P,Q, it is possible
to evaluate β and (M +M∗

c )/m, according to Figure 3.44 (assuming that m and
β— or equivalently, because of Equation [3.3.25], the emfs e1, . . . , eN — do not
vary from one test to another). The knowledge of β allows the determination of
∆PL(0+)/m for each test, based on Equation [3.3.29].

Then, for the identification of (M +M∗
c ) and ∆PL(0+), it is necessary to

evaluate the parameter m. However, it is reasonable to expect that:

m ∼= 1

as, in Equation [3.3.25],

Figure 3.44. Characteristic to be identified (by at least two tests) for the exper-
imental determination of β and (M +M∗

c )/m (see text).
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• the prevailing terms in the sums correspond to the Y ko, Y ok having the
largest magnitudes, and thus correspond to the emfs “closer” to the discon-
nection node (and relatively close to one another), the phases of which are
normally not different;

• usually, the mutual admittances Y 1o, . . . . . . ., YNo are predominantly reac-
tive (i.e., with a dominant imaginary part), and furthermore, Y k0 = Y 0k .

In the limit case in which all emfs have the same phase, in the ratio(∑N
1 kY

∗
koek

)
/
(∑N

1 kY okek

)
the vectors ek may be replaced by their respective

magnitudes; therefore, with Y ko = Yok , a ratio between complex conjugate
numbers (as in the case N = 1) is obtained. In the limit case in which the
admittances Y ko = Y ok are purely imaginary, the ratio under examination is equal
to −1. In both cases, then, it is m = 1.

As a consequence of the above simplification, it is then possible to derive, at a
presumably acceptable approximation, the resulting inertia coefficient (M +M∗

c )

and the values assumed by the actual perturbation ∆PL(0+) in the different tests.
For the procedure described above, the following can be noted:

• The hypothesis that m ∼= 1 proved acceptable (with an approximation even
better than 1%) not only through the computation of m for test networks,
based on Equation [3.3.25], but also through the application of the procedure
itself to real systems, which led to reasonable values of (M +M∗

c ), i.e.,
of the resulting start-up time (e.g., 9–11 sec). Furthermore, the execution
of more than two tests has confirmed the practical validity of the linear
relationship of Equation [3.3.31], according to Figure 3.44.

• To evaluate P ′ and Q′ it is necessary, by Equation [3.3.27], to measure
v(0+)/v(0−) in magnitude and phase. However, the powers P ′ and Q′ may
be usually substituted by the (disconnected) powers P andQ respectively, as
in Equation [3.3.30] the last term is normally negligible. It then follows that
∆PL(0+) ∼= P cosβ −Q sin β = Re

(
εjβ(P + jQ)), where εjβ(P + jQ) is

formally obtainable through a simple “rotation,” of an angle β, of the com-
plex power disconnected.

• Experimentally, values of β on the order of 10◦ –40◦ have been found. The
ratio ∆PL(0+)/P may be then significantly smaller than unity if the discon-
nection is performed, as it often occurs, withQ/P > 0: e.g., ∆PL(0+)/P ∼=
0.55–0.70, for β = 30◦ and Q/P = 0.4–0.6. This may justify the exces-
sive values of the resulting start-up time obtained by a priori assuming
∆PL(0+) = P (similarly, this provides an explanation for the consequent
dispersion among the test results).

• The assumptions made at t = 0+ may be considered acceptable for the first
part of the transient (e.g., some seconds), whereas the subsequent part is
influenced by voltage regulation. Disregarding the variation of the losses,
it can be assumed that ∆PL(t) tends, for increasing t , to a value closer to
P , because the load voltages are regulated toward their initial values. This
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must be considered, in particular, for the identification of the regulating
energy E, based on Equation [3.3.24].

• In addition to providing a better identification of GN(s), the procedure also
allows (through the knowledge of β, for the generic disconnection node
and for significant operating points) more correct evaluation of the actual
perturbation at the preventive stage, as when choosing the load shedding to
be performed under emergency conditions (Section 3.5).

3.4. ‘‘f/P’’ CONTROL IN THE PRESENCE OF INTERCONNECTIONS

3.4.1. Preliminaries

In comparison with several systems (or “areas”) in isolated operation, the realiza-
tion of a set of interconnected areas may lead to considerable benefits in holding
the frequency within narrow limits. This is valid not only for normal operating
conditions, for the reduced incidence of load perturbations related to the total
power of the system and for the tendency to compensate each other statistically
(see Section 3.3.1), but also for a power “deficit” in an area, possibly caused by
the disconnection of several generators, when aid from other areas via intercon-
nections becomes essential. (Refer to Sections 1.3.3. and 2.3.4. for information
on advantages offered by interconnections.)

In addition to regulating frequency, it is necessary to regulate, according to
schedules, the power exchanged between the different areas, i.e., the powers Pij ,
with i, j = 1, . . . , n, i �= j , assuming that:

• n = number of areas;
• Pij = total active power supplied by area i to area j , corresponding to the

boundary nodes between the two areas (it then results Pji = −Pij ).

The number of exchanged powers to be regulated depends on the topology of
the overall system, and is within (n− 1) and n(n− 1)/2; this latter value corre-
sponds to the case in which each area is connected to all the others. However, for
the reasons in Section 2.3.4 (recall for instance Figure 2.34), it may be assumed
that the steady-state values of the exchanged powers essentially depend only on
(n− 1) degrees of freedom.

On the other hand, out of the n powers PEi = ∑
j �=i Pij (i = 1, . . . , n) in total

exported by the individual areas, only (n− 1) can be independently assigned as:

n∑
1

iPEi = 0 [3.4.1]

and thus any one of the PEi can be derived from the others.
Therefore, it may be sufficient to impose the regulation of n variables (as

many as the areas), i.e., the frequency and (n− 1) exported powers. The possible
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correction of the individual Pij ’s, at equal sum PEi , may be left to local actions
in each area (i = 1, . . . , n) through suitable adjustments to the operating point
(particularly to the v/Q regime).

The frequenciesΩ1, . . .,Ωn in different areas also may differ from one another in transient
conditions, and become equal at steady-state because of the synchronizing actions. The
(n− 1) transient differences between the frequencies are in such a case dynamically related
to the exported powers (see also Figure 3.47 and Equation [3.4.16]), and the number of
variables to be regulated still remains, in all, equal to n.

Section 3.3.2 described how the frequency regulation in an isolated area may
be entrusted to the secondary regulator, characterized by an integral action on the
frequency error. To regulate the frequency and exported powers with n intercon-
nected areas, it is sufficient for the secondary regulator of each area to be sensitive
with an integral action, to a linear combination of the errors of frequency and
of power exported from the area itself. By doing so, under steady-state condi-
tions (and for given frequency and exported power references), n conditions are
achieved, as:

Ki∆Ω +K∗
i ∆PEi = 0 (i = 1, . . . , n) [3.4.2]

from which (recall Equation [3.4.1])
(∑n

1 iKi/K
∗
i

)
∆Ω = 0, i.e.,:

∆Ω = 0

and thus, also:
∆PEi = 0 ∀i = 1, . . . , n

as desired.

The same result is obtained if a number of secondary regulators, but not all, are sensitive
only to the exported power error (i.e., if for them it is Ki = 0), which is, for example,
adopted for small areas connected to one or more relatively powerful areas.

Moreover, the secondary regulator of only one area may be sensitive only to the frequency
error (K∗

i = 0), to realize ∆Ω = 0.

Generally, the generic secondary regulator might be sensitive to the power exported errors
of other areas, but such a solution does not appear to be convenient (nor strictly desirable)
because of the required complexity of the communications system.

Under general dynamic operating conditions, considering that the frequency
may transiently vary between areas, the dependence of the secondary regulating
powers (PRi ) on the respective local frequency errors (εFi � ΩRIF i −Ωi) and
exported power errors (εPi � PE RIF i − PEi ) may be expressed, for small varia-
tions, by equations (see Fig. 3.45a):

∆PRi = GRi (s)∆εFi +G∗
Ri (s)∆εPi (i = 1, . . . , n) [3.4.3]
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Figure 3.45. Dependence of the secondary regulating powers (PRi ) on the errors
of frequency (εFi ) and exported power (εPi ) in more interconnected areas:
(a) block diagram for small variations; (b) equivalent diagram for GRi (s) �= 0.

where ΩRIF i , PERIF i are the references of frequency and exported power for
the generic area i, and GRi (s), G∗

Ri (s) are suitable transfer functions, having in
common a pole at the origin (in Equation [3.4.2] it may be then written that
Ki � lims→0(sGRi (s)), K

∗
i � lims→0(sG

∗
Ri (s))).

For GRi (s) �= 0, Equation [3.4.3] also may be written (see Fig. 3.45b):

∆PRi = GRi (s)∆εRi [3.4.4]

where:

∆εRi � ∆εFi + G∗
Ri (s)

GRi (s)
∆εPi [3.4.5]

constitutes the so-called “network error,” with the dimension of a frequency.
Alternatively, it is possible to derive the error (GRi (s)/G

∗
Ri (s))∆εFi +∆εPi ,

which has the dimension of a power and is usually named, by a term similar
to the previous one, “area control error,” i.e., ACE.

The simplicity of the solution described is evident; the problem of the regu-
lation of n variables is solved through n “local” regulators, i.e., each sensitive
to quantities measurable in the respective area. In this regard, it must be noted
that — under suitable assumptions which are generally satisfied — the use of local
regulators is the only situation that permits complete “autonomy” and/or “nonin-
teraction,” according to the following sections. The measurements of the powers
exchanged with other networks must be communicated, and algebraically added
to obtain the signal of exported power PEi to be sent to the regulator.

The solution under examination may imply a redundant number of references (generically:
n frequency references ΩRIF i , and n power references PE RIF i), which should ideally
satisfy, at each instant, the obvious conditions:

ΩRIF 1 = . . . = ΩRIFn

n∑
1

iPE RIF i = 0


 [3.4.6]
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If conditions [3.4.6] are not verified because of variations in some references, one may
consider, instead of the set of real references, a set of “ideal” references (satisfying
conditions [3.4.6]):

Ωo
RIF, P

o
E RIF 1, . . . , P

o
E RIF n

equivalent to the set of real references (at least for small variations) in the effects on
the PRi ’s.

In fact, based on Equation [3.4.3], it can be imposed (omitting the indication of variable s):

∆PRi = GRi (∆ΩRIF i −∆Ωi)+G∗
Ri (∆PE RIF i −∆PEi ) [3.4.7]

= GRi (∆Ω
o
RIF −∆Ωi)+G∗

Ri (∆P
o
E RIF i −∆PEi )

i.e.,
GRi

G∗
Ri

∆ΩRIF i +∆PE RIF i = GRi

G∗
Ri

∆Ωo
RIF +∆PoE RIF i

for i = 1, . . . , n; so that, adding up (and imposing
∑n

1 iP
o
E RIF i = 0):

∆Ωo
RIF =

n∑
1

k

(
GRk

G∗
Rk

∆ΩRIF k +∆PE RIF k

)

n∑
1

k

GRk

G∗
Rk

[3.4.8]

whereas:

∆PoE RIF i = ∆PE RIF i + GRi

G∗
Ri

(
∆ΩRIF i −∆Ωo

RIF

)
[3.4.9]

The effect (on ∆PRi ) of small variations ∆ΩRIF i , ∆PE RIF i of the (real) references of the
regulators may be evaluated starting from the variations ∆Ωo

RIF i , ∆P
o
E RIF i defined above,

according to the block diagram in Figure 3.46.

(The quantities ∆εoFi � ∆Ωo
RIF −∆Ωi,∆εoPi � ∆PoE RIF i −∆PEi may be different from

∆εFi , ∆εPi , even if the effects on ∆PRi remain unchanged.)

If the secondary regulator of one area (e.g., area 1) is sensitive to the frequency error
only, i.e., if G∗

R1 = 0, we simply have:

∆Ωo
RIF = ∆ΩRIF1

whereas:

∆PoE RIF j = ∆PE RIF j + GRj

G∗
Rj

(∆ΩRIF j −∆Ωo
RIF) (j = 2, . . . , n)

∆P oE RIF1 = −
n∑
2

j∆P
o
E RIF j

Specifically, if GR2 = . . . = GRn = 0 (i.e., if the areas 2, . . . , n are only under power
regulation, whereas area 1 is only under frequency regulation), we have:

∆PoE RIF j = ∆PE RIF j (j = 2, . . . , n) [3.4.10]
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Figure 3.46. Definition of “ideal” references.

i.e., any possible variations ∆PE RIF j of the (exported power) references in the regulators
2, . . . , n assume a clear and unequivocal meaning, since they result equal, respectively,
to the equivalent “ideal” variations ∆PoE RIF j to be considered.

To derive the block diagram of the secondary regulation, note that, for the
generic area i, the variations of the exported power ∆PEi have an effect similar
to the load variations ∆PLi . Therefore it is possible to write (disregarding for
simplicity the variations of network losses, related to ∆PE1, . . . , ∆PEn):

∆P ′
Ri � ∆PRi −∆PLi = 1

GNi (s)
∆Ωi +∆PEi [3.4.11]

where GNi (s) is the power-frequency transfer function of the considered area
(recall Equation [3.3.21]).

Moreover, within a sufficient approximation, it is possible to assume (as
already noted) that the exported power variations depend on the phase-shift varia-
tions between the voltages at the n “area nodes” (see Section 2.3.4 and Fig. 2.34).
Therefore, the following equations may be written:

∆PEi =
n∑
1

h

kih∆Ωh

s
(i = 1, . . . , n) [3.4.12]
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with:
n∑
1

hkih = 0 ∀i = 1, . . . , n [3.4.13]

and in addition, because of Equation [3.4.1]:

n∑
1

ikih = 0 ∀h = 1, . . . , n [3.4.14]

(in the {kih} matrix, the sum of the elements of each row is zero, as is that of
each column).

Equation [3.4.12] may be replaced by:

∆PEj =
n∑
2

h

kjh(∆Ωh −∆Ω1)

s
(j = 2, . . . , n) [3.4.15]

or in matrix form: 

∆PE2
...

∆PEn


 = 1

s
[k]



∆Ω2 −∆Ω1

...

∆Ωn −∆Ω1


 [3.4.16]

with:

[k] �



k22 · · · k2n
...

...

kn2 · · · knn




and moreover:

∆PE1 = −
n∑
2

j∆PEj [3.4.17]

From the present equations and from Equation [3.4.3], it is possible to derive
the block diagram of Figure 3.47. Such a diagram remains valid, based on the
information presented above, also when replacing all the ∆ΩRIF i by ∆Ωo

RIF,
and ∆PE RIF i by ∆PoE RIF i , and thus also ∆εFi ,∆εPi , respectively, by ∆εoFi ,∆ε

o
Pi

(i = 1, . . . , n).

Generally, it should be considered that the variations ∆PE1, . . ., ∆PEn are accompanied,
in different areas, by variations in losses. The loss variations, with the model defined in
Figure 2.34, depend on the phase-shift variations between the voltages at area nodes, and
may be expressed as a function of ∆PE2, . . . , ∆PEn. Therefore, if loss variations are not
negligible, a linear combination of all the ∆PE2, . . . , ∆PEn should be added (for each
i = 1, . . . , n) to the right-hand side of Equation [3.4.11].

Usually, the transient differences between the frequencies Ω1, . . ., Ωn mea-
surable in the different areas, attenuate so rapidly with respect to the phenomena
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Figure 3.47. Regulation of frequency and exported powers: overall block diagram
for small variations.

involving the secondary regulation, that they can be disregarded. Hence, by
assuming Ω1 = . . . = Ωn � Ω , Equations [3.4.11] and [3.4.12] are replaced by
the following much simpler equations:

∆P ′
Ri � ∆PRi −∆PLi = 1

GNi (s)
∆Ω +∆PEi (i = 1, . . . , n) [3.4.18]

By recalling Equation [3.4.1] it can be derived:

n∑
1

i∆P
′
Ri �

n∑
1

i(∆PRi −∆PLi ) =
(

n∑
1

i

1

GNi (s)

)
∆Ω

and thus:

∆Ω = GN(s)
n∑
1

k∆P
′
Rk = GN(s)

n∑
1

k(∆PRk −∆PLk ) [3.4.19]

∆PEi = ∆P ′
Ri − 1

GNi (s)
∆Ω =

(
1 − GN

GNi

)
∆P ′

Ri − GN

GNi

n∑
1

j �=i∆P ′
Rj

[3.4.20]
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where:

GN(s) �
(

n∑
1

i

1

GNi (s)

)−1

[3.4.21]

constitutes the power-frequency transfer function of the whole system, seen as a
single area.

In a matrix form, Equations [3.4.19] and [3.4.20] lead to:



∆Ω

∆PE2
...

∆PEn


 =




GN GN · · · GN
−GN
GN2

(
1 − GN

GN2

)
· · · −GN

GN2
...

...
...

−GN
GNn

−GN
GNn

· · ·
(

1 − GN

GNn

)






∆P ′

R1
∆P ′

R2
...

∆P ′
Rn


 [3.4.22]

where ∆P ′
Ri � ∆PRi −∆PLi (i = 1, . . . , n), whereas ∆PE1 = −∑n

2 j∆PEj .
Similarly, from Equation [3.4.7] it is possible to derive, in terms of ideal

references:

∆PR1

∆PR2
...

∆PRn


 =



GR1 −G∗

R1 · · · −G∗
R1

GR2 G∗
R2 · · · 0

...
...

...

GRn 0 · · · G∗
Rn






∆εoF
∆εoP2
...

∆εoPn


 [3.4.23]

where:

∆εoF � ∆Ωo
RIF −∆Ω,∆εoPj � ∆PoE RIF j −∆PEj (j = 2, . . . , n)

and

∆εoP1 = −
n∑
2

j∆ε
o
Pj .

It is possible to associate the block diagram of Figure 3.48 to these matrix
equations, assuming that the matrices S (corresponding to the system to be regu-
lated) and R (corresponding to the regulators) are respectively those specified in
Equations [3.4.22] and [3.4.23]. Through trivial developments, it follows that:



∆Ω

∆PE2
...

∆PEn


 = [I(n) + SR]−1S


R



∆Ωo

RIF
∆PoE RIF2

...

∆P oE RIF n


−



∆PL1

∆PL2
...

∆PLn





 [3.4.24]

It also results: [
I(n) + SR

]−1
S = [

S−1 + R]−1
[3.4.25]
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Figure 3.48. Block diagram (with “ideal” references) equivalent to that in
Figure 3.47, under the hypothesis of equal frequency in all the areas.

where the matrix S−1, which is directly obtained from Equation [3.4.18], is given by:

S−1 =




1

GN1
−1 · · · −1

1

GN2
1 · · · 0

...
...

...

1

GNn
0 · · · 1




[3.4.26]

and thus has the same zero elements of the matrix R obtained by using “local” regulators
(see Equation [3.4.23]).

However, this last property (the interest in which will be underlined later) no longer
holds if the variation of the losses in different areas, consequent to the exported power
variations, must be considered. In such a case, it is necessary to add, in the right-hand side
of Equation [3.4.18] (as already pointed out), a linear combination of all the ∆PE2, . . .,
∆PEn, so that the matrix S−1 may become a “full” matrix.

3.4.2. Response to Disturbances and Autonomy Criterion

With the response to the disturbances ∆PL1, . . ., ∆PLn, from the block dia-
gram of Figure 3.47 (or alternatively from that of Fig. 3.48, under the hypothesis
∆Ω1 = . . . = ∆Ωn � ∆Ω), it appears evident that each ∆PRi may depend, tran-
siently, not only on the respective ∆PLi , but also on the (∆PLj )j �=i relative to
other areas. By the examination of Figure 3.47, it is easy to determine that such
an interdependency is realized through the variation ∆PEi caused by the inter-
connected operation. (At steady-state, the regulation leads instead to ∆PEi = 0,
so that PRi is no longer influenced by the perturbations in other areas.)
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A rather usual criterion adopted in the synthesis of the secondary regula-
tion avoids such interdependency, even if transient, simply by imposing that the
secondary regulating power PRi be unaffected by the variations of the respective
exported power PEi . Since from Equations [3.4.3] and [3.4.11], or (more directly)
from the figure itself, it is possible to derive:

∆PRi = GRi∆ΩRIF i +G∗
Ri∆PE RIF i +GRiGNi∆PLi + (GRiGNi −G∗

Ri )∆PEi

1 +GRiGNi

thus the above criterion leads to the condition GRiGNi −G∗
Ri = 0, i.e.,

G∗
Ri

GRi
= GNi [3.4.27]

For the generic area into which such a condition is adopted, the (single loop)
block diagram of Figure 3.49 can be then derived, with:

∂PRi

∂PLi
= GNiGRi

1 +GNiGRi
= G∗

Ri

1 +G∗
Ri

[3.4.28]

whereas, as desired:
∂PRi

∂PLj
= 0 ∀j �= i [3.4.29]

Note that, due to Equation [3.4.9], in the block diagram ∆ΩRIF i +GNi∆PE RIF i =
∆Ωo

RIF +GNi∆P
o
E RIF i , ∆εRi = ∆εoFi +GNi∆ε

o
Pi .

Furthermore, if condition [3.4.27] is realized in all the areas, the overall block diagram is
constituted by n single loops of the type indicated, not interacting one another. The single
∆Ωi may be derived starting from ∆Ωi +GNi∆PEi = GNi∆P

′
Ri , based on the equation

(deducible from Equations [3.4.11] and [3.4.12]):



∆Ω1

...

∆Ωn


 =


I(n) +



GN1 · · · 0
...

...

0 · · · GNn





k11 · · · k1n

...
...

kn1 · · · knn


 1

s




−1 

GN1∆P

′
R1

...

GNn∆P
′
Rn




whereas the ∆Pei’s are given by Equation [3.4.12]. If it is assumed that Ω1 = . . . = Ωn �
Ω , these last equations have instead to be replaced by Equations [3.4.19] and [3.4.20].

Figure 3.49. Equivalent regulation loop under the “autonomy” condition.
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For each area, the condition [3.4.27] may be regarded as an “autonomy” con-
dition of the respective secondary regulation, in the sense that the area regulator
produces variations in the secondary regulating power only if a load variation in
its own area (or a variation in its own references) has occurred, ignoring vari-
ations in other areas. However, the primary regulation intervenes, because of
frequency variations, in all the areas, regardless of where the load variation has
occurred.

It is important to underline what follows:

• The adoption (or not) of the autonomy criterion in a given area may be
decided independently of what is done in the other areas.

• The adoption of the autonomy criterion in a given area leads to a “local”
regulator, i.e., a regulator sensitive only to the errors of frequency and
exported power relative to the area itself (this holds if the effects of the loss
variations related to the exported power variations are disregarded).

• The loop in Figure 3.49 is similar to that in Figure 3.36, concerning the
secondary frequency regulation in an isolated area. As a consequence, all
considerations detailed in Section 3.3.2, relative to the synthesis of the
secondary regulator may be fully applied to the present case, as far as
the transfer function GRi (s) is concerned, whereas condition [3.4.27] then
allows the derivation of function G∗

Ri (s) in correspondence to the exported
power error.

• To the advantage of having a “local” regulator, it is thus added that of
having to solve a synthesis problem independent of the rest of the system,
since the required information regards only the respective power-frequency
transfer function GNi (s).

In this last regard, normally one is satisfied with approximating GNi (s) with
its static gain GNi (0) = 1/Ei (where Ei is the total regulating energy of the i-th
considered area), not only in the synthesis of GRi (s) but also in that of G∗

Ri (s),
by simply assuming:

G∗
Ri (s) = GRi (s)

Ei
[3.4.30]

Based on Figure 3.34, where it may be written that (because of Equations
[3.3.14] and [3.3.15]) Go(s) = Eνt/s, the block diagram of the secondary reg-
ulator then becomes the one indicated in Figure 3.50, where (for simplicity) the
index i has been omitted. The modifications required to any possible scheme,
such as that of Figure 3.37, are obvious.

The response of the regulated variables, i.e., of the frequency (or frequen-
cies) and the exported powers, to the load disturbances ∆PL1, . . ., ∆PLn may
be deduced, in general, from the equations reported in Section 3.4.1 (see also
Fig. 3.47).
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Figure 3.50. Block diagram of the secondary regulator under the “autonomy”
condition (approximated solution; see text).

Assuming for simplicity that Ω1 = . . . = Ωn � Ω , it can be deduced, through
trivial developments, that:

∂Ω

∂PLi
= −g

1 +G∗
Ri

(i = 1, . . . , n) [3.4.31]

∂PEi

∂PLi
= −

(
1 − g

GNi

1 +GNiGRi

1 +G∗
Ri

)
1

1 +G∗
Ri

(i = 1, . . . , n) [3.4.32]

∂PEj

∂PLi
= g

GNj

1 +GNjGRj
1 +G∗

Rj

1

1 +G∗
Ri

(i, j = 1, . . . , n; j �= i) [3.4.33]

having omitted, for brevity, the indication of the variable s, and having written:

g �
(

n∑
1

k

1 +GNkGRk

GNk (1 +G∗
Rk )

)−1

[3.4.34]

In particular, if the autonomy condition [3.4.27] is realized in all the areas, it
results in the simplified expressions (further than Equations [3.4.28] and [3.4.29]):

∂Ω

∂PLi
= −GN

1 +G∗
Ri

(i = 1, . . . , n) [3.4.35]

∂PEi

∂PLi
= −

(
1 − GN

GNi

)
1

1 +G∗
Ri

(i = 1, . . . , n) [3.4.36]

∂PEj

∂PLi
= GN

GNj

1

1 +G∗
Ri

(i, j = 1, . . . , n; j �= i) [3.4.37]

and g = GN (recall Equation [3.4.21]).

From the operating point of view, it is interesting to define the “phase” error ∆α �∫ t
0 ∆Ωdt and the “exported energy” errors ∆EEj �

∫ t
0 ∆PEj dt , caused by generic load
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perturbations. With Laplace transforms, the effect of ∆PLi on such errors is defined by:

∆α(s) = 1

s

∂Ω

∂PLi
∆PLi (s)

∆EEj (s) = 1

s

∂PEj

∂PLi
∆PLi (s)

and it is then deducible from the previous equations.

For a constant value of ∆PLi , at steady-state it holds that:

∆α =
(

lim
s→0

1

s

∂Ω

∂PLi

)
∆PLi = −g(0)∆PLi

K∗
i

∆EEi =
(

lim
s→0

1

s

∂PEi

∂PLi

)
∆PLi = −

(
1 − g(0) Ki

K∗
i

)
∆PLi

K∗
i

∆EEj =
(

lim
s→0

1

s

∂PEj

∂PLi

)
∆PLi = g(0)Kj

K∗
j

∆PLi

K∗
i

(j �= i)

where Ki � lims→0(sGRi (s)),K
∗
i � lims→0(sG

∗
Ri (s)), g(0) =

(∑n
1 k
Kk

K∗
k

)−1

. It is also

possible to obtain these results directly, by observing that at steady-state:

−Kj∆α −K∗
j ∆EEj = ∆PRj =

{
∆PLi ifj = i
0 ifj �= i

and recalling that
∑n

1 j∆EEj = 0.

Some caution is necessary when, for example, area 1 is only under frequency regulation
(that is G∗

R1 = 0) so that g(0) = 0, K∗
1 = 0, and the ratio g(0)/K∗

1 takes an indeterminate
form. Through elementary considerations, it can be verified that the effects at steady-state
are as follows:

• for a perturbation ∆PL1, i.e., within the area under frequency regulation only:

∆α = −∆PL1

K1

∆EE1 = −
(

n∑
2

j

Kj

K∗
j

)
∆PL1

K1

∆EEj = Kj

K∗
j

∆PL1

K1
(j = 2, . . . , n)

thus the errors of exported energies are all zero if K2 = . . . = Kn = 0, i.e., if areas
2, . . . , n are only under power regulation;

• for a perturbation ∆PLi with i �= 1:

∆α = 0
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∆EE1 = ∆PLi

K∗
i

∆EEi = −∆PLi

K∗
i

∆EEj = 0 ∀j �= 1, i

i.e., there are only errors of exported energies, opposite each other, in area 1 and in
the perturbed area.

In general, for transient responses, assuming for simplicity that autonomy conditions
hold true, and assuming as a first approximation GNi (s) ∼= GNi (0) = 1/Ei,GRi (s) ∼=
Eiν ti/s,G

∗
Ri (s)

∼= ν ti/s, and thus GN(s) ∼= GN(0) = 1/Etot (where Etot �
∑n

1 iEi is the
total regulating energy of the set of the n areas), it follows that:

∆α ∼= − 1

Etot

∆PLi (s)

s + ν ti

∆EEi
∼= −

(
1 − Ei

Etot

)
∆PLi (s)

s + ν ti

∆EEj
∼= Ej

Etot

∆PLi (s)

s + νti

(j �= i)

from which the time behavior of such errors is easily obtained, once the behavior of ∆PLi

is known (in particular, note the effect of the parameter νti , which constitutes, under the
adopted approximations, the cutoff frequency of the secondary regulation in the area i).

3.4.3. Response to Reference Settings and Noninteraction Criterion

Assuming for simplicity that Ω1 = . . . = Ωn � Ω and considering the ideal ref-
erences (recall Equations [3.4.8] and [3.4.9]), the block diagram of Figure 3.51
is particularly useful to give individual emphasis to the frequency regulation
loop (which is sensitive, because of Equation [3.4.19], only to the summation∑n

1 k∆P
′
Rk ) and to the regulation loops of exported powers(11).

Generally, these regulation loops are interacting with one another, as each
reference setting influences not only the respective regulated variable, but also
the other ones. Then, it may be helpful to establish methods to avoid this situation
completely or partially. In this regard, the following cases appear particularly
interesting.

(1) If it is desired that ∆Ω not be influenced by the regulation of the exported
powers, and therefore by the references P oE RIF i , it is necessary and

(11) The present analysis may be extended to the general case with frequencies Ωi ’s transiently
different, by intending, for example, that the frequency regulation is that of a given Ωi , or that of a
suitable mean frequency of the system, e.g., defined by ∆Ω = GN(s)∑n

1 i∆Ωi/GNi (s) for which
Equation [3.4.19] is still valid.
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∑k GRk (s) ∆εo
Pk

*n

1

Figure 3.51. Detailed block diagram equivalent to that of Figure 3.48.

sufficient that
∑n

1 k∆PRk does not depend on the ∆εoPi errors, i.e., (see
Fig. 3.51):

n∑
1

iG
∗
Ri (s)∆ε

o
Pi = 0

whatever the ∆εopi are (or rather (n− 1) of them are, since
∑n

1 i∆ε
o
pi = 0).

Then it is possible to derive (n− 1) conditions as:

G∗
R1 = . . . = G∗

Rn [3.4.38]

In this case ∆Ω and
∑n

1 k∆PRk depend on, in addition to ∆Ωo
RIF, the

sum
(∑n

1 k∆PLk
)

of the load variations, and therefore, in particular, the
response of ∆Ω to a given load variation does not depend on the area
in which the variation occurred (“uniformity” of the response of ∆Ω).
This can be deduced also from Equation [3.4.31], with the functions G∗

Ri ’s
equal to one another. In this case, Equation [3.4.31] is then translated into
the following Equation [3.4.39].
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For the frequency regulation loop (see the upper side of Fig. 3.51) it then
holds that:

∂Ω

∂PLi
= −GN

1 +GN
n∑
1

kGRk

[3.4.39]

∂

n∑
1

kPRk

∂PLi
=

GN

n∑
1

kGRk

1 +GN
n∑
1

kGRk

[3.4.40]

regardless of i = 1, . . . , n, where the synthesis of
∑n

1 kGRk may be per-
formed in a manner similar to that used for GR in Figure 3.36, by consid-
ering the whole n-areas system as an isolated area for which it is required
to regulate only frequency.
The choice of the G∗

Ri ’s (equal to one another) and of the individual GRi

must be made in relation to the regulation requirements of the respective
exported powers PEi . In this regard, the conditions [3.4.38] also achieve
the noninteraction between the power regulations (however, each one of
these regulations is, in general, influenced by the frequency regulation).

(2) Reciprocally, if it is desired that ∆PE1, . . ., ∆PEn not be influenced by the
frequency regulation, and therefore by the reference Ωo

RIF, it is necessary
and sufficient that the overall effect of ∆εoF on each ∆PEi is zero, and
therefore that (see Fig. 3.51):

GRi (s) =
(

n∑
1

kGRk (s)

)
GN(s)

GNi (s)

from which the (n− 1) following conditions are obtained:

GR1GN1 = . . . = GRnGNn [3.4.41]

In this case, however, the power regulations, in addition to influencing the
frequency regulation, generally interact with one another, since (see also
Fig. 3.51):

∆PEi = G∗
Ri∆ε

o
Pi −∆PLi − GN

GNi

n∑
1

k(G
∗
Rk∆ε

o
Pk −∆PLk )

i.e., ∆PEi , generally, also depends on power errors in other areas.
(3) As a consequence of the two previous cases, if the complete noninterac-

tion between the n regulations (of frequency and of exported powers) is
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Figure 3.52. Equivalent regulation loops under the conditions of complete
“noninteraction.”

desired, it is necessary and sufficient to satisfy both conditions [3.4.38]
and [3.4.41].
The block diagram of the whole system may then be reduced to n nonin-
teracting single loops, as shown in Figure 3.52. Actually, (n+ 1) single
loops are indicated in the figure, but the one relative to any one of the
PEi ’s is a consequence of the others.
In particular (recall also Equations [3.4.31], [3.4.32], and [3.4.33], with
g = GN(1 +G∗

R1)/(1 +GR1GN1)), it holds:

∂Ω

∂PLi
= −GN

1 +GR1GN1
(i = 1, . . . , n) [3.4.42]

∂PEi

∂PLi
= −

(
1 − GN

GNi

)
1

1 +G∗
R1

(i = 1, . . . , n) [3.4.43]

∂PEj

∂PLi
= GN

GNj

1

1 +G∗
R1

(i, j = 1, . . . , n; j �= i) [3.4.44]

where Equation [3.4.42] is equivalent to Equation [3.4.39]. Moreover,
Equation [3.4.40] holds.

Figure 3.53 schematically summarizes the cases of interaction or noninterac-
tion, in accordance with what is detailed above. As a concluding remark, it is
interesting to observe the following:

• The conditions [3.4.38] and [3.4.41] are not incompatible with each other,
nor with the “autonomy” condition [3.4.27]; on the contrary, they are mutu-
ally implied if the autonomy conditions are satisfied in all the areas.
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(complete noninteraction)

interaction

Figure 3.53. Interaction or noninteraction between the regulations of the fre-
quency [block (Ω)] and of two generic exported powers [blocks (PEi ), (PEj ),
with j �= i]: (a) general case; (b), (c), (d) particular cases.

In particular, it is then possible to achieve both the complete autonomy and
the complete noninteraction, by assuming:

G∗
R1 = . . . = G∗

Rn = GR1GN1 = . . . = GRnGNn [3.4.45]

(hence, Equations [3.4.28] and [3.4.29], as well as Equations [3.4.42],
[3.4.43] and [3.4.44], hold for all i = 1, . . . , n). On the other hand, the
choice of conditions [3.4.45] appears to be reasonable, as it leads to the same
loop transfer function (and then to similar synthesis criteria) for all control
loops indicated in Figures 3.49 and 3.52. With reference to the scheme of
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Figure 3.50, all this is then translated, using the stated approximations, into
the equality of the parameter νt for the regulators of the different areas.

• In comparison with the alternatives detailed here, which are all achievable
by means of “local” regulators (one for each area), it does not appear to
be practical to consider more sophisticated solutions for which the matrix
R in Figure 3.48 has not an assigned structure (as the matrix indicated
in Equation [3.4.23]) but in general might be “full.” In fact, this could
imply difficulties in implementation. In this regard, generally the autonomy
criterion in all the areas (∂PRi/∂PLj ∀j �= i; i, j = 1, . . . , n) implies that
the RS matrix is diagonal, as may be derived directly from Figure 3.48.
It is immediately possible to conclude that R must have the same zero
elements as the S−1 matrix defined by the Equation [3.4.26], and more
precisely that it must be achieved through local regulators, in accordance
to what is described.
Similarly, the complete noninteraction among the regulations first of all
implies (see Fig. 3.48) that SR is diagonal. Hence, R must again have the
same zero elements as S−1. However, it is necessary to have:

(SR)22 = . . . = (SR)nn

(so that ∆PE1 = −∑n
2 j∆PEj = −∑n

2 j (SR)jj∆ε
o
Pj depends only on

∆εoP1 = −∑n
2j ∆ε

o
Pj (apart from load variations), and by imposing such

conditions the solution already described is obtained. In the case of partial
noninteractions, R may, however, be realized through nonlocal regulators.
The above implies that the variations in losses may be disregarded, as
already stated.

• The conditions of complete noninteraction between the regulations guaran-
tee that the variation of a given reference only acts on the corresponding
regulated variable (similar conclusions hold for cases of partial noninterac-
tion). However, the present considerations hold with regard to the variations
of the “ideal” references, i.e., they presume that the real references satisfy
the conditions [3.4.6]. Consequently, a variation of a given (real) refer-
ence that does not respect the conditions [3.4.6] — and then is equivalent,
in general, to variations both of Ωo

RIF and of all the P oE RIF i — may end up
influencing all the regulated variables, even if the noninteraction conditions
defined above are met.

3.5. EMERGENCY CONTROL

3.5.1. Preliminaries

In Section 1.7, the possibility that a system may be operated under emergency
conditions was presented. The characteristics of an emergency condition depend
on a number of factors, including:
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• the originating perturbation (type, entity, point of application, etc.);
• particular characteristics of the power system (configuration, operating point,

admissibility limits for single equipment, etc.);
• characteristics of protection and control systems.

The preventive analysis of emergency situations may allow intervention plans
to be implemented following a suitable “diagnosis” of the operating system. But
the cases to be examined and the consequent operating solutions, involve such
a large number of specific problems that it is generally impractical to derive a
systematic treatment of general usefulness.

As a consequence, the information here is limited to qualitative, although basic,
considerations regarding the typical emergency that involves the operation of the
f/P control, i.e., the case of a system experiencing a severe power “deficit”
caused by a possible opening of interconnections, with a loss in imported power,
or tripping of a set of generators.

The frequency decrement caused by the initial perturbation may be unac-
ceptable, and moreover, may cause the automatic tripping of some units, with
a further reduction of the available power and collapse of the frequency itself.
(In particular, the auxiliary system protections of a power plant may allow their
operation only within a given frequency range, e.g., 47.5–52.5 Hz for a nominal
frequency of 50 Hz.)

It is therefore necessary to avoid, even during transients, frequency excursions
below a predetermined value Ωlim (e.g., 48.5 Hz, to maintain a prudent margin
over the value of 47.5 Hz indicated above), also considering the different non-
linearities that characterize the response to large perturbations, such as the limits
in opening (and in the opening speed) of the unit valves.

During the operation, an indication of the severity of the situation may be
obtained by proper measurement of the frequency Ω and the “deceleration”
(−dΩ/dt). In effect, the deceleration measurement allows the evaluation of the
tendency of Ω to decline before the frequency has reached problematic values;
thus, it offers the possibility of early diagnoses and timely interventions.

Nevertheless, it is necessary that the frequency measurement and the deceler-
ation measurement are properly filtered to reduce the effect of load fluctuations
and machine oscillations. In fact, similarly to what was indicated in Section 3.3.3,
Ω(t) should be the mean behavior of the frequency and (dΩ/dt)(t) should be
the time derivative of such mean behavior. For frequency values close to that
at normal operation, the emergency implies relatively large decelerations, and
uncertainties in the deceleration measurement have a more modest weight.

Finally, interventions on the system typically involve the disconnection of
some loads, having a suitable power and geographical distribution (“load-
shedding”), and/or of units under pumping operation. Some further advantages
may be obtained, for example, by directly activating the full opening of
hydroelectric units to the maximum opening speed (“power stimulation”), etc.
Such interventions are normally made using threshold devices, sensitive to Ω
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and dΩ/dt . If such actions do not stop the frequency decline, the “isolation”
of the thermal units from the network (by means of suitable switching, set for
example at 47.5–48 Hz) may be a useful option, as mentioned in Section 1.7.2.

It is here intended that the initial perturbation (e.g., the opening of interconnections or the
tripping of generators) is persistent, i.e., not followed by the restoration of the original
configuration (see Fig. 1.8d). Moreover, it is assumed that the perturbation causes a power
deficit, as the opposite case (power “surplus”) normally implies noncritical situations,
because of intervention of the primary regulation (fast closing of valves, etc.); recall
Section 2.3.1d.

A different problem arises when the initial configuration is restored, within relatively
small times (e.g., tenths of a second), because of automatic breaker reclosing. Referenc-
ing to Figure 1.8d, we must consider only a temporary disconnection, during which the
two subsystems indicated in the figure are, respectively, under power deficit and power
surplus, after which they should recover their synchronism. Under such conditions, the
frequency variations (in opposite senses) in the two subsystems may be of concern, not
because of their magnitude (by itself perhaps modest, because of the shortness of the time
disconnection), but rather because of the risk of loss of synchronism after the reconnec-
tion, as a result of phenomena similar to that illustrated in Section 1.6. To suitably limit
the frequency variations, it is necessary to intervene within very short times (considering
the status, open or closed, of breakers), by initiating, for example:

• the temporary disconnection of some loads (“load-skipping”) in the subsystem under
power deficit;

• the temporary interruption of the steam flow to the turbines of thermal units (“fast
valving”) or the temporary insertion of resistive loads (“braking resistors”), in the
subsystem under power surplus.

Further remedies to avoid the loss of synchronism may involve, for example, the control
of the generator excitation, as discussed in Section 7.3.

3.5.2. Example of Simplified Procedure

In simplified terms, let us consider an isolated system for which the block diagram
of Figure 3.54a, or Figure 3.54b apply. In both cases:

• it is simply assumed (with known symbols) that:

Gf (s) = E 1 + sT2

1 + sT1

Gg(s) = Gc(s) = 0

so that the power-frequency transfer function is of the second order, and
more precisely of the type:

GN(s) = 1

Gf (s)+ sM = 1

E

1 + sT1

1 + 2ζ
s

νo
+ s2

ν2
o



280 CHAPTER 3 FREQUENCY AND ACTIVE POWER CONTROL

Figure 3.54. Example of simplified block diagram for a system in isolated opera-
tion and under only primary regulation: (a) case of hydroregulating units; (b) case
of thermal regulating units.

where νo �
√
E/(T1M), ζ � (νo/2)(T2 +M/E) (recall also Equation

[3.3.22]);

• it is assumed that the intervention of the secondary regulation can be dis-
regarded (because of its relative slowness) and that the primary frequency
references are constant;

• only the nonlinearities caused by opening limits of the unit valves are con-
sidered, moreover assuming that reaching such limits occurs simultaneously
for all units (the symbol R indicates the spinning reserve available to the
primary regulation; e.g., R ∼= 0.05Pnom).

The two schemes differ, however, for the different positions of the nonlinear
element. More precisely, as seen in Section 3.2, the scheme in Figure 3.54a may
correspond, under the above simplifications, to the case in which the primary
regulation is performed by hydro units. Instead, with Figure 3.54b, it can be
assumed that the units under primary regulation are thermal, disregarding “power
loops” with a feedback from delivered powers.

The resulting behavior is the same in both cases if, even during transient
conditions, it is:

Gv(0)Ga(0)∆β < R

i.e., if the opening limits are not activated.



3.5 EMERGENCY CONTROL 281

Figure 3.55. Responses to a step ∆PoL under the hypothesis that the opening
limits remain unactivated. Note that ∆Pr and −E∆Ω represent Gv(0)Ga(0)∆β,
respectively, in (a) and (b) of Figure 3.54.

Under such conditions, and assuming, for example, that:

• the system is initially at steady-state (withΩ = Ωo constant, and∆PL = 0);
• the perturbation ∆PL is constituted by a step having an amplitude ∆PoL, at
t = 0 (whereas ∆Pa = 0: see Fig. 3.54);

responses like those indicated in Figure 3.55 can be then determined. In partic-
ular, the minimum value reached by the frequency Ω results in:

Ωmin = Ωo − µ∆P
o
L

E

where E is the permanent regulating energy, and the coefficient µ > 1 depends
on νoT1 and ζ .

Furthermore, as GN(s) is of the second order, the knowledge of Ω and dΩ/dt
at a generic instant allows (once the system parameters are known) the value∆PoL
of the perturbation to be determined. Thus, the value Ωmin may be estimated even
before it is reached. The “diagnosis” becomes an emergency if this value Ωmin is
smaller than Ωlim. In such a case, it is necessary to intervene in time, by means of
a “load-shedding” of proper size (power ∆Pa). Other actions, such as the power
stimulation, etc., are not considered here.

More particularly, the following procedure may be adopted.

(1) Preventive analysis of the effects of ∆PoL (assumed to be a step), with:
• deduction, starting from the characteristic (∆PoL, Ωmin), of the limit

value ∆PoL = ∆PoL lim which leads to Ωmin = Ωlim;
• deduction, for each generic value Ω = Ωa > Ωlim reached at t = ta

during the initial frequency decrease, of the characteristic (∆P oL,M
(−dΩ/dt))Ω=Ωa , and thus the deceleration limit value (−dΩ/dt)lim cor-
responding to ∆PoL = ∆PoL lim, over which it is necessary to activate the
shedding (see qualitatively Fig. 3.56).
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points
corresponding

 to

slope

increasing

Figure 3.56. Characteristics to be used for the deduction of (−dΩ/dt)lim,∆P ′
a

and ∆P ′′
a (see text).

(2) Preventive analysis of the effects of ∆Pa (which too is assumed to be
a step), with deduction of the value ∆Pamin which, starting from the
generic Ωa with (−dΩ/dt)(t−a ) > (−dΩ/dt)lim, leads to ΩMIN = Ωlim

(ΩMIN indicates the minimum value reached by the frequency after the
shedding).

(3) Measurement, during the operation, of the deceleration that occurs in cor-
respondence to a preassigned value Ωa of the frequency (obviously larger
than Ωlim) and consequent activation of the shedding if the deceleration is
over the limit value (function of Ωa). All this may be translated, in terms
of command logic, into the use of “threshold” devices, with regard to the
measured values of frequency and deceleration.

Regarding (2), for a givenΩa , the order of magnitude of the minimum required
value ∆Pamin as a function of (−dΩ/dt)(t−a ) > (−dΩ/dt)lim, is easily deter-
mined from the characteristic

(
∆PoL,M(−dΩ/dt)

)
Ω=Ωa used at the point (1). In

fact, with the notations of Figure 3.56, it is possible to state that generically, for
Ωa ∈ (Ωlim,Ω

o):

• a load-shedding∆Pa = ∆PoL −∆PoL lim � ∆P ′
a , corresponding to the excess

of load, is insufficient, i.e., smaller than ∆Pamin, as it leads to ΩMIN < Ωlim;
• a load-shedding ∆Pa = M(−dΩ/dt)(t−a )−M(−dΩ/dt)lim � ∆P ′′

a , corre-
sponding to the excess of deceleration, is larger than ∆Pamin, as it leads to
ΩMIN > Ωlim;

so that we have:
∆Pamin ∈ (∆P ′

a,∆P
′′
a )
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The previous procedure, described for a linear response, may be generally
applied when, under the assumptions made, the limits in valve opening
are activated.

However, it is important to note the difference of behavior for the two
schemes of Figure 3.54. In effect, under the linear operation, the quantity
Gv(0)Ga(0)∆β is equal to ∆Pr in case (1) and to (−E∆Ω) in case (2). By
examining Figure 3.55, it is evident that, in case (2), the opening limits become
active during the initial decrease of the frequency (∆Pr � ∆P 0

L) already for
∆P 0

L � R/µ. Instead, in case (1) this occurs for ∆P 0
L � R, i.e., for a larger

value of ∆P 0
L (recall that µ > 1). As an example, review the behaviors of Ω(t)

reported in Figure 3.57, assuming ν0T1 = 5, ζ = 1/
√

2, to which it corresponds
ν0T2 = 2ζ − 1/(ν0T1) ∼= 1.21, 1/µ ∼= 0.37.

In effect, the results obtained may be very different in the two cases, as it
appears evident, with reference to the same numerical example given above, by
the examination of the characteristics:

(∆P oL,Ωmin),

(
∆PoL,M

(−dΩ

dt

))
Ω=Ωa

,

(
∆Pamin,M

(−dΩ

dt

))
Ω=Ωa

(for different values of Ωa) reported in Figures 3.58, 3.59, and 3.60. For
actual applications, the importance of the nonlinear model adopted is then
evident.

case of hydro
regulating units

case of hydro
regulating units

case of thermal
regulating units

case of thermal
regulating units

Figure 3.57. Examples of response of the frequency Ω to a step ∆P 0
L, with

ν0T1 = 5, ζ = 1/
√

2.
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case of hydro
regulating units

case of thermal
regulating units

Figure 3.58. Characteristic to be used for the deduction of ∆P 0
L lim (value of

∆P 0
L which corresponds to Ωmin = Ωlim): numerical example of Figure 3.57.

In particular, it is easy to determine that, independently of the model:

• for Ωa = Ωo, i.e., for ta = 0, it simply holds thatM(−dΩ/dt)(0−) = ∆PoL and thus
(−dΩ/dt)lim = ∆PoLlim/M , so that, if (−dΩ/dt)(0−) > ∆P oLlim/M ,:

∆Pamin = ∆PoL −∆PoL lim = M
(−dΩ

dt
(0−)

)
−M

(−dΩ

dt

)
lim

(in this case, it then is ∆Pamin = ∆P ′
a = ∆P ′′

a );

• for Ωa = Ωlim, it is instead necessary to avoid a further decrease of the frequency,
so that (−dΩ/dt)lim = 0 and moreover, if (−dΩ/dt)(t−a ) > 0:

∆Pamin = M
(−dΩ

dt
(t−a )

)

(that is ∆Pamin = ∆P ′′
a ).

Therefore, the corresponding characteristics (Pamin,M(−dΩ/dt))Ω=Ωa are simply con-
stituted by the half-straight lines, having unitary slope, indicated in Figure 3.60, whereas
the characteristics relative to the intermediate values of Ωa , which may correspond to fre-
quency thresholds of practical interest, are included between these two half-straight lines.

The procedure proposed above is an illustrative example and, for practical
applications, the following also must be considered.

• The hypothesis that ∆P 0
L and ∆Pa have a step-like behavior implies

some approximations, in addition to those concerning the model of the
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Figure 3.59. Characteristics as in Figure 3.56 for the numerical example of the
previous figures: (a) case of hydroregulating units; (b) case of thermal regulating
units.

system. Moreover (particularly for the more immediate effects and thus
corresponding to the thresholdsΩa closer toΩlim), it is necessary to properly
evaluate the actual size of ∆Pa , which corresponds to the sheddings; recall
Section 3.3.3.

• For reasons related to users, it is convenient to limit the load-sheddings (and
to plan them in accordance to the load type). On the other hand, intervening
too quickly might imply unnecessary sheddings (perhaps a consequence of
false alarms), whereas delayed interventions might imply sheddings of larger
size. Therefore, it may be convenient to arrange more frequency thresholds
Ωai (i = 1, 2, . . .), and furthermore:
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Figure 3.60. Dependence of the minimum shedding size (∆Pamin) on the val-
ues of frequency (Ωa = Ω(ta)) and deceleration ((−dΩ/dt)(t−a )) at the generic
instant ta , for the numerical example of the previous figures: (a) case of hydroreg-
ulating units, with Ωlim ≤ Ωo − µR/E; (b) case of thermal regulating units, with
Ωlim = Ωo − 10R/E (continuous line) or withΩlim = Ωo − 3R/E (dashed line).

• to increase the values of the deceleration thresholds, for the values Ωai
closer to Ωo (this also contributes to reduce the effect of the measuring
errors on dΩ/dt),

• to plan values ∆Pa significantly larger than what may seem strictly
necessary (in particular, ∆Pamin = ∆P ′′

a ) for the more worrisome Ωai ,
close to Ωlim.
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Figure 3.61. An example of load-shedding characteristics.

• The characteristics (∆Pa,M(−dΩ/dt))Ω=Ωa to be planned are discon-
tinuous, as qualitatively indicated in Figure 3.61; they correspond to the
disconnection of given load sets, in a limited number. For theΩai ’s closer to
Ωlim, it may be convenient to assume a preassigned value ∆Pa , independent
of the measured value of deceleration (larger than the threshold). In doing
so, a smaller weight is attributed not only to the uncertainties on the decel-
eration measurement, but also to uncertainties about the system parameters.

• The geographical distribution of different sheddings is important for rea-
sons related to the subsequent behavior of network voltages and currents
(without excluding oscillatory phenomena between the machines), and for
guaranteeing a uniform presence of generation and load in the different
parts of the system with relation to the risk of their possible (subsequent)
disconnection.

• The shedding actuation occurs with some delay (e.g., τ ∼= 0.2 sec or more)
with respect to the generic instant ta (this may be the result of delays
in measurements, breakers opening, etc.), so that it may be convenient to
anticipate reaching frequency thresholds. For example, supposing that the
deceleration slightly varies in the time τ , the frequency measurement may
be corrected, by generically replacing Ω(t) with:

Ω ′(t) � Ω(t)−
(−dΩ

dt
(t)

)
τ ∼= Ω(t + τ)

ANNOTATED REFERENCES

Among the works of more various or general interest, the following are mentioned: 13,
25, 28, 31, 37, 51, 58, 67, 136 (terminology aspects), 157, 159, 211.
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Furthermore, regarding

• the primary control: 162, 195, 289, and more particularly:

• for the hydroplants: 3, 85, further than 62 (about the Thoma condition) and 101
(about possible generalizations of the condition itself);

• for the thermal plants: 175, 247, 265, 298, 333 (with a wide bibliography), 313;

• the secondary control schemes: 219, 300, 329, 338 (page 13);

• the use of direct current links: 139;

• the identification of the power-frequency transfer function: 78, 82, 83, 89, 102,
122, 154;

• the control in the presence of interconnections: 14, 66, 73, 96, 97, 133, 213 (more-
over, the text takes into particular account what exposed in 37);

• the emergency control: 186, 190, 199, 207, 226, 250, 284, 320, 332, 339, further
than some notes prepared by the author, in view of the writing of 53.



CHAPTER 4

DYNAMIC BEHAVIOR OF THE
SYNCHRONOUS MACHINE

4.1. BASIC FORMULATIONS

4.1.1. Preliminaries

This chapter summarizes the basic dynamic characteristics of the synchronous
machine, by recalling the mathematical models usually employed with various
degrees of approximation in the analysis of the electric and electromechani-
cal transients.

Roughly speaking, the synchronous machine may simply be regarded as a
three-phase generator of sinusoidal voltages (of positive sequence and with a
frequency equal to the electric angular speed Ω of the rotor) with suitable output
linear impedances (evaluated at the frequency Ω), symmetrically related to the
three phases. By accepting such simplifications, the machine may be represented,
in steady-state operation at the frequency Ω and with the convention of the
generators, by an equation

v = e − Z ı [4.1.1]

where v, ı, e are the vectors obtained by applying the Park’s transformation (see
Appendix 2) with a reference rotating at the equilibrium speed Ωo and (respec-
tively) representing the voltage and the current at the stator terminals, and the
internal emf (equal to the open-circuit voltage), whereas Z is the corresponding
output impedance (see Fig. 4.1).

For vector e, assume, for simplicity, that its magnitude is a function of the
excitation current alone, and its phase may vary following variations of the rotor
speed in respect of normal operating speed.

289
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Figure 4.1. A vector diagram of first approximation.

In their turn, the speed transients of the rotor may be represented, again with
the convention of the electric generators, by the equation:

Cm = J
dΩm

dt
+ Cp(Ωm) + Ce [4.1.2]

(equivalent to Equation [3.1.1]), in which:

• J = total moment of inertia;

• Ωm = Ω/Np = mechanical angular speed of the rotor (Np = number of
pole pairs in the rotor);

• Cm = torque supplied from outside (positive if driving);

• Cp = torque corresponding to mechanical losses;

• Ce = torque generated by the machine (positive if opposite to the motion;
negative if driving, that is if generated by the machine acting as a motor).

We can assume, in addition, that the power CeΩm is equal to the (active) electric
power generated:

Pe = 〈e, ı〉 = ei cos(δev + ϕ) [4.1.3]

in which the symbol 〈. . . , . . .〉 means “scalar product,” whereas e and i denote
the magnitudes of e and ı, respectively, and δev , ϕ, (δev + ϕ) are the phase
differences between e and v, v and ı, e and ı, respectively (see Fig. 4.1). By
assuming Z � R + jX, it also follows:

Pe =
〈
e,

e − v

Z

〉
= 1

R2 + X2
(Xev sin δev + R(e2 − ev cos δev)) [4.1.3′]

Pe = 〈v + Zı, ı〉 = vi cos ϕ + Ri2 [4.1.3′′]
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In Figure 4.2a, the aforementioned circuits are represented fairly schemati-
cally. If it is assumed that the mmfs generated by them are positive when the
current circulation takes place as in the figure, it is possible to associate each
circuit with an oriented axis along which it acts magnetically. The phase circuits
act along the axes a, b, and c respectively, whereas the field circuit acts along
the polar axis, and more precisely (bearing in mind the orientation) along the
so-called “direct” axis. In addition, the (interpolar) axis oriented 90◦ in advance
in respect of the direct axis is called the “quadrature” axis.

Furthermore, the “electrical” angle of the direct axis in advance in respect of
the axis a is indicated by the symbol θ . In the case of the bipolar machine, the
electrical angles coincide with the actual mechanical angles (see for example θ

in Fig. 4.2a). For a machine with Np pairs of poles, the electrical angles are, on
the other hand, Np times the mechanical ones.

Lastly, it is intended, as in Figure 4.2b, that the three “phase” stator circuits
are “star” connected, with a suitable impedance between the “neutral” and the
“earth” (such impedance is infinite if the neutral is isolated).

4.1.2. Equations of the Electrical, Magnetic,
and Mechanical Parts

In this section, the mathematical model of the synchronous machine is derived
with the following basic assumptions:

• there are no rotor circuits other than the field circuit (i.e., additional rotor
circuits are not considered, which may correspond to the so-called “damper
bars” or to induced eddy currents present in the body of the rotor when the
latter is solid);

• there is no magnetic saturation;
• the unit shaft is a rigid connection, without any torsional phenomena.

Other simplifying assumptions, which we assume of minor significance, may
relate to, for example, the conductor distribution and the rotor profile (as specified
further on), as well as effects relatively negligible, such as the effects of the slots,
winding radial sizes, magnetic hysteresis, and so on.

The machine equations may be derived by separately analyzing:

• the electrical part
• the magnetic part
• the mechanical part

(a) Equations of the Electrical Part
For the electrical part of the machine, the following equations may be assumed:

• For the field circuit, with the convention of the loads:

vf = Rf if + dψf

dt
[4.1.4]
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in which:

• vf , if , ψf = field voltage, current, flux,

• Rf = field resistance.

• For the phase circuits, with the convention of the generators:

va − vn = −Ria + dψa

dt

vb − vn = −Rib + dψb

dt

vc − vn = −Ric + dψc

dt




[4.1.5]

in which:

• (va − vn), ia, ψa = voltage, current, flux of phase a (and similarly for
phases b, c), vn being the neutral voltage (the voltages
va, vb, vc, vn are intended to be defined with respect
to an arbitrary reference);

• R = armature resistance, per phase.

By applying the Park’s transformation (see Appendix 2) with angular reference
θr = θ(1), such that:

dθr
dt

= dθ

dt
= Ω = “electrical” angular speed of the rotor

from Equations [4.1.5] we may derive:

vd = −Rid + dψd

dt
− Ωψq

vq = −Riq + dψq

dt
+ Ωψd

vo − √
3vn = −Rio + dψo

dt




[4.1.5′]

in which the first two equations may be rewritten in vector terms:

v = −Rı + (p + jΩ)ψ [4.1.5′′]

by generically assuming w � wd + jwq(w = v, ı, ψ), p � d/dt . (According to
the usual denominations, we have:

(1) For this assumption, the index “r” will be omitted in the subsequent notations, relating to the
variables d, q, and o. Furthermore, the multiplying constants of the Park’s transformation (see
Appendix 2) are assumed Kdq = √

2/3, Ko = 1/
√

3.



294 CHAPTER 4 DYNAMIC BEHAVIOR OF THE SYNCHRONOUS MACHINE

• vd = “direct-axis” voltage,
• vq = “quadrature-axis” voltage,

and similarly for the currents id , iq and for the fluxes ψd , ψq .)

(b) Equations of the Magnetic Part
With regard to the magnetic part of the machine, the following equations may be
written (here, it is assumed that the magnetic part is linear and nondissipative,
ruling out any saturation, hysteresis etc.), with Lik = Lki for i, k = a, b, c, f :

ψf = Lff if − (Lfa ia + Lfb ib + Lfc ic) [4.1.6]

ψa = Laf if − (Laa ia + Lab ib + Lacic)

ψb = Lbf if − (Lba ia + Lbb ib + Lbcic)

ψc = Lcf if − (Lca ia + Lcb ib + Lccic)


 [4.1.7]

Since we have adopted the convention of the generators for the phase circuits, it must
be assumed that positive phase currents ia, ib, ic generate negative mmfs (“armature reac-
tion”): hence the negative signs in Equations [4.1.6] and [4.1.7].

Recalling Figure 4.2, it is easy to realize that the inductances Laf , Lbf , Lcf

(i.e., the mutual inductances between the phase circuits and the field circuit) are
periodic functions of the position θ , with a period ∆θ = 360◦ (more precisely,
Laf is maximum for θ = 0, minimum for θ = 180◦, and zero for θ = 90◦ and
θ = 270◦; likewise Lbf , Lcf , for values of θ greater than the foregoing, by the
quantities 120◦ and 240◦, respectively).

The self-inductance Lff of the field circuit is constant, since the profile of the
stator can be considered smooth.

Lastly, for the inductances Lik with i, k = a, b, c, (i.e., the self and mutual
inductances relating to the phase circuits), these may be considered constant if
the rotor is cylindrical (round). If, on the other hand, the rotor has salient poles,
such inductances also vary periodically with θ , but with a period ∆θ = 180◦
(Laa is maximum for θ = 0 and minimum for θ = 90◦; Lab is negative, with
maximum absolute value for θ = −30◦ and minimum for θ = 60◦; etc.).

In practice, the above dependencies on θ may, with fair approximation, be
considered sinusoidal, as a consequence of constructional characteristics (in par-
ticular, distribution of the conductors and profile of the poles)(2), so that the
following equations may be assumed:




Lfa = Laf = Mf cos θ

Lfb = Lbf = Mf cos θ ′
Lfc = Lcf = Mf cos θ ′′

(2) It is therefore possible to achieve the steady-state operating conditions described in Section 4.4.1,
in which both the phase voltages and the phase currents are positive-sequence sinusoidal, without
any harmonic content.
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Laa = Ls + Lm cos 2θ
Lbb = Ls + Lm cos 2θ ′
Lcc = Ls + Lm cos 2θ ′′




Lab = Lba = −Ms − Lm cos(2θ + 60◦
)

Lbc = Lcb = −Ms − Lm cos(2θ ′ + 60◦
)

Lca = Lac = −Ms − Lm cos(2θ ′′ + 60◦
)

In these equations, Ls , Ms , Lm, Mf are constant (Lm smaller than both Ls and
Ms , and negligible if the rotor is round), θ ′ � θ − 120◦

, θ ′′ � θ − 240◦.
By applying the Park’s transformation (see Appendix 2) with θr = θ , the fol-

lowing equations can then be obtained from Equations [4.1.6] and [4.1.7]:

ψf = Lf if − Lmd id [4.1.6′]
ψd = Lmd if − Ldid
ψq = −Lqiq
ψo = −Loio

}
[4.1.7′]

in which the inductances:

Lf � Lff

Lmd �
√

3
2Mf

Ld � Ls + Ms + 3
2Lm

Lq � Ls + Ms − 3
2Lm

Lo � Ls − 2Ms

are all independent of θ (the difference Ld − Lq = 3Lm considers possible aniso-
tropy of the rotor, and is disregarded if the rotor is round).

In vector terms, from the first two of the Equations [4.1.7′] we also can derive:

ψ = Lmd if − (Ldid + Lqjiq) = Lmd if − Lqı − (Ld − Lq)id [4.1.7′′]

and in particular:
ψ = Lmd if − Lqı

if Ld = Lq (Lm = 0, i.e., round rotor).
As an alternative, Equation [4.1.6′] also may be replaced by:

if = ψf + Lmd id

Lf

[4.1.6′′]

so that the first part of Equations [4.1.7′] leads to:

ψd = Lmd

Lf

ψf − L̂′
d id
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with:

L̂′
d � Ld − L2

md

Lf

[4.1.8]

and [4.1.7′′] may be rewritten:

ψ = Lmd

Lf

ψf − (L̂′
d id + Lqjiq) = Lmd

Lf

ψf − Lqı + (Lq − L̂′
d)id [4.1.7′′′]

(c) Equations of the Mechanical Part
For the mechanical part of the machine, by disregarding possible torsional phe-
nomena, we can assume Equation [4.1.2], i.e.,

Cm = J
dΩm

dt
+ Cp(Ωm) + Ce [4.1.9]

where the symbols have the already defined meaning.
The (“electromagnetic”) torque Ce may be expressed as a function of electric

and magnetic variables of the machine. As indicated in the following, we may
write:

Ce = Np(ψdiq − ψqid) = Np〈jψ, ı〉 [4.1.10]

Np being the number of pole pairs. Power corresponding to the torque Ce is:

Pe = CeΩm = Ω(ψdiq − ψqid) = 〈jΩψ, ı〉 [4.1.10′]

(it must be remembered that Ω = NpΩm).
Lastly, remembering Equation [4.1.7′′] we also can write:

Ce

Np

= Pe

Ω
= (Lmd if − (Ld − Lq)id)iq

from which it is evident that, if Ld �= Lq , the machine is capable of generating
torque even in the absence of excitation current. The component of torque:

(Ce)if =0 = −Np(Ld − Lq)id iq

caused by the anisotropy of the rotor, is said to be the “reluctance torque.”
Similarly, Equation [4.1.7′′′] makes it possible to obtain:

Ce

Np

= Pe

Ω
=
(
Lmd

Lf

ψf + (Lq − L̂′
d)id

)
iq

To demonstrate Equation [4.1.10], assume that the magnetic part of the machine is nondis-
sipative, with characteristics depending only on its instantaneous configuration (in partic-
ular, hysteresis phenomena are ignored). In addition, reference will be made, for the sake
of simplicity, to the case in which the rotor includes only the field circuit. On the other
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hand, the extension to the case of several rotor circuits is obvious. Finally, the treatment
is still valid in presence of magnetic saturation.

Under these conditions, the total magnetic energy W stored in the machine is defined by
the integral:

W =
∫ (2)

(1)
(if dψf − (ia dψa + ib dψb + ic dψc))

(in which the currents if , ia , ib, ic, as well as W , are functions of the fluxes ψf , ψa , ψb,
ψc, and of the angular position θ ), calculated by assuming as integration extremes:

(1): zero flux linkages;

(2): flux linkages at their present value;

and by assuming θ to be constant, equal to its present value. On the other hand, by using
the Park’s variables with θ as angular reference, we obtain:

ia dψa + ib dψb + ic dψc = id dψd + iq dψq + io dψo + (ψdiq − ψqid) dθ

in which, because of Equations [4.1.6′] and [4.1.7′], the currents if , id , iq , io can be
expressed as functions only of the flux linkages ψf , ψd , ψq , ψo, irrespective of θ . We
can then derive:

dW = if dψf − (id dψd + iq dψq + io dψo)

(and thus W too can be expressed as a function of only ψf , ψd , ψq , ψo, irrespective of
θ ). Alternatively, it holds:

dW = dWe + (ψdiq − ψqid) dθ [4.1.11]

where:
dWe � if dψf − (ia dψa + ib dψb + ic dψc)

is the variation in total electric energy absorbed by the magnetic part of the machine.

For conservation of the energy, the last term in Equation [4.1.11] must therefore be equal
to the variation Ce dθm of absorbed mechanical energy (with dθm = Ωm dt = Ω dt/Np =
dθ/Np,Np being the number of pole pairs), from which the “electromagnetic” torque
equals:

Ce = (ψdiq − ψqid)
dθ

dθm

= Np(ψdiq − ψqid) [4.1.12]

according to Equation [4.1.10].

The same result may be achieved, albeit somewhat laboriously, by applying the property:

Ce = +
(

∂W

∂θm

)
ψf ,ψa,ψb,ψc constant

[4.1.13]

after having expressed W as a function of ψf , ψa , ψb, ψc, θ , and remembering that
dθm = dθ/Np . Often, instead of the Equation [4.1.13], it is assumed:
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Ce = −
(

∂W

∂θm

)
if ,ia ,ib,ic constant

[4.1.14]

which, however, is equivalent to Equation [4.1.13] only if the magnetic part of the machine
is, apart from being conservative, linear. In other words, in the presence of saturation,
Equation [4.1.13] remains valid, but Equation [4.1.14] does not.

Additionally, in Equation [4.1.10], the scalar product 〈jψ, ı〉 does not depend
on the angular reference of the Park’s transformation; therefore, in general, we
also can write:

Ce = Np〈jψr, ır〉

with arbitrary reference θr .

Remark 1: Equivalent Circuits
From Equations [4.1.4], [4.1.5′], [4.1.6′], and [4.1.7′], relating to the electrical
and magnetic parts, it is possible to derive the set of equivalent circuits shown
in Figure 4.3.

Figure 4.3. Equivalent circuits of the synchronous machine (electrical and mag-
netic parts), without additional rotor circuits and without magnetic saturation.



4.1 BASIC FORMULATIONS 299

(More generally, the circuit in Fig. 4.3a remains valid even if we replace:



vf with τf vf

if with if /τf
ψf with τf ψf



Rf with τ 2

f Rf

Lf with τ 2
f Lf

Lmd with τf Lmd

where τf is an arbitrary transformation ratio.)
Note that, because of Equation [4.1.10′], the power Pe is equal to the total

power supplied by the two voltage generators indicated in Figure 4.3a,b. The
active power P delivered through the stator terminals is, on the other hand,
expressed by:

P = (va − vn)ia + (vb − vn)ib + (vc − vn)ic = vdid + vqiq + (vo − √
3vn)io

= Pe − R(i2
d + i2

q + i2
o ) +

(
dψd

dt
id + dψq

dt
iq + dψo

dt
io

)

In addition, the inductances Ld and L̂′
d (the latter is defined by Equation [4.1.8])

are equal to the inductance seen from the terminals (D1,D2), when the pair of
terminals (F1, F2) is open or short-circuited, respectively.

Similarly, Lf is the inductance seen from (F1, F2) when (D1,D2) is open,
whereas the inductance seen with (D1,D2) short-circuited is expressed by Lf −
L2

md/Ld = (L̂′
d/Ld)Lf .

Finally, regarding the circuit in Figure 4.3c, it results io = 0 if the neutral is
isolated from earth (see also Section 5.2.1).

Remark 2: Per Unit (pu) Reduction
The best choice for the base values may not be obvious, at least for the rotor
variables. In the following, it will be assumed to refer:



vd, vq, vo to

√
3V(F)nom

id , iq , io to
√

3I(F )nom

ψd,ψq, ψo to
√

3V(F)nom/ωnom



vf to V ∗

f

if to I ∗
f

ψf to Ψ ∗
f

and, in addition, the torques:

Cm,Cp, Ce to
Anom

Ωmnom

(also referring the powers to Anom), by denoting:

V(F)nom = nominal effective value of phase voltages
I(F )nom = nominal effective value of phase currents
Anom = 3V(F)nomI(F )nom = nominal apparent power
ωnom =Ωnom = nominal frequency
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Ωmnom = Ωnom

Np

= nominal mechanical speed

V ∗
f , I ∗

f , Ψ
∗
f = values of vf , if , ψf corresponding, in open circuit operation

(with Ω = ωnom and without saturation), to nominal stator
voltage.

(As indicated in Section 4.4.1, Equation [4.4.1], it results:

I ∗
f =

√
3V(F)nom

ωnomLmd

while V ∗
f = Rf I

∗
f , Ψ

∗
f = Lf I

∗
f .)

By generically setting:

vα � vα√
3V(F)nom

, iα � iα√
3I(F )nom

, ψα � ωnomψα√
3V(F)nom

(α = d, q, o)

vf � vf

V ∗
f

, if � if

I ∗
f

, ψf � ψf

Ψ ∗
f

, Cα � ΩmnomCα

Anom
(α = m,p, e)

and also:

xd � ωnomLd

Z(F)nom
, x̂ ′

d � ωnomL̂′
d

Z(F)nom

xq � ωnomLq

Z(F)nom
, r � R

Z(F)nom

xo � ωnomLo

Z(F)nom




[4.1.15]

where Z(F)nom � V(F)nom/I(F)nom is the nominal impedance per phase, the Equ-
ations [4.1.4], [4.1.5′], [4.1.6′], [4.1.7′], [4.1.9], and [4.1.10] therefore give us,
respectively:

vf = if + T̂ ′
do

dψf

dt
[4.1.16]

vd = −rid + 1

ωnom

(
dψd

dt
− Ωψq

)

vq = −riq + 1

ωnom

(
dψq

dt
+ Ωψd

)



that is (similarly to
Equation [4.1.5′′]) :

v = −rı + p + jΩ

ωnom
ψ [4.1.17′]

vo − vn

V(F)nom
= −rio + 1

ωnom

dψo

dt




[4.1.17]

ψf = if − (xd − x̂ ′
d)id [4.1.18]
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ψd = if − xd id
ψq = −xq iq

}
that is (similarly to Equations [4.1.7′′]
and [4.1.7′′′]) :

ψ = if − (xd id + xqj iq) = ψf − (x̂ ′
d id + xqj iq) [4.1.19′]

ψo = −xoio


 [4.1.19]

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce [4.1.20]

Ce = ψd iq − ψq id = (if − (xd − xq)id)iq = (ψf + (xq − x̂ ′
d)id)iq [4.1.21]

where:

• T̂ ′
do � Lf /Rf is the “field time constant,” i.e., the time constant seen from

the terminals of the field circuit when the phase circuits are open or, more
particularly, when the pair (D1, D2) in Figure 4.3a is open;

• T ′
a � JΩ2

m nom/Anom is the so-called “start-up (or acceleration) time” of
the unit, referred to the nominal apparent power (by remembering Equ-
ation [3.1.5], it then results T ′

a = TaPnom/Anom = Ta cos ϕnom).

4.1.3. Transfer Functions
In terms of transfer functions, from Equations [4.1.4], [4.1.6′], and [4.1.7′] it is
possible to deduce the following equations:

if = B(s)vf + C(s)id

ψf = B ′(s)vf − C′(s)id
ψd = A(s)vf − Ld(s)id


 for the d axis [4.1.22]

ψq = −Lq(s)iq for the q axis [4.1.23]

ψo = −Lo(s)io for the o axis [4.1.24]

with:

C(s) = sA(s)

B ′(s) = 1 − Rf B(s)

s

C′(s) = Rf C(s)

s
= Rf A(s)




[4.1.25]

A(s) = Lmd

Rf (1 + sT̂ ′
do)

B(s) = 1

Rf (1 + sT̂ ′
do)

Ld(s) = Ld + sT̂ ′
doL̂

′
d

(1 + sT̂ ′
do)

= Ld

1 + sT̂ ′
d

1 + sT̂ ′
do

Lq(s) = constant = Lq

Lo(s) = constant = Lo




[4.1.26]
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where the time constant T̂ ′
do has the known meaning, whereas:

T̂ ′
d � L̂′

d

Ld

T̂ ′
do = x̂ ′

d

xd

T̂ ′
do = T̂ ′

do − L2
md

LdRf

is the time constant seen from the terminals of the field circuit when the pair
(D1, D2) in Figure 4.3a is short-circuited.

Turning to “per unit” values, the previous equations may be translated into
the following equations (directly deducible from Equations [4.1.16], [4.1.18],
and [4.1.19]):

if = b(s)vf + c(s) id
ψf = b′(s)vf − c′(s)id
ψd = a(s)vf − ld (s)id


 for the d axis [4.1.22′]

ψq = −lq(s)iq for the q axis [4.1.23′]

ψo = −lo(s)io for the o axis [4.1.24′]

with:

c(s) = s

ωnom

Anom

P ∗
f

a(s) = s(xd − x̂ ′
d)T̂

′
doa(s)

b′(s) = 1 − b(s)

sT̂ ′
do

c′(s) = c(s)

sT̂ ′
do

= (xd − x̂ ′
d) a(s)




[4.1.25′]

(P ∗
f � V ∗

f I ∗
f = Rf I

∗2
f is the power absorbed by the field circuit in open-circuit

operation with nominal stator voltage and Ω = ωnom, without saturation), and in
addition:

a(s) = b(s) = 1

1 + sT̂ ′
do

ld (s) = xd + sT̂ ′
do x̂

′
d

1 + sT̂ ′
do

= xd

1 + sT̂ ′
d

1 + sT̂ ′
do

lq (s) = constant = xq

lo(s) = constant = xo




[4.1.26′]

As it will be noted further on, Equations [4.1.22], [4.1.23], [4.1.24], and [4.1.25], as
well as the corresponding ones in pu, i.e., Equations [4.1.22′], etc., remain valid even
for models of a more general type, whereas Equations [4.1.26] (and Equations [4.1.26′])
must be suitably adapted (in particular, it may be that a(s) �= b(s)).

Also note that P ∗
f = Rf (3V 2

(F )nom/(ωnomLmd )
2), and therefore, in the first part of

Equations [4.1.25′]:
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Anom

P ∗
f

= (ωnomLmd )
2

Z(F)nomRf

= ωnom(xd − x̂ ′
d)T̂

′
do = ωnomxd(T̂

′
do − T̂ ′

d)

Equations [4.1.22] give if , ψf , ψd starting from vf and id ; alternatively, it is
possible to derive if , ψf , id starting from vf and ψd . In pu (see Equations [4.1.22′]),
this leads to:

if =
(
b(s) + a(s)c(s)

ld(s)

)
vf − c(s)

ld(s)
ψd

ψf =
(
b′(s) − a(s)c′(s)

ld(s)

)
vf + c′(s)

ld(s)
ψd

id = a(s)

ld(s)
vf − 1

ld (s)
ψd




[4.1.27]

where, because of Equations [4.1.26′]:

a(s)

ld(s)
= 1

xd + sT̂ ′
do x̂

′
d

= 1

xd(1 + sT̂ ′
d)

1

ld (s)
= 1 + sT̂ ′

do

xd + sT̂ ′
do x̂

′
d

= 1 + sT̂ ′
do

xd(1 + sT̂ ′
d)

= 1

xd

+
(

1

x̂ ′
d

− 1

xd

)
sT̂ ′

d

1 + sT̂ ′
d

Furthermore, Equations [4.1.5′] account for the behavior of the voltages vd ,
vq , vo, as well as of the speed Ω ; in this connection, the first two expressions
in Equations [4.1.5′] are however nonlinear, given the presence of the products
Ωψd , Ωψq .

In per-unit values (see Equations [4.1.17]), for small variations around a gen-
eral condition ψd = ψo

d , ψq = ψo
q , Ω = Ωo = ωnom, we can derive:

∆ψd =
s

ωnom
(∆vd + r∆id) + (∆vq + r∆iq) +

(
−ψo

d + s

ωnom
ψo

q

)
∆Ω

ωnom

1 + s2

ω2
nom

∆ψq =
−(∆vd + r∆id) + s

ωnom
(∆vq + r∆iq) −

(
ψo

q + s

ωnom
ψo

d

)
∆Ω

ωnom

1 + s2

ω2
nom




[4.1.28]
while:

ψo = ωnom

s

(
vo − vn

V(F)nom
+ rio

)
[4.1.29]
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and recalling Equations [4.1.27], [4.1.23′], and [4.1.24′]:

∆ψd =

(
s

ωnom
+ r

lq(s)

)(
r

ld(s)
a(s)∆vf + ∆vd

)
+ ∆vq

+
(
−ψo

d +
(

s

ωnom
+ r

lq(s)

)
ψo

q

)
∆Ω

ωnom

1 +
(

s

ωnom
+ r

ld(s)

)(
s

ωnom
+ r

lq(s)

)

∆ψq =

−
(

r

ld(s)
a(s)∆vf + ∆vd

)
+
(

s

ωnom
+ r

ld(s)

)
∆vq

+
(
−ψo

q −
(

s

ωnom
+ r

ld(s)

)
ψo

d

)
∆Ω

ωnom

1 +
(

s

ωnom
+ r

ld(s)

)(
s

ωnom
+ r

lq(s)

)




[4.1.30]

ψo = vo − vn/VF(nom)

s

ωnom
+ r

lo(s)

[4.1.31]

(from which we also have ∆if , ∆ψf , ∆id , ∆iq , io, by using Equations [4.1.27],
[4.1.23′], and [4.1.24′]).

Among other things, we may note that the dependence of ∆ψd , ∆ψq on ∆vf
(for given ∆vd , ∆vq , ∆Ω) is the result of the term (r∆id) in Equations [4.1.28],
and would therefore be lacking if r = 0. Furthermore, if Ω = constant = ωnom,
Equations [4.1.28] and [4.1.30] could be used without the ∆ variation symbol
(and ∆Ω = 0).

Lastly, from Equations [4.1.20] and [4.1.21] we derive, for small variations
(and in pu):

∆Cm =
(

T ′
a

ωnom
s +

(
dCp

dΩ

)o)
∆Ω + ∆Ce [4.1.32]

with:
∆Ce = i oq ∆ψd − i od ∆ψq + ψo

d∆iq − ψo
q∆id [4.1.33]

or even (recalling Equations [4.1.23′], and [4.1.27]):

∆Ce = −ψo
q

a(s)

ld(s)
∆vf +

(
i oq + ψo

q

ld(s)

)
∆ψd +

(
−i od − ψo

d

lq(s)

)
∆ψq [4.1.33′]

which, in turn, can be expressed as a function of ∆vf , ∆vd , ∆vq , ∆Ω using the
expressions in Equations [4.1.30].
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4.1.4. General Comments

Comment 1
In the dynamic analysis of a machine, the application of the Park’s transformation
proves particularly useful for various reasons, among which are the following:

(1) it makes it possible to extend, based on precise definitions, the use of
vector representations even to the case of transient operation;

(2) the Equations [4.1.6] and [4.1.7] (relating to the magnetic part of the
machine), containing inductances that vary with the position θ , are replaced
by Equations [4.1.6′] and [4.1.7′], with constant inductances;

(3) for the normal “alternating current” steady-state, there is, in the Park’s
variables (see also the equivalent circuits in Fig. 4.3), a corresponding
“dc” static condition; see Section 4.4.1.

These considerations also may be extended to the case of more sophisticated
models, such as those outlined in Section 4.3.

With (1), emphasis must be placed on the strictly spatial meaning of the
vector representations in general operating conditions, as will be pointed out in
the following Comment 3.

In fact, it is possible for example to ascertain that the vector:

ψa + ψbε
j120◦ + ψcε

j240◦ =
√

3
2ψεjθ

(see Appendix 2) represents, in magnitude and position, the resulting flux linked
with the stator circuits, with the assumption that the angular position of this flux
is referred to axis a in Figure 4.2.

The same conclusion therefore applies, on an appropriate scale, to the vector
ψ , but with angular position referred to the direct axis instead of axis a.

The vector ı may similarly be considered representative of the resulting mmf
caused by the stator circuits, still assuming that its angular position refers to
the direct axis.

These considerations can be used to justify — even intuitively — the transition
(2) from Equations [4.1.6] and [4.1.7], to [4.1.6′] and [4.1.7′], with regard to the
variables d , q. If the vectors ψ and ı are decomposed according to the direct
axis (components ψd , id ) and the quadrature axis (components ψq , iq ), it is
spontaneously expected that the variables ψf , if , ψd , id , ψq , iq could be tied
with each other irrespective of θ , as expressed by Equations [4.1.6′] and [4.1.7′].

Moreover, it follows from (3) that the analysis can be made in the tradition-
ally simplest manner, since the “equilibrium” operating condition of the system
is represented by a static state for which it is sufficient to assume formally
p � d/dt = 0, whereas through the operator p � d/dt account can be taken, in
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accordance with the usual criteria, of the variations in respect of that operating
condition. In particular, any equilibrium state may be analyzed by assuming s = 0
in transfer functions, whereas the assumption s = ∞ may allow the study of the
initial part of the transient following sudden disturbances. Moreover, a further
advantage concerns the treatment of nonlinearities, for small variations around
the equilibrium condition. For example, in the case of expressions z = z(x, y)

with x, y, z any variables of the system, we may derive, in “linearized” terms:

∆z = ∂z

∂x
(xo, yo)∆x + ∂z

∂y
(xo, yo)∆y

where xo, yo are constants equal to the equilibrium values of x, y (see Equ-
ations [4.1.28], [4.1.30], [4.1.32], [4.1.33], and [4.1.33′]).

Comment 2
The parameters that appear in Equations [4.1.26′] fall traditionally, with appro-
priate denominations, within the characteristic machine parameters, whose values
are supplied by the manufacturer or can be determined through experimental tests.
Among the denominations in use, we may recall the following:

• xd = direct-axis synchronous reactance (in pu);
• x̂ ′

d = direct-axis transient reactance (in pu);
• xq = quadrature-axis synchronous reactance (in pu);
• xo = homopolar reactance (in pu);
• T̂ ′

do = open-circuit transient time constant, referring to the direct axis;
• T̂ ′

d = (x̂ ′
d/xd)T̂

′
do = short-circuit transient time constant, referring to the

direct axis(3).

Regarding xd (and similarly xq), the adjective “synchronous” is justified by
the fact that:

xd = ld (0)

is the reactance to be considered, for the direct axis, in the synchronous (equilib-
rium) state of the machine; on the other hand, immediately after the occurrence
of a sudden disturbance the reactance to be considered for the direct axis is:

x̂ ′
d = ld (∞)

(3) For round rotor machines, it usually holds xd
∼= xq

∼= 2–2.5 (xq also may be smaller than xd by
the 5–10 %), x̂′

d
∼= 0.2–0.35, T̂ ′

do
∼= 5–9 seconds.

Usual values for salient pole machines are instead:

• for generators: xd
∼= 1.0–1.2, xq

∼= 0.6–0.9, x̂′
d

∼= 0.25–0.35;
• for compensators: xd

∼= 2–2.5, xq
∼= 1.2–1.6, x̂′

d
∼= 0.35–0.45;

whereas T̂ ′
do

∼= 5–10 seconds, with the higher values for the compensators.
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which is therefore said to be “transient.” Generally, ld (s) may be considered,
for the third of the expressions in Equations [4.1.22′], as the “operational” reac-
tance of the direct axis, equal to the operational inductance (in pu) seen from
the terminals (D1,D2) in Figure 4.3a during any perturbed operation with vf

constant.
Moreover, the time constants T̂ ′

do , T̂ ′
d are called “open-circuit” and “short-

circuit,” respectively, inasmuch as they, respectively, characterize the transient
response for id = 0 (see Equations [4.1.22′]), i.e., (D1, D2) open, and for ψd = 0
(see Equations [4.1.27]), i.e., (D1, D2) short-circuited.

However, the parameters x̂ ′
d , T̂ ′

d , T̂ ′
do refer to the model so far described, i.e., are defined

under the assumption that the rotor contains only the field circuit (and without magnetic
saturation). In practical cases, because of the presence of additional rotor circuits, the
denominations here assigned to x̂ ′

d , T̂ ′
d , T̂ ′

do become valid (more correctly and still ignor-
ing possible effects of saturation) for the parameters x ′

d , T ′
d , T ′

do defined in Section 4.3.2.
In practice, however, the values of these last parameters are slightly different from
previous ones.

Comment 3
In Sections 4.4.2 and 4.4.3, typical perturbed operating conditions of the machine
will be outlined for which, in particular, the Park’s variables are not constant but
are sinusoidal functions of the time.

The analysis of the system (after possible linearization) in sinusoidal operation
with pulsation ν, may be performed in accordance with the usual techniques, by
associating (see Appendix 1) with each sinusoidal variable:

w = √
2W cos(νt + ϕw)

a phasor of the type:
w̃ � Wε̃ϕw

so that we have, with obvious symbols:

By virtue of this last property, the relationships that hold between the different
phasors may be directly obtained from the differential equations of the system,
by replacing the variables (or their Laplace transforms) by the respective phasors,
and the operator p � d/dt (or the Laplace variable s in transfer functions) by
the multiplying factor ̃ ν.

In present notations, the use of the circumflex symbol avoids confusion between
the “phasors” and the (Park’s) “vectors” previously considered, as well as the
operators acting on them, respectively. The definition of the phasors is closely



308 CHAPTER 4 DYNAMIC BEHAVIOR OF THE SYNCHRONOUS MACHINE

linked with the temporal assumption that the (scalar) variables in question are
sinusoidal at a given frequency, whereas Park’s vectors (e.g. v = vd + jvq , etc.)
are defined for any operating condition, based on pairs of scalar variables (d , q)
related to direct and quadrature axes, and therefore have a strictly spatial meaning.
In particular, ̃ (not to be confused with j ) represents the imaginary unit in the
“plane of phasors,” whereas the symbols Re and Im, applied to a given phasor,
denote the real and imaginary parts of the phasor in the aforementioned plane,
respectively.

Comment 4
According to above, the mathematical model of the synchronous machine con-
sists of Equations [4.1.4], [4.1.5′], [4.1.6′], [4.1.7′], [4.1.9], and [4.1.10] (or, in
pu, Equations [4.1.16],. . ., [4.1.21]), in which the variables d and q depend, by
definition, on the reference θ , equal to the angular electric position of the rotor.
Instead of θ , we may consider, more generally, the difference:

δ � θ − θs

by denoting:
dθs
dt

= Ωs = constant

(θs may be interpreted as the angular electric position of a fictitious rotor, rotating
at the constant speed Ωs ; by assuming Ωs = Ωo, equal to the electric speed at
equilibrium state, it follows δo = constant). If we also consider the equation:

dδ

dt
= Ω − Ωs

it is easy to ascertain that the model in question is dynamically of the fifth order
(state variables: ψf , ψd , ψq , Ω , δ) for the axes d and q, and of the first order
(state variable: ψo) for the axis o.

Moreover, vectors v = vd + jvq , ı = id + jiq are defined by assuming θ as
the reference of the Park’s transformation. By denoting vs = vds + jvqs , ıs =
ids + jiqs , the vectors obtained by assuming as reference the position θs defined
above (independent of the mechanical transients of the machine), it follows:

v = vsε
−jδ, ı = ısε

−jδ

where the effect of δ (that is of the mechanical transients) is evident.
For practical applications, the model so far described may be considered too

complicated in some cases and too simple in others. Sections 4.2 and 4.3 describe
usual criteria for obtaining, respectively, simpler models and better approximate
models, according to the indications given in Figure 4.4.

However, note that — independent of the adopted model — the relationship
between variables (possibly in pu) may be generally represented by a block
diagram as shown in Figure 4.5.
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better approximation worse approximation

model described in the present section 4.1

equations
see Section
 4.2.2

see Section
 4.2.3

see Sections
 4.3.2, 4.3.3

see Section
 4.3.4

Figure 4.4. Summarizing scheme of the possible different mathematical models
of the synchronous machine.

4.2. USUAL SIMPLIFICATIONS

4.2.1. Preliminaries

Despite the simplifying assumptions on which it is based, the model described
in Section 4.1 may still seem too complicated for many applications (especially
for the study of electromechanical phenomena in a multimachine system, even
though relatively powerful computers are available for simulating the system),
particularly with the axes d , q, and certainly a long way from the extremely
simplified model in Section 4.1.1.

This section describes usual simplifications, with reference to the model
defined above. Some of these simplifications do not appear to be particularly
prejudicial with respect to the model’s degree of approximation. Others, however,
are mainly dictated by convenience and are useful only for analyses of first
approximation or for cases in which the machine behavior can be considered of
minor importance in relation to the overall problem.

4.2.2. Third-Order ‘‘dq’’ Model

In the analysis of electromechanical phenomena, a generally accepted simplifica-
tion is obtained by dropping, in the first two expressions in Equations [4.1.17],
the terms (1/ωnom) dψd/dt and (1/ωnom) dψq/dt (known as “transformer” emfs,
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(rest of the 
system)

Figure 4.5. Block diagram of the synchronous machine: general structure.

in pu). If we do this, the model for the axes d and q becomes of the third order
(state variables: ψf , Ω , δ).

This simplification is usually accompanied by the substitution, in the equations
in question, of the terms (−Ω/ωnom)ψq , (Ω/ωnom)ψd (“motional” emfs, in pu)
by −ψq and ψd respectively. This is, therefore, a further simplification that leads
to the linear equations (in pu):

vd = −rid − ψq

vq = −riq + ψd

}
v = −rı + jψ [4.2.1]

instead of the first two parts of Equations [4.1.17]. Consequently, the equivalent
circuits (not in pu) in Figure 4.3a,b are replaced by those in Figure 4.6a.
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Figure 4.6. Equivalent circuits for d and q axes with simplifications of the trans-
former and motional emfs.

The following remarks must be made:

(1) The simplifications in question influence phenomena that are often of
minor importance (e.g., the presence of unidirectional components in
the phase fluxes and currents, during the short-circuit transients; see
Section 4.4.4), leaving important operating characteristics unchanged. In
this connection, it is important to note that if the transformer emfs
are neglected, the simplification regarding the motional emfs may be
convenient not only for obtaining simpler (and linear) equations, but also
for avoiding a less accurate approximation; see for example, for r = 0,
the characteristics described in Section 4.4.2b, the transfer functions that
relate ∆Ce to ∆δ and ∆vf in Section 7.2, and so on.

(2) The above simplifications follow normal practice, which represents the
elements of the network (lines, transformers, etc.) with impedances or
admittances at nominal frequency, disregarding their actual dynamic
behavior (see Chapter 5), without generally prejudicing the resulting
approximation.

(3) If such simplifications were not made, the network element dynamics
should be consistently considered. This would, in practice, be prohibitive
(even for the simulations on computer), except for extremely simple cases.
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If we accept Equation [4.2.1], the model of the machine becomes, in pu:

vf = if + T̂ ′
do

dψf

dt
[4.1.16 rep.]

vd = −rid − ψq

vq = −riq + ψd

}
v = −rı + jψ

vo − vn

V(F)nom
= −rio + 1

ωnom

dψo

dt




[4.2.2]

ψf = if − (xd − x̂ ′
d)id [4.1.18 rep.]

ψd = if − xd id
ψq = −xq iq

}
ψ = if − (xd id + xqj iq) = ψf − (x̂ ′

d id + xqj iq)

ψo = −xoio




[4.1.19 rep.]

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce [4.1.20 rep.]

Ce = ψd iq − ψq id = (if − (xd − xq)id)iq = (ψf + (xq − x̂ ′
d)id)iq

[4.1.21 rep.]

With the axes d , q (whereas for the axis o, the last parts of Equations [4.2.2]
and [4.1.19] apply), the model may be expressed in more compact form, by
putting:

e∗ = jeq
∗ � j (if − (xd − xq)id) = j (ψf + (xq − x̂ ′

d)id )

and by eliminating:

if = e∗
q + (xd − xq)id

ψf = e∗
q − (xq − x̂ ′

d)id

ψd = e∗
q − xq id

ψq = −xq iq

}
ψ = e∗

q − xq ı

In fact, by doing this, we obtain (see Fig. 4.6b):

v = e∗ − (r + jxq) ı

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce

Ce = e∗
q iq = 〈e∗, ı〉




[4.2.3]
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in which e∗
q is dynamically influenced by vf and id , according to the equation:

e∗
q = vf − ((xd − xq) − sT̂ ′

do(xq − x̂ ′
d))id

1 + sT̂ ′
do

[4.2.4]

It is important to emphasize the close formal analogy between the
Equations [4.2.3] and the first approximation model in Equations [4.1.1], [4.1.2],
and [4.1.3] considered in Section 4.1.1, by taking e∗ = je∗

q and (r + jxq) as the
“equivalent” internal emf and the “equivalent” output impedance of the machine
(in pu), respectively. In addition, we may ascertain that the angular position of
the emf is fixed with respect to the polar axis (to be more precise, the emf lies
on the quadrature axis).

However, Equation [4.2.4] is now added to Equations [4.2.3]. For Equ-
ation [4.2.4], the emf e∗ cannot be simply defined as the open-circuit voltage
(e∗

q also depends on id), even in steady-state operation (except for xd = xq).
Very often, the effects of the armature resistance can be ignored, so that it

may be assumed r = 0. In the present case, the Equations [4.2.1] then become
more simple:

vd = −ψq

vq = +ψd

}
v = jψ [4.2.5]

and the output impedance is purely reactive.

From the equation:
ψd = ψf − x̂ ′

d id

(see Equation [4.1.19′]), it follows:

dψd

dt
= dψf

dt
− x̂ ′

d

did
dt

in which, for Equation [4.1.16]:

dψf

dt
= vf − if

T̂ ′
do

To obtain the desired reduction in the dynamic order of the model (from 5 to 3, for
the axes d , q), we also may approximate, in the first expression in Equations [4.1.17],
the transformer emf (1/ωnom)dψd/dt with (1/ωnom) dψf /dt = (vf − if )/(ωnomT̂ ′

do), by
dropping only the term −(x̂ ′

d/ωnom) did/dt .

The criterion in question may be extended to more sophisticated models (see Section 4.3),
with reference to both the transformer emfs (1/ωnom) dψd/dt , (1/ωnom) dψq/dt . Express-
ing ψd ,ψq as functions of id, iq and of state variables of the machine (ψf , . . .), the criterion
then leads to the elimination of the only resulting terms in did/dt, diq/dt . However, the
model complications may be far from negligible, especially if ψd and ψq are nonlinear
functions of the aforementioned variables, e.g., in the presence of magnetic saturation.
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4.2.3. Second-Order ‘‘dq’’ Models

The model described in Section 4.2.2 is liable to some acceptable simplifications
for particular operating conditions. If, for example, the transients in question are
fairly slow, from Equation [4.1.16] it follows, ignoring the term in dψf /dt :

if = vf

and by putting:
e = jeq � j if [4.2.6]

(the so-called “synchronous” emf, in pu), the Equations [4.2.3] and [4.2.4] can
be replaced, respectively, by:

v = e − rı − jxd id + xq iq

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce

Ce = eq iq − (xd − xq)id iq




[4.2.7]

and
eq = if = vf [4.2.8]

Note that the assumption if = vf does not mean to suppose dψf /dt = 0 (i.e.,
ψf = constant as in the next examined case), but it corresponds to the assump-
tion s = 0 in Equations [4.1.22′], as if the value of ψf would instantaneously
obey to the equations (of the electrical and magnetic parts) which hold in the
equilibrium steady-state. Since T̂ ′

do may be of 5–10 seconds, it appears evident
that, because of Equation [4.1.16], the model under question may be accepted
only when managing particularly slow phenomena.

Similarly, if the transients in question are fast enough to assume:

ψf = constant

by putting:
e′ = je ′

q � jψf [4.2.9]

(the so-called “transient” emf, in pu), we obtain the equations:

v = e′ − rı − j x̂ ′
d id + xq iq

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce

Ce = e ′
q iq + (xq − x̂ ′

d)id iq




[4.2.10]

and
e ′
q = ψf = constant [4.2.11]
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Note that the assumption ψf = constant does not imply if = vf − T̂ ′
dodψf /dt =

vf as in the previous case, but it corresponds to the assumption s = ∞ in
Equations [4.1.22′], applied to the different quantity variations. Generally, it also
may be intended T̂ ′

dodψf /dt = vf − vo
f , and thus ψf possibly variable. However,

by doing this, the model remains of the third order (see Section 7.2.2b.)
Through both the approximations described above, the model for the axes d

and q thus becomes of the second order (state variables: Ω , δ). Furthermore, in
Equations [4.2.7], the expressions of v and Ce become simpler if xd = xq (round
rotor). The result is:

v = e − (r + jxd)ı

Ce = eq iq = 〈e, ı〉
and similarly for Equations [4.2.10], if it is assumed x̂ ′

d = xq .
Often the following model (see also Section 4.1.1) is assumed:

v = eeq − (req + jxeq)ı

Cm = T ′
a

ωnom

dΩ

dt
+ Cp(Ω) + Ce

Ce = 〈eeq, ı〉


 [4.2.12]

where eeq, (req + jxeq) are the “equivalent” internal emf and the “equivalent”
output impedance, suitably defined in relation to the particular problem. In addi-
tion, it is assumed that the emf has a fixed angular position with respect to the
polar axis, and its magnitude eeq is independent of the armature current ı and
dynamically influenced (according to a suitable law) by the field voltage vf . At
the cost of further schematizations — often very rough — this type of model also
is used to represent, jointly, the machine and its voltage regulation. In such a
case, eeq may be considered depending on the reference of the voltage regulator.

By assuming eeq constant, the machine is represented, for the axes d and
q, by an extremely simple second-order model. In particular, the definition of
the output impedance prevents consideration of any anisotropy of the machine
and makes it possible to treat this impedance like the network impedances, in
accordance with the usual computer programs for calculating the impedance
or admittance matrices between assigned nodes, etc. However, such a model
can find justification only in special cases; for example, when it is possible to
assume if constant and xd = xq (we then find the Equations [4.2.7], assuming
eeq = e, req = r , xeq = xd = xq), or ψf constant and x̂ ′

d = xq (we then find the
Equations [4.2.10], assuming eeq = e ′, req = r , xeq = x̂ ′

d = xq )(4).

(4) The assumption ψf = constant, very frequently used in studies on “transient stability,” is generally
accompanied by the assumptions req = r , xeq = x̂′

d , so that eeq = v + (r + j x̂′
d )ı is the so-called emf

“behind the transient reactance.” By comparison with the first part of the Equations [4.2.10], this
emf equals e′ + (xq − x̂′

d )iq (in which e′ � jψf = constant), and the assumption that it remains
constant is equivalent to assuming that, for x̂′

d �= xq , the variations of iq are slight.
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The emf eeq and the impedance (req + jxeq) are called “pendular emf” and
“pendular impedance” when they have been determined for reproducing, with
sufficient approximation, the electromechanical oscillation (or “pendulation”) of
the machine with respect to the rest of the system, or at least the “dominant”
oscillation (see also the end of Section 7.2.2b).

4.3. MORE SOPHISTICATED MODELS

4.3.1. Preliminaries

The model described in Section 4.1 is based on the following fundamental
assumptions:

(a) there are no “additional” rotor circuits other than the field circuit;

(b) there is no magnetic saturation;

(c) there are no torsional phenomena in the unit shaft.

For many practical applications, this model is still too burdensome,
and Section 4.2 describes the simplified models that are more often used.
Nevertheless, this does not alter the fact that in other cases, when the machine
is particularly involved in the dynamic phenomena in question, it is necessary to
have recourse to models of closer approximation, by removing the simplifying
assumptions referred to above, or at least some of them. The Equations (in
pu) [4.1.18], [4.1.19], and [4.1.20] must then be replaced by more suitable
ones, as indicated later in this section, whereas the Equations [4.1.16], [4.1.17],
and [4.1.21] remain valid, since they are insensitive to the aforementioned
assumptions.

Hereafter, special reference will be made to the axes d and q, for which the
model defined in Section 4.1 is affected in a nonnegligible measure by all the
assumptions under question.

In most applications, it is still advisable, in the Equations [4.1.17], to make
the simplifications on the transformer emfs and on the motional emfs, as in
Section 4.2.2 (Equations [4.2.1]). Indeed, recourse to a “complete” model giving
up such simplifications may in practice (for the already seen reasons) only be
justified in the study of special problems, most relating to systems with a few
machines (e.g., problems relating to synchronous or asynchronous start-up, short-
circuit near the terminals of the machine, etc.).

4.3.2. Effect of the Additional Rotor Circuits

To consider the effect of additional rotor circuits, let us first assume that the rotor
includes (in addition to the field circuit, acting magnetically along the direct axis)
a second circuit, acting along the quadrature axis.
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On this assumption, the equations of the electrical part comprise, regarding
the rotor circuits, no longer Equation [4.1.4] alone, i.e.,

vf = Rf if + dψf

dt
[4.1.4 rep.]

but also an equation:

vB = RBiB + dψB

dt
[4.3.1]

with:

vB, iB, ψB, RB = voltage, current, flux, resistance of the
additional circuit in question.

(The reduction in pu is omitted here, although it is obvious how to apply it.)
Additionally, the second part of the Equations [4.1.7′] relating to the magnetic

part, axis q, must replaced by equations:

ψB = LBiB − Lmq iq [4.3.2]

ψq = Lmq iB − Lqiq [4.3.3]

with LB and Lmq constant.
In fact, it is assumed that the magnetic part is linear, excluding saturation and

hysteresis. In addition, it is assumed that, due to the constructional characteristics
of the machine, the mutual inductances between the additional circuit considered
and the phase circuits are sinusoidal functions of the position θ , i.e.,

{
LaB = LBa = −MB sin θ

LbB = LBb = −MB sin θ ′
LcB = LBc = −MB sin θ ′′

so that it can be obtained, applying the Park’s transformation, Lmq = √
3/2MB =

constant.
As a first consequence, Equation [4.1.7′′] must be replaced by:

ψ = Lmd if + LmqjiB − (Ldid + Lqjiq) [4.3.4]

and Equation [4.1.7′′′] (expressing if as a function of ψf , id , and iB as a function
of ψB , iq for Equation [4.3.2]) by:

ψ = Lmd

Lf

ψf + Lmq

LB

jψB −
(
Ld − L2

md

Lf

)
id −

(
Lq − L2

mq

LB

)
jiq [4.3.4′]

If the voltage vB is actually applied from outside, the additional circuit may be
a transverse excitation circuit, present in some types (albeit rare) of machines. We
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Figure 4.7. Equivalent circuits for d and q axes in the presence of an additional
rotor circuit along the q axis.

will not consider such a case (to which, however, it is obvious how the analysis
might be extended) and will therefore assume vB = 0, i.e., that the additional
circuit is short-circuited.

With the equivalent circuits in Figure 4.3a,b relating to the axes d and q, the
second of these must then be modified as indicated in Figure 4.7b. The induc-
tances Lq and (Lq − L2

mq/LB ) are equal to the inductance seen from the terminals
(Q1,Q2), when the pair of terminals (B1, B2) is open or short-circuited, respec-
tively, (similarly to what is already pointed out for the direct axis inductances
Ld and Ld − L2

md/Lf = L̂′
d ).

In the steady-state operation of the machine (see Section 4.4.1), corresponding
to the static state (with constant voltages, currents, and fluxes) of the equivalent
circuits, iB = 0. Therefore, the effects of the additional rotor circuit only manifest
themselves in the transient states. More precisely, the transfer functions defined
in Equations [4.1.22], [4.1.23], and [4.1.24] (with the constraints [4.1.25]) are
still expressed by Equations [4.1.26], except for Lq(s), which now becomes (see
Fig. 4.7b);

Lq(s) =
Lq + s

(
Lq − L2

mq

LB

)
LB

RB

1 + s
LB

RB

[4.3.5]

that is, in pu:

lq (s) � −ψq

iq
= ωnom

Z(F)nom

−ψq

iq
= ωnom

Z(F)nom

Lq + s

(
Lq − L2

mq

LB

)
LB

RB

1 + s
LB

RB

[4.3.5′]
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and then of the first order, with:

lq (0) = ωnom

Z(F)nom
Lq � xq, lq(∞) = ωnom

Z(F)nom

(
Lq − L2

mq

LB

)

so that the model’s dynamic order of the machine increases by one.
Similarly, it can be recognized that an additional rotor circuit acting along the

direct axis leads, in pu — and on the usual assumptions on the magnetic part — to
transfer functions a(s), b(s), b′(s), c(s), c′(s), ld (s) of the second order, instead
of simply of the first order as expressed by Equations [4.1.25′] and [4.1.26′].
Transfer functions of a higher order may then be obtained in the presence of
further additional circuits.

In practice, the “damping” windings of the machine can generally be assim-
ilated with two “equivalent” (short-circuited) additional rotor circuits, one of
which acts magnetically along the direct axis, and the other along the quadrature
axis. In this case we then obtain, in particular, an ld (s) of the second order and
an lq(s) of the first order, respectively:

ld(s) = xd

(1 + sT ′
d)(1 + sT ′′

d )

(1 + sT ′
do)(1 + sT ′′

do)

lq(s) = xq

1 + sT ′′
q

1 + sT ′′
qo




[4.3.6]

or even:

1

ld (s)
= 1

xd

+
(

1

x ′
d

− 1

xd

)
sT ′

d

1 + sT ′
d

+
(

1

x ′′
d

− 1

x ′
d

)
sT ′′

d

1 + sT ′′
d

1

lq(s)
= 1

xq

+
(

1

x ′′
q

− 1

xq

)
sT ′′

q

1 + sT ′′
q




[4.3.6′]

in which, with the usual denominations:

• xd, x
′
d , x

′′
d = “direct” reactances (in pu): synchronous, transient and subtran-

sient, respectively;
• xq, x

′′
q = “quadrature” reactances (in pu): synchronous and subtransient,

respectively;
• T ′

d , T
′′
d = “short-circuit, direct” time constants: transient and subtransient,

respectively;
• T ′

do, T
′′

do = same as above, but at “open-circuit” instead of “short-circuit;”
• T ′′

q , T ′′
qo = subtransient “quadrature” time constants: “short-circuit” and

“open-circuit,” respectively.

The “transient” parameters x ′
d, T

′
d , T

′
do are implicitly defined by the previous expressions

of ld (s) and l/ ld(s), and do not coincide with the similar parameters x̂ ′
d , T̂

′
d , T̂

′
do which
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appear in ld(s) in the absence of additional circuits, even if practically (as already pointed
out) the numerical differences are small (remember the values reported in the footnote(3)).
The subtransient reactances x ′′

d and x ′′
q slightly differ from each other and are usually

within the range of 0.15–0.3, whereas the subtransient time constants may vary from
hundredths to tenths of a second. Note that it holds T ′

do > T ′
d > T ′′

do > T ′′
d , T ′′

qo > T ′′
q .

Furthermore, through comparison between the Equations [4.3.6] and [4.3.6′], we have:

x ′′
d = ld (∞) = xd

T ′
dT

′′
d

T ′
doT

′′
do

, x ′′
q = lq(∞) = xq

T ′′
q

T ′′
qo

If the machine has a solid rotor, the occurrence of eddy currents distributed
during the transients in the body of the rotor, may then be expressed schematically
(through suitable and generally acceptable assumptions) as the effect of infinite
additional rotor circuits. This leads to irrational transfer functions of an
infinite order (not reducible to ratios between polynomials in s). For practical
applications, it is necessary to consider only suitable approximations, with transfer
functions of a sufficiently high order.

Figure 4.8 shows qualitatively, at the cost of some reasonable approxima-
tions, the effects of additional rotor circuits on the equivalent circuits relating to
the axes d and q.

If the rotor is not solid, the more usual assumptions are the following:

(1) an additional circuit acting only along the q axis (see Fig. 4.7 and Equ-
ation [4.3.5]); in this case, we have Equations like [4.3.6] or [4.3.6′], by
assuming that T ′′

d = T ′′
do , x ′′

d = x ′
d = x̂ ′

d , T ′
d = T̂ ′

d , T ′
do = T̂ ′

do ;

effect of additional
 rotor circuits

Figure 4.8. Equivalent circuits for d and q axes in the presence of additional
rotor circuits along both axes.
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(2) two additional circuits, one of which acts along the d axis, and the other
along the q axis; in this case, Equations [4.3.6] or [4.3.6′] hold.

If the rotor is solid, it may sometimes be advisable to have recourse to the
following assumption:

(3) three additional circuits, one of which acts along the d axis, and two along
the q axis: transfer functions of the second order are then obtained on both
the axes d and q;

or to other approximations of a higher order.
To assumptions (1), (2), and (3) there correspond, for the whole machine

(apart from axis o), models of dynamic order 6, 7, and 8, respectively, or (more
frequently, as already pointed out) of order 4, 5, and 6 if we accept the simpli-
fications on the transformer emfs described in Section 4.2.2.

In practice, (2) is used far more often than (1); however, in favor of the latter
it may be said that, for many applications, transfer functions of the first order for
the direct axis may still be accepted, whereas the equation lq(s) = constant = xq

(see Equations [4.1.26′]) is too much of a simplification and one that cannot
consider any electromagnetic transient on the quadrature axis. For this reason,
assumption (1) may enable a considerable improvement in approximation to be
achieved, and recourse to (2) may, all in all, prove to be inconvenient. Similar
considerations apply for (3), in relation to possible approximations of a higher
order; see the examples in Figure 4.9.

4.3.3. Effect of the Magnetic Saturation

The problem becomes substantially different when considering the magnetic sat-
uration, because in this case the nonlinearities of the magnetic part make it
very difficult (or improper) to have a rigorous treatment on the basis of Park’s
transformation. The problem in question may, however, be solved with practical
interest, if we consider the physical meaning of the equivalent circuits and of the
variables (voltages, currents, fluxes) that appear in them. By so doing, in fact,
we can easily guess the type of corrections to make in the circuits themselves,
and therefore in the model of the machine, to take the magnetic saturation into
account.

In this connection, the use of d and q variables would appear helpful, assuming
that the effect of the saturation is to render nonlinear (without increasing the
dynamic order of the model) the links between fluxes and currents, e.g., between
the fluxes ψf , ψd , ψq and the currents if , id , iq in the absence of additional rotor
circuits, or between the fluxes ψf , ψB , ψd , ψq and the currents if , iB , id , iq in
the case of Figure 4.7.

To more clearly state the aforementioned nonlinear links, it is useful to sub-
divide the saturation (at the cost of a few schematic assumptions that are, in
practice, acceptable) as follows:
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salient pole rotor
round, nonsolid rotor
round, solid rotor

Figure 4.9. Numerical examples of frequency response of the synchronous
machine (functions ld (s) and lq(s), with s = ̃ ν).

• saturation in the stator and more particularly just in the stator teeth (where
magnetic induction may actually reach higher values);

• saturation in the rotor.

Usually, the saturation only in the stator teeth are considered and related to
the so-called “air-gap flux” (in dq terms: ψS = ψSd + jψSq). This flux involves
both the stator and the rotor, crossing the stator teeth and the air-gap.
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The air-gap flux ψS differs from the total flux ψ linked with the stator circuits.
The difference is the result of the flux ψl linked with the stator windings only,
through magnetic circuits that practically involve only the stator slots (armature
leakage). For this last reason, flux ψl may be considered practically exempt from
saturation phenomena, so that (bearing in mind the sign convention used for stator
current ı) we may write:

ψl = −Llı

ψS = ψ − ψl = ψ + Llı [4.3.7]

Ll being a suitable inductance, known as “(armature) leakage inductance”. Gen-
erally, it also would be possible to assume two distinct values Lld and Llq

for the axes d , q respectively, with ψl = −Lld id − Llqjiq (see also Fig. 4.12,
further on.)

Equation [4.3.7] makes it possible to identify the air-gap flux ψS , now assumed
to be the only flux prone to saturation.

The corrections in the equivalent circuits to consider the saturation thus appear
fairly obvious. If the rotor includes only the field circuit, these corrections are
shown schematically in Figure 4.10, in which the currents iSd and iSq correspond
to the mmfs required on the axes d and q to compensate for the magnetic voltage
drops due to saturation, whereas (see also Section 4.1.2, Remark 1)

τf = Ld − Ll

Lmd
[4.3.8]

is the transformation ratio according to which the currents if and id influence
the air-gap flux (with the assumption of having saturation only in the stator, this
ratio is the so-called “armature reaction coefficient”).

The vector ıS = iSd + jiSq is, by definition, a function of the air-gap flux
ψS = ψSd + jψSq , and moreover it appears reasonable, especially with round
rotor, to assume that ıS has the same phase as ψS and a magnitude suitably
depending on that of ψS , i.e.,

iS = GS(ψS)

in accordance with the magnetic characteristic of the stator; the following equ-
ations are then obtained:

iSd = GS(ψS)

ψS

ψSd

iSq = GS(ψS)

ψS

ψSq




[4.3.9]
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saturation
in the stator

Figure 4.10. Equivalent circuits for d and q axes in the presence of magnetic
saturation only in the stator.

As a final consequence, should the rotor not comprise any additional circuits,
it is derived from the equivalent circuits in Figure 4.10 that the equations:



ψf = Lf if − Lmd id
ψd = Lmd if − Ldid
ψq = −Lqiq

(see Equations [4.1.6′] and [4.1.7′]) must be replaced to consider the saturation
in the stator teeth, by the following ones:

ψf = 1

τf

(
(τ 2

f Lf − τf Lmd )
if

τf

+ ψSd

)
=
(
Lf − L2

md

Ld − Ll

)
if + Lmd

Ld − Ll

ψSd

ψd = ψSd − Llid

ψq = ψSq − Lliq

ψSd = (Ld − Ll)

(
if

τf

− (id + iSd )

)
= Lmd if − (Ld − Ll)(id + iSd )

ψSq = −(Lq − Ll)(iq + iSq )




[4.3.10]
in which iSd and iSq depend on ψSd and ψSq as expressed by Equations [4.3.9].

If we use the pu reduction defined in Section 4.1.2, Remark 2, relating;



iSd , iSq , iS = GS to

√
3I(F )nom

ψSd , ψSq , ψS to
√

3
V(F)nom

ωnom
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Equations [4.3.9] and [4.3.10] then become, with obvious symbols:

iSd = gS(ψS)

ψS

ψSd

iSq = gS(ψS)

ψS

ψSq




[4.3.9′]

and

ψf = x̂ ′
d − xl

xd − xl

if + xd − x̂ ′
d

xd − xl

ψSd

ψd = ψSd − xl id
ψq = ψSq − xl iq
ψSd = if − (xd − xl)(id + iSd )

ψSq = −(xq − xl)(iq + iSq )




[4.3.10′]

where:

xl � ωnomLl/Z(F)nom = (armature) leakage reactance, in pu

(such equations take the place of Equation [4.1.18] and of the first two parts in
Equations [4.1.19]).

As a consequence of the above, let us now consider the following steady-state
operating conditions of the machine (which are not influenced by the possible
presence of additional rotor circuits, as already remarked):

(1) open-circuit (see also Section 4.4.1);
(2) reactive load only (cos ϕ = 0), with current ı lagging versus voltage v;

by also assuming Ω = ωnom.
In the first case, it may be derived in pu (recalling also the Equations [4.1.17]):

if = v + (xd − xl)gS(v) � f (v) [4.3.11]

so that function gs may be derived from the open-circuit characteristic if = f (v)

as indicated in Figure 4.11a.
In the second case, ignoring the armature resistance r , we find, on the

other hand:
if = v + xd i + (xd − xl)gS(v + xl i)

i.e.,
if − (xd − xl)i = f (v + xl i) [4.3.12]

so that the characteristic (if , v) may, for each given value of the current i, be
derived graphically (“Potier construction”) from the open-circuit characteristic,
by a simple translation of the triangle shown in dashed lines in Figure 4.11b.
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open-circuit open-circuit

Figure 4.11. Open-circuit characteristic (with magnetic saturation) and Potier
construction under the hypothesis of saturation only in the stator.

This triangle is known when we know, e.g., xd i and (xd − xl)i . In this connection, it may
be pointed out that:

• for v = 0 we have if − (xd − xl)i ∼= xl i , that is if ∼= xd i (the saturation has a slight
effect; see the short-circuit characteristic (b) in Fig. 4.16): xd i is therefore equal
to the excitation current (in pu) if required to have the given current i in short-
circuit operation;

• because of Equation [4.3.8], we have:

xd − xl = ωnom(Ld − Ll)

Z(F )nom
= ωnomLmdτf

Z(F )nom
=

√
3I(F )nom

I ∗
f

τf

so that (xd − xl) is the “armature reaction coefficient” with the pu adopted here.

The model defined above justifies the Potier construction for representing sat-
uration only in the stator; the acceptability of this latter assumption may be
evaluated by observing the actual trend of the characteristics in question, mea-
sured experimentally.

In this connection, on the opposite assumption of saturation only in the rotor,
the Potier construction (Fig. 4.11b) may still be accepted, provided that xl is
replaced by x̂ ′

d . For clarification, we observe that in a steady-state operation
at cos ϕ = 0 (ignoring the armature resistance r), the rotor saturation can be
attributed to the field flux ψf only. We then have equations, in pu:

ψf = if − gR(ψf ) − (xd − x̂ ′
d)i

v = ψd = if − gR(ψf ) − xd i

(whereas vd = ψq = iq = 0), in which gR(ψf ) corresponds, in terms of field
current, to the mmf required for compensating the magnetic voltage drop caused
by the saturation; it follows then:
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ψf = v + x̂ ′
d i

if = v + xd i + gR(v + x̂ ′
d i)

(from which, in open-circuit operation, if = v + gR(v) � f (v)), so that Equ-
ation [4.3.12] still holds, with x̂ ′

d in place of xl .
In reality, the Potier construction applies (although not exactly), provided that

xl is replaced by a suitable value xp, known as the “Potier reactance,” which is
intermediate between xl and x̂ ′

d . From the comparison between xp and xl , x̂ ′
d , we

can obtain an indication of the relative “weight” of saturation in the stator and
in the rotor, at least regarding the direct axis (in fact, in the operating conditions
considered here, the quadrature components of fluxes and currents equal zero)(5).

In general, and at the cost of some schematic representation, we may decide
to assume equivalent circuits as indicated in Figure 4.12, considering additional
rotor circuits (see Fig. 4.8) as well as saturation both in the stator and in the rotor,
and not considering further complications caused by the simultaneous presence
of additional circuits and saturation. The corresponding dynamic model of the

saturation in 
  the rotor

   effect of
 additional rotor 
    circuits

saturation in
 the stator 

Figure 4.12. Equivalent circuits for d and q axes in the presence of additional
rotor circuits along both axes, and of magnetic saturation in the stator and in the
rotor.

(5) It usually results xl
∼= 0.1 − 0.2, x̂′

d
∼= 0.2 − 0.45 (see footnote(3)), xp

∼= 0.15 − 0.4.
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machine would, however, require hard experimental evaluations for its identi-
fication, and its complexity would (generally speaking) be out of proportion to
practical purposes.

For the greater part of the applications, it is preferred to avoid such model
complications, still assuming a model formally analogous to the one described
above for the case of saturation only in the stator, but replacing the leakage
reactance xl by the Potier reactance xp.

Due to the nonlinearities of the magnetic part, the linearized model of the machine is
structurally different from the model without saturation, because it includes some param-
eters not found in the latter. To show this difference it is sufficient to observe, for
example, that (neglecting for simplicity the additional rotor circuits) Equations [4.1.22′]
(or Equations [4.1.27]) and [4.1.23′] are no longer valid even in terms of small variations
(with transfer functions dependent on the operating point), since ∆if , ∆ψf , ∆ψd do not
depend only on ∆vf , ∆id (as in the absence of saturation), but also on ∆iq ; similarly,
∆ψq depends on ∆vf and ∆id , further than on ∆iq .

4.3.4. Effect of the Torsional Phenomena

The shaft of a generating unit does not actually constitute a perfectly rigid
connection between the different components, i.e., the turbine (in one or more
“sections”), the alternator, the possible rotating exciter, etc. As a good approxi-
mation, the rotors of the single components may be assimilated with rigid lumped
masses, torsionally connected through elastic elements of negligible mass. The
mechanical part of the unit may be seen as a set of N masses connected by
(N − 1) springs, where N is usually within 2 and 6. The case N = 2 corresponds,
for example, to the hydroelectric units (a single turbine section, and the generator)
with static exciter, whereas the case N = 6 may correspond to the case of ther-
mal units, with four turbine sections (one high and one medium pressure section,
and two low pressure sections), the generator and a rotating exciter. Assume:

• Ci = torque applied from the external to the i-th mass (positive if driving,
negative if resistant);

• C(i−1)i , Ci(i+1) = torques transmitted through the connections, respectively,
from the (i − 1)-th mass to the i-th mass, and from the i-th mass to the
(i + 1)-th mass;

• Ωmi , θmi = mechanical angular speed and position of the i-th mass,
respectively;

disregarding the mechanical losses and any dependence of the Ci’s on the speeds,
it is possible to write the following equations:




Ci + C(i−1)i − Ci(i+1) = Ji

dΩmi

dt
(i = 1, . . . , N)

Ωmi = dθmi

dt

[4.3.13]
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and moreover:

C01 = 0

C(i−1)i = K(i−1)i(θm(i−1) − θmi ) (i = 2, . . . , N)

where J1, . . . , JN represent the single inertia moments, and K12, . . . , K(N−1)N

are the torsional stiffness coefficients of the connections.
The block diagram of Figure 4.13a can be associated with the above-mentioned

equations; in particular, for each turbine section, it must be assumed that Ci =
Cmi (driving torque supplied by the section under consideration), whereas for the
generator it results Ci = −Ce (where Ce is the resistant electromagnetic torque).

For the simple case N = 2 (Fig. 4.13b), we have C1 = Cm and C2 = −Ce,
and furthermore:

• J1, J2 = turbine and generator inertia moments, respectively;

• K12 = torsional stiffness coefficient of the connection between turbine and
generator;

whereas:

Ωm2 = Ωm = mechanical angular speed of the generator

(The electrical angular speed instead is NpΩm2 = Ω , where Np is the num-
ber of pole pairs.) From the previous equations, it then follows, in terms of
transfer functions:

Ωm = 1

s(J1 + J2)

Cm −
(

1 + s2 J1

K12

)
Ce

1 + s2
J1J2

K12(J1 + J2)

[4.3.14]

instead of:

Ωm = 1

s(J1 + J2)
(Cm − Ce)

which corresponds (with J � J1 + J2, and Cp = 0) to Equation [4.1.9].
Due to Equation [4.3.14], the response of the speed to the driving torque of

the turbine therefore implies also an undamped resonance, at the frequency:

νr =
√

K12(J1 + J2)

J1J2

whereas the response to the electromagnetic torque exhibits, in addition, an
undamped antiresonance at the frequency

√
K12/J1 < νr .
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In practice, for the case N = 2 (which may occur, as pointed out, for a hydro-
electric unit) the resonance frequency νr is normally lower than 10 Hz. Generally,
for a given N , there are (N − 1) resonances (and the same number of antireso-
nances, in response to Ce), at frequencies normally from 5 Hz to several tens of
hertz. Therefore, the torsional phenomena constitute an example of relatively fast
mechanical phenomena, which obviously do not lay among those (mechanical,
and slow) up to now considered, according to Section 1.8.2.

Note that, in any case, it results (see for example Equation [4.3.14]):

• for s → ∞: Ωm → − 1

sJ2
Ce

• for s → 0: Ωm → + 1

s(J1 + J2)
(Cm − Ce)

in accordance to the fact that, following abrupt perturbations, Ωm initially res-
ponds only to Ce (and with only the moment of inertia of the generator), whereas
the long-term response (also accounting for actual dampings) tends to coincide
with that defined by Equation [4.1.9].

Actually, in the first of Equations [4.3.13], the following should be considered:

• resistant torques of the type:

Cp1(Ωm1,Ωm2), Cp2(Ωm1,Ωm2,Ωm3), . . . , CpN (Ωm(N−1), ΩmN )

corresponding to the mechanical losses, where the dependence of the generic Cpi

on the speeds Ωm(i−1) and Ωm(i+1) (of the adjacent masses) also may be related to
mechanical hysteresis phenomena in the connections;

• the dependence of the driving torques on the speeds of the respective turbine sections.

In linearized terms, this can be translated into some damping (difficult to be determined,
and modest) of the resonances and antiresonances defined above.

In any case, the torsional phenomena may imply significant stresses on the connections
of the unit, particularly for sudden variations of Ce, repeated at time intervals which
are critical for the above-mentioned resonances. This must be considered, in relation to
erroneous paralleling operations, short-circuits followed by fast breaker reclosing, etc.

Moreover, the phenomena under examination may be particularly amplified — or even
cause instability, up to the shaft break — in the case of units connected to the network by
lines compensated with series condensers (see Section 7.2.4).

4.4. SOME OPERATIONAL EXAMPLES

4.4.1. Steady-State Operation

By “equilibrium” (steady-state) operation of the synchronous machine, we refer
to (see also Section 1.2) the operation with:
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• constant field voltage;

• positive-sequence sinusoidal stator currents;

• electrical speed Ω equal to the frequency ω of the stator currents.

This is characterized by:

vf = constant

ia = √

2I(F ) cos(ωt + αI )

ib = √
2I(F ) cos(ωt + αI − 120◦

)

ic = √
2I(F ) cos(ωt + αI − 240◦

)

Ω = constant = ω

with I(F ), αI constant (in particular, I(F ) is the rms value of the phase currents).
From the expressions of ia , ib, ic, we can derive, by applying the Park’s

transformation with reference θ = ∫
Ω dt = ωt + θo:



id = √

3I(F ) cos(αI − θo)

iq = √
3I(F ) sin(αI − θo)

}
ı = √

3I(F )ε
j (αI −θo) = constant

io = 0

This means that, since vf and Ω are also constant, the equivalent circuits
in Figure 4.3 are in static operation (i.e., with constant voltages, currents, and
fluxes). We can easily ascertain that also the phase voltages and fluxes — as
well as the currents — are positive-sequence sinusoidal, at the frequency ω, of
the type: va = √

2V(F) cos(ωt + αv), etc. Moreover, under present conditions,
any additional rotor circuits have no effect (see Section 4.3.2 and, in particular,
Fig. 4.7), since they do not absorb any current.

In particular, we have:

if = vf

Rf


vd = −Rid − ωψq

vq = −Riq + ωψd

}
v = −Rı + jωψ

vo − √
3vn = 0

Cm = Cp

(
ω

Np

)
+ Ce

in which Ce is given by Equation [4.1.10], whereas ψf, ψd , ψq , ψ are deducible
(in the absence of saturation) from Equations [4.1.6′], [4.1.7′], and [4.1.7′′] (or
Equation [4.1.7′′′]), and ψo = 0. The magnitude of the vector ı is given by i =√

3I(F ); similarly, we have v = √
3V(F), ψ = √

3Ψ(F), with V(F) and Ψ(F) being
the rms values of the phase voltages and flux linkages.
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quadrature axis

direct axis

Figure 4.14. Vector diagram at steady-state without magnetic saturation.

In the absence of saturation, we may derive the vector diagram in Figure 4.14,
in which the real and imaginary axes are denominated “direct” axis and “quadra-
ture” axis, respectively. These axes may easily be identified from the vectors v

and ı, since it results:

u � v + (R + jωLq)ı = jω(Lmd if − (Ld − Lq)id)

= jω

(
Lmd

Lf

ψf + (Lq − L̂′
d)id

)

and therefore this vector (see Fig. 4.14) lies, by definition, on the quadrature
axis, with:

ud = 0, uq = vq + Riq + ωLqid = ω(Lmd if − (Ld − Lq)id)

= ω

(
Lmd

Lf

ψf + (Lq − L̂′
d)id

)
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Additionally, we have, in general:

Pe = 〈jωψ, ı〉 = ω(ψdiq − ψqid)

and the active and reactive powers delivered are, respectively, given by:

P = 3V(F)I(F ) cos ϕ = 〈v, ı〉 = vdid + vqiq = ω(ψdiq − ψqid) − Ri2 = Pe − Ri2

Q = 3V(F)I(F ) sin ϕ = 〈v, j ı〉 = vqid − vdiq = ω(ψdid + ψqiq)

Under the simplifying hypothesis R = 0 (generally acceptable), the previous
equations allow the determination of a relationship between (P/v2), (Q/v2), and
if /v = vf /(Rf v), according to diagrams like those in Figure 4.15. Such dia-
grams are constituted by circles in the case of round rotor (with Ld = Lq), and
by “Pascal spirals” in the case of salient pole rotor (for if = 0, that is vf = 0,
the spiral degenerates again into a circle, the internal points of which define the
operation in the counter-excitation mode)(6).

As a particular case, in open-circuit operation (ia = ib = ic = 0) we have ı = 0 and in
the absence of saturation:

v = jωψ = jωLmd if

(6) More precisely, if uq = vq + ωLqid is the imaginary part of the vector (v + jωLqı) — which for
R = 0 certainly lies, as seen, on the quadrature axis — it results:

P = vduq

ωLq

, Q = vquq − v2

ωLq

with:
uq

ωLq

= Lmd

Ld

if +
(

1

ωLq

− 1

ωLd

)
vq, v2

d + v2
q = v2

For what concerns the sign of if (and vf ), it is here assumed that uq > 0, so that vd and vq

have, respectively, the same sign as (P/v2) and (Q/v2 + 1/ωLq), whereas (as it can be derived by
the previous equations) if and vf will have the same sign as:

(
P

v2

)2

+
(

Q

v2 + 1

ωLq

)2

−
(

1

ωLq

− 1

ωLd

)(
Q

v2 + 1

ωLq

)

In particular, for P = 0, we then have counterexcitation (if and vf negative, and generally of
the opposite sign with respect to uq ) for:

Q

v2 ∈
( −1

ωLq

,
−1

ωLd

)
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Figure 4.15. Characteristics at constant excitation in the plane (P/v2,Q/v2) at
steady-state: (a) round rotor machine (Ld = Lq); (b) salient pole machine (with
Ld = 1.6 Lq).

(besides ψf = Lf if , if = vf /Rf ), i.e., vd = 0, vq = ωLmd if ; the rms value of the phase
voltages is therefore:

V(F) = v√
3

= ωLmd if√
3
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so that the field current I ∗
f corresponding to nominal stator voltage and frequency (V(F) =

V(F)nom, ω = ωnom) is given by:

I ∗
f =

√
3V(F)nom

ωnomLmd
[4.4.1]

On the other hand, in short-circuit operation (va = vb = vc = 0) we have v = 0, and:

ı = (ωLq + jR)
ωLmd

ω2LdLq + R2
if

whereas the rms value of the phase currents is given by I(F ) = i/
√

3; usually, the effect
of R may however be ignored, so that:

ı ∼= id ∼= Lmd

Ld

if

while iq is negligible, and the field current Ifc corresponding to the nominal stator current
(I(F ) = I(F )nom) is given by:

Ifc
∼=

√
3LdI(F )nom

Lmd
[4.4.2]

Here too, we assume that the magnetic saturation is ignored, but this simplifying assump-
tion is in practice quite acceptable under present short-circuit conditions, because of the
low value of the fluxes (for current values of practical interest).

The ratio:

Kc �
I ∗
f

Ifc

∼= V(F)nom

ωnomLdI(F )nom
[4.4.3]

is known as “short-circuit ratio.”

If we use the per-unit reduction defined in Section 4.1.2, Remark 2 and
assume ω = ωnom, we have:




id = i cos(αI − θo)

iq = i sin(αI − θo)

}
ı = iεj (αI −θo)

io = 0

if = vf


vd = −rid − ψq

vq = −riq + ψd

}
v = −rı + jψ

vo − vn

V(F)nom
= 0

Cm = Cp(ω) + Ce

in which Ce is given by Equation [4.1.21], whereas ψf , ψd , ψq , ψ are deducible
(in the absence of saturation) from Equations [4.1.18], [4.1.19], and [4.1.19′],
and ψo = 0.
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The magnitudes of the vectors ı, v, ψ are, respectively, given by:

i = I(F )

I(F )nom
, v = V(F)

V(F)nom
, ψ = ωnomΨ(F)

V(F)nom

and the powers Pe, P , Q related to the nominal apparent power Anom are worth:




Pe

Anom
= 〈jψ, ı〉 = ψd iq − ψq id = Ce

P

Anom
= vi cos ϕ = 〈v, ı〉 = vd id + vq iq = ψd iq − ψq id − ri 2 = Ce − ri 2

Q

Anom
= vi sin ϕ = 〈v, j ı〉 = vq id − vd iq = ψd id + ψq iq

In the vector diagram in Figure 4.14, we then must replace, respectively:

v, ı, ωψ with v, ı,ψ
id , iq with id , iq
R,ωLd, ωL̂′

d , ωLq with r, xd, x̂
′
d , xq

jωLmd if with j if

jω
Lmd

Lf

ψf with jψf

In open-circuit operation, we have in the absence of saturation:

v = jψ = j if

(besides ψf = if = vf ) and in short-circuit:

ı = (xq + jr)
1

xdxq + r2
if ∼= 1

xd

if

while the short-circuit ratio may be written:

Kc
∼= 1

xd

[4.4.3′]

Figure 4.16 summarizes the open-circuit (a) and short-circuit (b) characteristics. In prac-
tice, magnetic saturation modifies appreciably only the open-circuit characteristic, which
is of the (a′) type. The characteristic (a) is also known as the “air-gap characteristic,”
since the excitation mmf is practically (ignoring the saturation) caused only by the pres-
ence of the air-gap. For a given value of voltage, the difference between the values of
if with the characteristics (a′) and (a) is the result of the further mmf required by the
saturation.
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at open-circuit

at short-circuit

Figure 4.16. Open-circuit characteristic (with and without magnetic saturation)
and short-circuit characteristic.

The vector diagram obviously must be modified in the presence of magnetic
saturation. Assuming the model described in Section 4.3.3, based on the use
of the “Potier reactance” xp, the diagram of Figure 4.17 (in pu, and assuming
that ω = ωnom) can be derived, where the magnitude iS = gS(ψS) is intended to
be derived based on the open-circuit characteristic, according to what is indi-
cated. The direct and quadrature axes may be determined from the vectors v, ı,
as it results:

u � v + (r + jxq)ı + j (xq − xp)ıS = j (if − (xd − xq)(id + iSd ))

= j (ψf + (xq − x̂ ′
d)(id + iSd ))

so that such a vector (see Fig. 4.17) lies, by definition, on the quadrature axis.

4.4.2. Effects of a Constant Slip

(a) Slip with Respect to the Currents
Compared to the operating conditions considered in Section 4.4.1, let us assume
now that the electric speed Ω is constant, but different from the frequency ω of the
stator currents (positive-sequence sinusoidal), with a constant “slip” σ � Ω − ω.

With known symbols, applying the Park’s transformation with reference θ =∫
Ω dt = ωt + θo + σ t , we may derive:

id = √
3I(F ) cos(σ t + θo − αI )

iq = −√
3I(F ) sin(σ t + θo − αI )

}
ı = √

3I(F )ε
−j (σ t+θo−αI )

io = 0


 [4.4.4]

In these conditions, the equivalent circuits in Figure 4.3 (or other more general
ones, as indicated in Sections 4.3.2 and 4.3.3) are subjected to a constant voltage
vf and to sinusoidal currents id , iq at “slip frequency” (i.e., frequency σ ), whereas
Ω is constant and io = 0.
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Figure 4.17. Vector diagram at steady-state in the presence of magnetic satura-
tion (quantities in “per unit”).

Since Ω — which appears in the voltage generators acting on the axes d and
q (see Fig. 4.3) — is constant, we may apply the superposition of the effects
in evaluating voltages, currents, and fluxes on the axes d and q, if magnetic
saturation is ignored.
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We may then deduce that:

• ψq , vd are sinusoidal at slip frequency, due to the effect of id and iq (without
any contribution on the part of vf );

• if , ψd , vq include:
• a slip-frequency sinusoidal component, due to id and iq ;
• a constant component, due to vf ;

whereas ψo = 0, vo − √
3vn = 0.

Due to the Equations [4.4.4], the sinusoids id and iq have equal magnitude, and iq is
leading by 90◦ (in time) on id ; in phasor terms, we therefore have:

ı̃q = ̃ ı̃d

The effects of these sinusoids may be evaluated in phasor terms by replacing, in the
transfer functions, the variable s by ̃σ ; for example, remembering Equation [4.1.23′] we
may derive (with obvious symbols and in pu):

ψ̃q = −lq(̃σ )ı̃q = −̃ lq (̃σ )ı̃d

and similarly for the other variables.

The phase voltages and fluxes, obtainable by inverting the Park’s transforma-
tion (see Appendix 2), are not positive-sequence sinusoidal like the currents.

Regarding the electromagnetic torque Ce, by using the indices (m) and (σ ) for
the constant components and the slip-frequency sinusoidal components, respec-
tively, we get:

Ce = Np((ψd(m) + ψd(σ))iq(σ ) − ψq(σ)id(σ ))

in which the term ψd(m)iq(σ ) is slip-frequency sinusoidal, whereas (ψd(σ)iq(σ ) −
ψq(σ)id(σ )) consists of a sinusoidal component at double frequency, and of a
constant component.

Because of the effect of the latter component (independent of vf ), the torque
Ce therefore has an average value which is not zero and is given, in pu, by:

Ce(m) = − 1
2 i 2 Im(ld(̃σ ) + lq(̃σ )) [4.4.5]

where ld (s) and lq(s) are defined by Equations [4.1.22′] and [4.1.23′], whereas
i � I(F )/I(F )nom. In particular, if we accept Equations [4.1.26′] we obtain:

Ce(m) = +1

2
i 2 σ T̂ ′

do(xd − x̂ ′
d)

1 + (σ T̂ ′
do)

2
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In addition, sinusoidal components at the frequencies σ and 2σ are superposed
on this average value, and the same happens for the power Pe, since the rotor
speed is assumed to be constant.

The assumption Ω = constant implies, with a finite moment of inertia J , that at every
instant the accelerating torque (Cm − Cp − Ce) is zero, and therefore that the driving
torque Cm is a suitable function of time. This situation is not realistic, but the assumption
of constant speed may still seem acceptable for high values of the moment of inertia J , and
an accelerating torque rapidly varying around an average value (Cm(m) − Cp(m) − Ce(m))
equal to zero.

(b) Slip with Respect to the Voltages
For practical applications, it may be of greater interest to consider the case in
which the phase voltages and not the currents are positive-sequence sinusoidal,
at the frequency ω, with constant slip σ � Ω − ω.

Through similar considerations to those advanced for the previous case, it
may be seen that the equivalent circuits are now subject to a constant voltage vf

and to slip-frequency sinusoidal voltages vd and vq (with ṽq = ̃ ṽd ), while Ω is
constant and vo − √

3vn = 0.
By again applying the superposition of the effects (without considering mag-

netic saturation), it may be derived that if , id , iq , ψd , and ψq include:

• a slip-frequency sinusoidal component caused by vd and vq ;
• a constant component caused by vf ;

whereas io = 0, ψo = 0 (however, the constant components of ψd , ψq , iq are
zero if R = 0).

Moreover, it may be seen that, in the present conditions, the phase currents
ia , ib, ic (as well as the fluxes ψa , ψb, ψc, unless R = 0) are not positive-
sequence sinusoidal.

With the electromagnetic torque Ce, it includes slip-frequency and double-
frequency sinusoidal components, and a constant component (see Section (a), as
to the assumption Ω = constant); the latter is given by:

Ce(m) = Np(ψd(m)iq(m) − ψq(m)id(m)) + Np(ψd(σ)iq(σ ) − ψq(σ)id(σ ))(m) [4.4.6]

in which the first term is caused only by vf (and is zero for R = 0), and is not
influenced by the presence of additional rotor circuits, referred to in Section 4.3.2.
The expression of Ce(m) may be considerably simplified when R is negligible.
In this case, in Equation [4.4.6], it is sufficient to consider only the last term
(which, on the other hand, becomes much simpler if R = 0), and in the end we
find, in pu (and with v � V(F)/V(F)nom):

Ce(m) = 1

2
v2 Im

(
1

ld (̃σ )
+ 1

lq(̃σ )

)
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from which, if we accept the Equations [4.1.26′]:

Ce(m) = 1

2
v2 σ T̂ ′

do(xd − x̂ ′
d)

x2
d(1 + (σ T̂ ′

d)
2)

Before concluding, it is important to note that, if the armature resistance is disregarded,
ψd and ψq are sinusoidal at slip-frequency, and in phasor terms we simply have:



ψ̃d = ̃ ṽd

Ω − σ
= ̃ ṽd

ω

ψ̃q = −ṽd

Ω − σ
= −ṽd

ω

as can be derived directly from Equations [4.1.5′] for R = 0. This result also could have
been achieved by assuming, instead of the first two parts of Equations [4.1.5′], the fol-
lowing equations: {

vd = −ωψq

vq = +ωψd

which correspond to a widely used approximation (as in Section 4.2.2; see, for ω = ωnom,
Equations [4.2.1]); therefore, in the present case, the above substitution may be fully
accepted, inasmuch as it leaves unchanged not only the expressions of ψd and ψq , but
also those of if , id , and iq , as well as the expressions of Ce and Ce(m).

4.4.3. Effects of Negative or Zero-Sequence Components

More generally than in the cases described in Sections 4.4.1 and 4.4.2, let us now
assume:

• constant field voltage;
• sinusoidal stator currents at the frequency ω, with positive, negative, and

zero-sequence components;
• constant electric speed Ω (in general, different from ω).

Similar considerations to those advanced hereafter can be extended to phase
voltages or fluxes (not currents) sinusoidal at the three sequences.

From the phase current expressions:



ia = √
2I(F0) cos(ωt + αI0) + √

2I(F1) cos(ωt + αI1) + √
2I(F2) cos(ωt + αI2)

ib = √
2I(F0) cos(ωt + αI0) + √

2I(F1) cos(ωt + αI1 − 120◦
)

+ √
2I(F2) cos(ωt + αI2 − 240◦

)

ic = √
2I(F0) cos(ωt + αI0) + √

2I(F1) cos(ωt + αI1 − 240◦
)

+ √
2I(F2) cos(ωt + αI2 − 120◦

)

with I(F0), αI0, I(F1), αI1, I(F2), αI2 constant (I(F0), I(F1) and I(F2) represent
the rms values of the phase currents at zero, positive, and negative sequence,
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respectively), by applying the Park’s transformation with reference θ = ∫
Ω dt =

Ωt + θo we derive:

id = √
3I(F1) cos(σ1t + θo − αI1) + √

3I(F2) cos(σ2t + θo + αI2)

iq = −√
3I(F1) sin(σ1t + θo − αI1) − √

3I(F2) sin(σ2t + θo + αI2)

io = √
6I(F0) cos(ωt + αI0)


 [4.4.7]

where we assume:

σ1 � Ω − ω = rotor slip with respect to positive sequence;

σ2 � Ω + ω = Ω − (−ω) = rotor slip with respect to negative sequence.

In the absence of magnetic saturation, we can see that the field current if , the
fluxes ψd and ψq , and (because of the assumption Ω = constant) the voltages
vd and vq include:

• a sinusoidal component at the frequency σ1, caused by the presence of the
positive sequence;

• a sinusoidal component at the frequency σ2, caused by the presence of the
negative sequence;

and, in addition, if , ψd , and vq include a constant component because of the
field voltage vf , whereas ψo and (vo − √

3vn) are sinusoidal at the frequency ω,
because of the effect of the zero sequence.

The phase voltages and fluxes (obtainable by inverting the Park’s transfor-
mation) are not simply sinusoidal at the frequency ω like the currents (see also
Equation [4.4.9]).

With the electromagnetic torque Ce, by respectively using the indices (m),
(σ1), and (σ2) for the constant components, for the sinusoidal components at
frequency σ1, and for those at frequency σ2, we derive:

Ce = Np((ψd(m) + ψd(σ1) + ψd(σ2))(iq(σ1) + iq(σ2))

− (ψq(σ1) + ψq(σ2))(id(σ1) + id(σ2)))

so that Ce can be expressed as the sum of the following three terms (zero sequence
makes no contribution):

(1) The term:
Np((ψd(m) + ψd(σ1))iq(σ1) − ψq(σ1)id(σ1))

equal to the torque that would exist in the absence of negative sequence,
and caused only by the positive-sequence currents and the field voltage
vf (see Section 4.4.2a, with slip σ = σ1 = Ω − ω). This term includes
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a constant component and sinusoidal components at the frequencies
σ1 = Ω − ω, 2σ1 = 2(Ω − ω).

(2) The term:
Np(ψd(σ2)iq(σ2) − ψq(σ2)id(σ2))

equal to the torque that would exist in the absence of positive sequence,
and vf = 0, and caused only by the negative-sequence currents. This term
includes a constant component and a sinusoidal component at the fre-
quency 2σ2 = 2(Ω + ω).

(3) A further term, depending on the simultaneous presence of the field voltage
and of the positive and negative sequences, and including sinusoids at the
frequencies σ2 = Ω + ω, σ1 + σ2 = 2Ω and σ2 − σ1 = 2ω.

In most practical cases, with Ω close or equal to ω, only the slower compo-
nents of Ce are, however, of interest. For these, it is sufficient to consider term
(1) above, as well as the constant component included in term (2). This circum-
stance simplifies greatly, inasmuch as it makes it possible to separately consider
the effects of the negative sequence (as if the positive sequence and the field
voltage were zero), then adding them to the effects of the only positive sequence
and of the field voltage.

In this connection, the average value of Ce caused by negative-sequence currents
may be calculated, in pu, by applying Equation [4.4.5] with i = I(F2)/I(F )nom and
σ = σ2 = Ω + ω. However, this value can often be disregarded, since ld(̃σ2) and
lq (̃σ2) are fairly close — for the relatively high value of the frequency σ2 — to
ld (∞) and lq(∞), respectively, which are real constants.

In fact, if we accept these approximations, we simply have (in pu):

ψd(σ2) = −ld (∞)id(σ2)

ψq(σ2) = −lq(∞)iq(σ2)

}
[4.4.8]

where, because of Equations [4.4.7]:




id(σ2) = I(F2)

I(F )nom
cos(σ2t + θo + αI2)

iq(σ2) = − I(F2)

I(F )nom
sin(σ2t + θo + αI2)

and the torque in pu resulting from the negative-sequence currents is given by:

ψd(σ2)iq(σ2) − ψq(σ2)id(σ2) = (ld (∞) − lq(∞))
1

2

(
I(F2)

I(F )nom

)2

sin2(σ2t + θo + αI2)

with zero average value (this result can immediately be extended to the cases in
which the phase voltages or fluxes (not the currents) are sinusoidal at the three
sequences).
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The behavior of the phase fluxes in pu ψa , ψb, ψc can be derived from those of ψd , ψq ,
ψo by inverting the Park’s transformation. In the presence of negative-sequence currents
only (and therefore ψo = 0), if we accept the Equations [4.4.8], we then find:

ψa � ωnomψa

V(F)nom
= −√

2
I(F2)

I(F )nom

(
ld (∞) + lq(∞)

2
cos(ωt + αI2)

+ ld (∞) − lq(∞)

2
cos((2Ω + ω)t + 2θo + αI2)

)
[4.4.9]

as well as similar expressions for ψb and ψc. This means that, unlike the phase currents
that are sinusoidal at frequency ω and negative sequence, the phase fluxes (and thus the
voltages; see Equations [4.1.5]) consist of a set of three sinusoids at frequency ω and
negative sequence, and a set of three sinusoids at frequency (2Ω + ω).

If we ignore these last components, the ratios −ψa/ia , −ψb/ib, −ψc/ic are all equal to
the reactance (in pu):

x2(I) � −ψa

ia
= −ψb

ib
= −ψc

ic
= ld (∞) + lq (∞)

2
[4.4.10]

which is known as “negative-sequence reactance.”

This definition of negative-sequence reactance, in addition to being based on the afore-
mentioned simplifications, is also closely associated with the assumption of sinusoidal
phase currents. If, on the other hand, we were to apply negative-sequence sinusoidal
fluxes (instead of currents) at frequency ω, each of the phase currents would include two
sinusoidal components, at the frequencies ω and (2Ω + ω), respectively, and ignoring the
latter we should obtain (accepting Equations [4.4.8]):

x2(Ψ ) � −ψa

ia
= −ψb

ib
= −ψc

ic
= 2

ld (∞)lq(∞)

ld(∞) + lq(∞)
[4.4.10′]

This last value might be assumed as the negative-sequence reactance, under the present
conditions. It is smaller (but generally not much smaller) than the previous one.

In more general conditions, the negative-sequence reactance might be defined in a similar
way, with a value depending on the harmonic content of phase currents and fluxes.
However, its range of variation would generally be small, so that — also taking into
account the simplifications made — we may reasonably agree to assume, for example,
Equation [4.4.10] for all practical cases.

4.4.4. Short-Circuit Transient from Open-Circuit Operation

Let us assume that the machine, initially operating in open-circuit steady-state, is
subject at t = 0 to a sudden three-phase armature short-circuit. In addition, let us
assume, for the sake of simplicity, that the field voltage is kept constant, and that
the speed is equal to its nominal value (Ω = constant = ωnom). The extension to



346 CHAPTER 4 DYNAMIC BEHAVIOR OF THE SYNCHRONOUS MACHINE

the case in which Ω is constant but different from ωnom, is obvious. At t = 0−,
we have the following initial conditions, in pu:

id = iq = io = 0

vd = ψq = 0

vq = ψf = ψd = if = vf

vo − vn

V(F)nom
= ψo = 0

Ce = 0

The sudden short-circuit causes, for t > 0, vd = vq = vo − vn/V(F)nom = 0,
and is therefore equivalent to a step variation of vq equal to −vf .

In terms of Laplace transforms, by applying Equations [4.1.30] for Ω =
constant, we then deduce in general (ignoring magnetic saturation):

∆ψd(s) = ∆vq(s)

1 +
(

s

ωnom
+ r

ld(s)

)(
s

ωnom
+ r

lq(s)

)

∆ψq(s) =

(
s

ωnom
+ r

ld(s)

)
∆vq(s)

1 +
(

s

ωnom
+ r

ld(s)

)(
s

ωnom
+ r

lq(s)

)




[4.4.11]

where:

∆ψd(s) � L{ψd(t) − ψd(0
−)} = L{ψd(t)} − vf

s

∆ψq(s) � L{ψq(t) − ψq(0
−)} = L{ψq(t)}

∆vq(s) � L{vq(t) − vq(0
−)} = −vf

s

The previous equations make it possible to obtain the time behavior of ψd

and ψq , whereas the behavior of if , ψf , id , iq can be derived by applying
Equations [4.1.27] and [4.1.23′] (from Equations [4.1.31] and [4.1.24′], we then
have ψo = io = 0).

The analysis may be developed fairly simply if we ignore the armature
resistance.

For r = 0, from Equations [4.4.11] we derive that the transfer functions (∆ψd/

∆vq)(s) and (∆ψq/∆vq)(s) have poles ±̃ωnom, and:

ψd(t) = vf cos(ωnomt)

ψq(t) = −vf sin(ωnomt)

}
[4.4.12]
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i.e., ψd and ψq are simply sinusoidal, at the frequency ωnom. If we then accept
Equations [4.1.26′], from Equations [4.1.27] we finally derive that if , ψf , and id
consist of a constant component (resulting from the field voltage), of a sinusoidal
component at frequency ωnom, and of an exponential component corresponding
to the time constant T̂ ′

d ; whereas for Equation [4.1.23′], we simply have:

iq(t) = −ψq(t)

xq

= vf

xq

sin(ωnomt) [4.4.13]

Developing the equations, we find that, since ωnomT̂ ′
d � 1, the expressions of

if (t), ψf (t), and id(t) may be approximated as follows:

if (t) ∼= vf

(
1 + xd − x̂ ′

d

x̂ ′
d

ε−t/T̂ ′
d − cos(ωnomt)

)

ψf (t) ∼= vf

(
x̂ ′
d

xd

+ xd − x̂ ′
d

xd

ε−t/T̂ ′
d

)

id(t) ∼= vf

(
1

xd

+
(

1

x̂ ′
d

− 1

xd

)
ε−t/T̂ ′

d − cos(ωnomt)

x̂ ′
d

)




[4.4.14]

(in reality, the sinusoidal component in ψf (t) is very small).
With the phase fluxes and currents, by inverting the Park’s transformation

(with reference θr = θ = ωnomt + θo), we derive:

• from Equations [4.4.12]:

ψa � ωnomψa

V(F)nom
= √

2vf cos θo = constant [4.4.15]

and similarly ψb, ψc, by replacing θo by θo − 120◦, θo − 240◦, respectively;
• from Equations [4.4.13] and [4.4.14]:

ia � ia

I(F )nom

∼=
√

2vf

[(
1

xd

+
(

1

x̂ ′
d

− 1

xd

)
ε−t/T̂ ′

d

)
cos(ωnomt + θo)

−1

2

(
1

x̂ ′
d

+ 1

xq

)
cos θo − 1

2

(
1

x̂ ′
d

− 1

xq

)
cos(2ωnomt + θo)

]

[4.4.16]
and similarly ib, ic, by replacing θo by θo − 120◦, θo − 240◦, respectively.

The fluxes ψa , ψb, ψc (for r = 0) are constant, according to the fact that ψd

and ψq are sinusoidal with frequency ωnom = Ω .
The currents ia , ib, ic, on the other hand, contain:

• an oscillatory term at frequency ωnom with magnitude decreasing according
to the time constant T̂ ′

d ;
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• a “unidirectional” constant term;
• a persistent sinusoidal term at frequency 2ωnom;

where the two last terms are the result of the sinusoidal components, at frequency
ωnom, present in id and iq (such terms would be missing if we accepted the
simplified Equations [4.2.1]).

The electromagnetic torque (in pu) Ce = ψd iq − ψq id has an average value
other than zero — on which sinusoidal components at frequencies ωnom and 2ωnom

are superposed — because of the presence of sinusoidal components in the fluxes
ψd and ψq and in the currents id and iq .

More precisely, the average value of Ce is entirely the result of the presence
of the unidirectional components. In general (ignoring the magnetic saturation
and the armature resistance), the unidirectional component in ia , ib, ic is exactly
equal to:

−vf√
2

[
cos θoRe

(
1

ld (̃ωnom)
+ 1

lq(̃ωnom)

)

+ sin θo Im
(

1

ld (̃ωnom)
+ 1

lq(̃ωnom)

)]

and the average value of Ce is equal to:

Ce(m) = v2
f

2
Im
(

1

ld(̃ωnom)
+ 1

lq (̃ωnom)

)

By accepting Equations [4.1.26′], this average value is expressed by:

Ce(m) = v2
f

2

(
1

x̂ ′
d

− 1

xd

)
ωnomT̂ ′

d

1 + (ωnomT̂ ′
d)

2
[4.4.17]

and is therefore positive (although small in value, since ωnomT̂ ′
d � 1), i.e., such

as to cause, in practice (contrarily to the assumption of constant speed), a slowing
down in the rotor, known as “backswing”(7).

If we consider that r �= 0, the Equations [4.4.11] indicate that ψd and ψq are
no longer simply sinusoidal.

(7) In general, in the case of a generator initially operating on load (instead of no-load, as here
assumed), the “backswing” phenomenon may lead to a temporary initial slowing-down (after the
short-circuit), followed by a progressive acceleration of the rotor caused by the dominance of the
driving torque over the resistant torque. The effects of the latter are in fact decreasing with time, as
remarked hereafter, because of the armature resistance.
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The analysis may, however, be considerably simplified if r is fairly small, as
normally happens. In such a case, the pair of poles ±̃ωnom (for r = 0) in the
Equations [4.4.11] is approximately replaced by the pair of poles:

[
− r

2
Re

(
1

ld (̃ωnom)
+ 1

lq(̃ωnom)

)
± ̃

]
ωnom [4.4.18]

so that ψd and ψq (as well as ψf , and the currents if , id , and iq) include oscillatory
components at frequency ∼ ωnom, that are damped according to a damping factor:

ζ ∼= r

2
Re

(
1

ld (̃ωnom)
+ 1

lq(̃ωnom)

)

If, in addition, zeros and poles of ld (s) and lq(s) are, in absolute value,
sufficiently smaller than ωnom, the denominator in Equations [4.4.11] may be
approximated to:

1 +
(

s

ωnom
+ r

ld(s)

)(
s

ωnom
+ r

lq(s)

)
∼= 1 +

(
s

ωnom
+ r

ld(∞)

)(
s

ωnom
+ r

lq(∞)

)

and the pair of poles [4.4.18] may be approximated to:

(
− r

2

(
1

ld (∞)
+ 1

lq(∞)

)
± ̃

)
ωnom =

(
− r

x2(Ψ )

± ̃

)
ωnom [4.4.19]

corresponding to a damping factor ζ ∼= r/x2(Ψ ), where x2(Ψ ) is the negative-
sequence reactance in Equation [4.4.10′].

All considered, the most important effect of the armature resistance is that of
damping the oscillatory components in the fluxes ψd , ψq , ψf , and in the currents
id , iq , if . The magnitudes of the oscillatory components decrease according to
an exponential law, with a time constant:

Tac
∼= 1

ζωnom

that is the so-called “(short-circuit) armature time constant” (if we accept the
approximation [4.4.19], it results Tac

∼= x2(Ψ )/(ωnomr)), and the same happens
for the magnitude of the unidirectional components in the phase fluxes ψa , ψb,
ψc, and in the phase currents ia , ib, ic.

As a further effect of the armature resistance, the behaviors of ψd , ψq , and iq are no
longer simply oscillatory, but also — like ψf , if , id — include a constant component, and
exponential components corresponding approximately, with the assumptions made, to the
zeros of ld (s) and lq (s), i.e., −1/T̂ ′

d if we accept the Equations [4.1.26′].
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By just assuming:

ld (s) = xd

1 + sT̂ ′
d

1 + sT̂ ′
do

lq (s) = xq

the Equations [4.4.12], [4.4.13], and [4.4.14] are, as a first approximation (within
the assumptions made), still applicable, provided that cos(ωnomt) and sin(ωnomt)

are, respectively, replaced by ε−t/Tac cos(ωnomt) and by ε−t/Tac sin(ωnomt). The
Equations [4.4.15] and [4.4.16] are correspondingly replaced by:

ψa
∼=

√
2vf cos θoε

−t/Tac

(time 
constant

(time 
constant

Figure 4.18. Short-circuit transient from open-circuit operation: (qualitative)
time behavior of currents and fluxes in “per unit” in the absence of additional
rotor circuits.
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(time 
constant (time 

constant

Figure 4.19. Short-circuit transient from open-circuit operation: time behavior of
the “per-unit” magnitudes of: (a) the unidirectional component of the field current;
(b) the oscillatory component (at nominal frequency) of the phase currents.

ia ∼=
√

2vf

[(
1

xd

+
(

1

x̂ ′
d

− 1

xd

)
ε−t/T̂ ′

d

)
cos(ωnomt + θo)

−1

2

(
1

x̂ ′
d

+ 1

xq

)
cos θoε

−t/Tac − 1

2

(
1

x̂ ′
d

− 1

xq

)
ε−t/Tac cos(2ωnomt + θo)

]

and similarly for the indices b and c, by replacing θo by θo − 120◦ and θo − 240◦,
respectively.

The behavior of the variables considered is indicated qualitatively in Figure 4.18,
assuming that we may ignore, in the phase currents, the oscillatory component at
frequency 2ωnom. In particular, the unidirectional (not oscillatory) component of
if and the magnitude of the oscillatory component (at frequency ωnom) of the
phase currents, have trends of the type indicated in Figure 4.19. If we assume the
Equations [4.3.6] instead of Equations [4.1.26′], the latter diagrams are modified
as indicated qualitatively by the dashed line.

ANNOTATED REFERENCES

Among the works of more general interest, the following ones are evidenced: 7, 10, 15,
16, 17, 34, 37, 65, 123, 151, 248.

More particularly, for what refers to

• the solid rotor: 116;

• the magnetic saturation: 151, 243, 311;

• the torsional phenomena (and the subsynchronous resonances): 36, 208, 230.



CHAPTER 5

DYNAMIC BEHAVIOR OF NETWORK
ELEMENTS AND LOADS

5.1. PRELIMINARIES

One of the fundamental problems of the dynamic analysis of an electric system
is the choice of the most suitable mathematical models for different components.
This choice generally depends on the specific goals of the analysis. In fact, the use
of complicated models can increase the complexity of a problem, often with no
practical benefits (for some components, even the deduction of the mathematical
model or the evaluation of the parameters may be uncertain).

When studying electromechanical phenomena, the most complicated mod-
els are generally related only to synchronous machines and their associated
equipment (e.g., voltage and frequency regulators, excitation systems, turbine
supplying systems, etc.). With network elements (lines, transformers, etc.) and
loads, it is common to avoid representation of the actual transient characteristics,
because their effects on the electromechanical phenomenon can be negligible.

Network elements are usually considered by simple equivalent impedances (or
admittances), the value of which is the one assumed at the equilibrium steady-
state at nominal frequency. With such a representation, the problem may be
greatly simplified from the analytical and computational point of view, usually
without significant errors in the analysis of electromechanical phenomenon.

However, before this approach is adopted, the acceptability of the simplifi-
cations should be determined. In some cases, the approximation obtained might
be insufficient. Generally, the dynamic contribution of network elements is fun-
damental with respect to electrical phenomena, and may specifically affect the
faster parts of electromechanical phenomena.

352
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In Sections 5.2, 5.3, and 5.4, which refer to typical elements of ac three-phase
networks, the dynamic characteristics are derived by using Park’s transformation
(see Appendix 2) and assuming that the elements are linear and physically sym-
metrical. Later, general criteria are described to directly determine operational
impedances (or admittances) and transfer functions, which define the behavior in
any dynamic operating condition.

Section 5.5 illustrates the most important dynamic characteristics of dc links
and related control equipment.

In Section 5.6 load characteristics are considered, with more details for the
dynamic model of the asynchronous machine.

Finally, in Section 5.7, typical electrical phenomena are described, with par-
ticular reference to the dynamic models of inductive and capacitive elements. The
importance of such models will be confirmed in Sections 6.2.1 and 7.2.4, refer-
ring to the phenomena of “self-excitation” and “subsynchronous oscillations,”
respectively.

5.2. GENERALITIES ON NETWORK ELEMENTS

5.2.1. Elementary Equivalent Circuits

Resistors
The simplest three-phase element is constituted by a set of three equal resistors,
not directly connected (see Fig. 5.1a), for which the “phase” voltages and currents
v(F)a = v1a − v2a , i(F )a = ia , etc. are related to one another by:



v(F)a = Ri(F)a

v(F )b = Ri(F)b

v(F )c = Ri(F)c

Voltages v1a , v2a , etc. are defined with respect to an arbitrary voltage reference.
By applying Park’s transformation with a generic angular reference θr , it can

be derived (see Appendix 2):

v(F)r = v1r − v2r

v(F )o = v1o − v2o

}
[5.2.1]

ı(F )r = ır

i(F )o = io

}
[5.2.2]

and furthermore:
v(F)r = Rı(F)r

v(F )o = Ri(F)o

}
[5.2.3]

according to the equivalent circuits of Figure 5.1b.
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Figure 5.1. Resistive three-phase elements: set of three equal resistors not
connected to one another (a), and equivalent circuits (b); wye-connected
resistors (c), and equivalent circuits (d); delta-connected resistors (e), and
equivalent circuits (f).

It should be noted that:

(1) Park’s vectors v1r and v2r depend only on the differences between v1a, v1b, v1c and
v2a, v2b, v2c, respectively, and thus they are independent of the voltage reference;

(2) the homopolar components v1o and v2o, instead, depend on the sums (v1a + v1b

+ v1c) and (v2a + v2b + v2c), respectively, and thus they remain defined with
respect to the voltage reference adopted.

The term “homopolar” is more general than “of zero sequence,” as it is not restricted to
sinusoidal phase variables (see Appendices 1 and 2).

As a result of property (1), it appears unnecessary or even misleading to attribute a
physical meaning to the common node to which v1r and v2r are referred, as well as to the
voltage of this node. This observation can be extended to all equivalent circuits related to
Park’s vectors, such as the circuits reported in chapters 2 and 4, and those defined in the
following. Usually, however, the common node is assumed to be a (fictitious) “ground”
node for the mentioned equivalent circuits. This assumption also facilitates graphical
representation.
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If the three resistors are wye-connected (Fig. 5.1c) by assuming that va =
v1a, vb = v1b, vc = v1c, and that:

v2a = v2b = v2c = vn (neutral voltage)

ia + ib + ic = int (earth current, flowing from neutral to earth)

it can be derived: {
v2r = 0

v2o = √
3vn

and thus as a result of Equations [5.2.1]:

{
v(F)r = v1r = vr

v(F )o = v1o − √
3vn = vo − √

3vn

and further that:

io = int√
3

whereas Equations [5.2.2] and [5.2.3] are still valid; see the equivalent circuits
of Figure 5.1d, where:

vr

ır
= v(F)r

ı(F )r
= R,

vo − √
3vn

io
= v(F)o

i(F )o
= R

As specified in Appendix 2 (Equations [A2.4]), the multiplicative constants of
Park’s transformation are assumed Kdq = √

2/3, Ko = 1/
√

3; a generic choice
of Ko leads to v2o = 3Kovn, io = Koint .

As far as the “earth” current” int is concerned, it is zero if the neutral is isolated, whereas
if it is connected to earth this current depends on the difference between the neutral voltage
vn and the earth voltage vt (Fig. 5.1c), according to:

vn − vt = Znt (p)int

where Znt(p) is the operational impedance of the connection (with p � d/dt). It can be
derived:

v2o − √
3vt = 3Znt (p)io

(for a generic value Ko it would follow that v2o − 3Kovt = 3Znt (p)io), so that the equiva-
lent circuit related to homopolar variables must be completed, by considering an impedance
equal to 3Znt (p) to the earth node. Note that the earth node has a precise physical meaning,
unlike the “ground” used for other equivalent circuits, related to Park’s vectors.

The impedance Znt (p) can be, for instance, Znt (p) = Rnt if the connection is made by
a resistance Rnt (in particular: Rnt = 0 if the neutral is directly grounded, whereas we
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can assume Rnt = ∞ if the neutral is ungrounded), or Znt (p) = pLnt if the connection
is made by an inductance Lnt .

If the three resistors are instead delta-connected as per Figure 5.1e, by assum-
ing that va = v1a = v2c, vb = v1b = v2a, vc = v1c = v2b, and furthermore:

ia = i(F )a − i(F )c, ib = i(F )b − i(F )a, ic = i(F )c − i(F )b

it follows that: {
vr = v1r = v2rε

+j120◦

vo = v1o = v2o

and then as a result of Equations [5.2.1]:

{
v(F)r = (1 − ε−j120◦

)vr = √
3ε+j30◦

vr

v(F )o = 0

and furthermore, instead of Equations [5.2.2]:

{
ır = (1 − ε+j120◦

)ı(F )r = √
3ε−j30◦

ı(F )r

io = 0

whereas Equations [5.2.3] are still valid; see the equivalent circuits of Figure 5.1f,
where vr/ır = v(F)r/(3ı(F )r ) = R/3, io = 0, v(F )o = Ri(F)o = 0.

There is no change, as far as the external implications are considered, if the three phases
are connected to have va = v1a = v2b, vb = v1b = v2c, vc = v1c = v2a . In this case, it is
only necessary to substitute the terms ε±j120◦

, ε±j30◦
by ε∓j120◦

, ε∓j30◦
, respectively, so

that the phase-shifts between vr and v(F )r , as well as those between ır and ı(F )r , change
their signs, whereas it still holds vr/ır = R/3, io = 0, v(F )o = Ri(F )o = 0.

Inductors
For a set of three inductors, the phenomenon of mutual induction must be gen-
erally considered, by equations:




v(F)a = dψ(F)a

dt

v(F )b = dψ(F)b

dt

v(F )c = dψ(F)c

dt




ψ(F)a = Li(F)a −M(i(F)a + i(F )b + i(F )c)

ψ(F)b = Li(F)b −M(i(F)a + i(F )b + i(F )c)

ψ(F)c = Li(F)c −M(i(F)a + i(F )b + i(F )c)

(with the hypotheses of linearity and physical symmetry), where self-inductances
and mutual inductances are (L−M) and (−M), respectively.
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Figure 5.2. Inductive three-phase elements: set of three equal inductors not
connected one another (a), and equivalent circuits (b); wye-connected induc-
tors (c), and equivalent circuits (d); delta-connected inductors (e), and equivalent
circuits (f).

If the three inductors (more commonly named “reactors”) are not directly
connected to one another (Fig. 5.2a), using the previously defined symbols one
can again derive Equations [5.2.1] and [5.2.2], whereas Equations [5.2.3] are
substituted by (see Equations [A2.5] in Appendix 2):

v(F)r = (p + jΩr)ψ(F)r

v(F )o = pψ(F)o

}
ψ(F)r = Lı(F)r

ψ(F)o = Loi(F )o

}
[5.2.4]

where p � d/dt , Ωr � dθr/dt and where the “homopolar” inductance Lo is
given by:

Lo = L− 3M [5.2.5]
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The value of M and consequently that of Lo depend on the magnetic circuit
structure. In particular, M = 0 for single-phase inductors that are magnetically
decoupled.

From the above equations, it is possible to determine the equivalent circuits
of Figure 5.2b, where:

v1r − v2r

ır
= v(F)r

ı(F )r
= (p + jΩr)L,

v1o − v2o

io
= v(F)o

i(F )o
= pLo

Note that:

• in the equivalent circuit that refers to the homopolar components, the graphic symbol
of the inductance Lo corresponds to the equation v(F )o = pLoi(F )o;

• on the contrary, in the equivalent circuit referring to Park’s vectors, the graphic
symbol of the inductance L corresponds to the equation v(F )r = (p + jΩr)Lı(F )r
(instead of v(F )r = pLı(F )r ).

Such inconsistency, concerning the latter equivalent circuit (and similar ones defined in
the following) may be removed by adding the impedance jΩrL in series to the inductance
L, or avoiding the use of the inductance symbol and considering the whole impedance
(p + jΩr)L. This, however, is not in common use. Usually, as indicated in the following,
the transient behavior of the network element is disregarded (p = 0), thus adopting the
equation v(F )r = jΩrLı(F )r , a different equation from the two previously reported. To
avoid misunderstandings, it is convenient to intend that, in the equivalent circuits con-
cerning the Park’s vectors, the graphic symbol for the inductance represents an inductive
element, by separately specifying the corresponding equation (if it is not clear from the
context).

If the three inductors are wye-connected (Fig. 5.2c) or delta-connected
(Fig. 5.2e), the equivalent circuits shown in Figures 5.2d and 5.2f, respectively,
can be derived with a similar procedure, adopting known notation. (In the
case of delta-connection, it holds that v(F)o = pLi(F)o = 0, with the theoretical
possibility of a persisting circulating current corresponding to i(F )o = constant.)

Condensers
For a set of three equal condensers not directly connected to one another
(Fig. 5.3a), by assuming: 



i(F )a = C
dv(F)a

dt

i(F )b = C
dv(F)b

dt

i(F )c = C
dv(F)c

dt
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Figure 5.3. Capacitive three-phase elements: set of three equal condensers not
connected to one another (a), and equivalent circuits (b); wye-connected con-
densers (c), and equivalent circuits (d); delta-connected condensers (e), and
equivalent circuits (f).

Equations [5.2.1] and [5.2.2] can again be derived, whereas Equations [5.2.3] are
substituted by (see Equations [A2.5] in Appendix 2):

ı(F )r = (p + jΩr)Cv(F)r

i(F )o = pCv(F)o

}
[5.2.6]

so that the equivalent circuits of Figure 5.3b can be derived, with:

ır

v1r − v2r
= ı(F )r

v(F )r
= (p + jΩr)C,

io

v1o − v2o
= i(F )o

v(F )o
= pC

If the three condensers are wye-connected (Fig. 5.3c) or delta-connected
(Fig. 5.3e), the equivalent circuits of Figure 5.3d and 5.3f can be, respec-
tively, derived.
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Similar to the above discussion regarding inductors:

• in the equivalent circuits that refer to the homopolar components, the symbol of the
generic capacitance C stands for the equation i(F )o = pCv(F)o;

• on the contrary, in the equivalent circuits referring to Park’s vectors, such a symbol
represents the equation ı(F )r = (p + jΩr)Cv(F )r (instead of ı(F )r = pCv(F)r), or
even the equation ı(F )r = jΩrCv(F )r , when the transient behavior of the element
considered is (clearly) disregarded.

5.2.2. Transfer Functions and Frequency Response
for the Whole Network

By adopting Park’s transformation and the corresponding equivalent circuits, each
network element considered in Section 5.2.1 can be viewed as a simple series or
shunt “branch” (see Section 2.1.2), defined by a proper operational impedance
(or admittance).

In the steady-state equilibrium condition, with sinusoidal and positive sequence
(phase) voltages and currents, the homopolar components are zero. Moreover, the
Park’s vectors are constant in magnitude and phase (see Appendix 2), provided
the angular speed Ωr of the Park’s reference is equal to frequency ω of voltages
and currents.

Therefore, under such conditions it can be assumed that p = 0 in the different
operational impedances (and admittances). Specifically, it is:

• in the circuits of Figure 5.2b,d,f, respectively:

v1r − v2r = jωLır, vr = jωLır , vr = jω
L

3
ır

• in the circuits of Figure 5.3b,d,f, respectively:

ır = jωC(v1r − v2r ), ır = jωCvr, ır = jω(3C)vr

in which ωL and ωL/3 assume the meaning of reactances (evaluated at the fre-
quency ω), and so on, according to the equations already considered in Chapter 2.

If instead Ωr 
= ω, the Park’s vectors are constant in magnitude but their phase vary with
time (see Appendix 2). In fact, the generic Park’s vector (with θr as reference) can be
expressed in the form:

yr = ysε
j (θs−θr )

where ys is the Park’s vector, constant in magnitude and phase, that one would obtain
assuming a “synchronous” angular reference θs (thus with dθs/dt = ω). However, based
on this equation the factor εj (θs−θr ) is common to all Park’s vectors so that, specifically,
the ratio between voltage and current vectors for a given branch is that obtained with a
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synchronous reference, and has a constant value equal to the branch impedance evaluated
(at steady-state condition) at the frequency ω.

Furthermore, by assuming dθr/dt = Ωr = constant, it can be written that:

yr = yεj(α+(ω−Ωr )t)

where the magnitude y and the initial phase α (obtained by adding up, to the phase
of ys , the possible initial difference (θs − θr)t=0) are constant. Under such conditions,
the components of the generic Park’s vector yr are consequently sinusoidal, both of
magnitude y and at frequency |ω −Ωr |. Furthermore, one leads the other by 90◦ (in
time), and it is the sign of (ω −Ωr ) that determines which of the two components leads
the other. In fact: {

ydr = y cos(α + (ω −Ωr)t)

yqr = y sin(α + (ω −Ωr)t)

and thus the sinusoid ydr leads or lags yqr by 90◦ according to whether ω > Ωr or
ω < Ωr . In terms of phasors (Appendix 1), with reference to the sinusoids at frequency
ν � |ω −Ωr |, this can be translated into:

ỹqr = ∓̃ ỹdr [5.2.7]

according to ω ≷ Ωr , i.e., ω = Ωr ± ν.

Based on the preceding, for the elementary cases in Section 5.2.1, it is pos-
sible to determine that the relationship between voltage and current vectors for
a generic branch, under any operating condition, is the same which holds at the
steady-state equilibrium condition at frequency ω, provided that jω is replaced
by (p + jΩr ).

In other words, if Z(jω) is the branch impedance evaluated (at steady-state)
at frequency ω, then the operational impedance of the branch (at any possible
operating condition and with Park’s reference equal to θr ) is simply given by:

Zr(p) = Z(p + jΩr) [5.2.8]

where Ωr � dθr/dt . An analogous conclusion holds for the generic admittance.
The validity of Equation [5.2.8] can be extended to any generic linear, passive

equivalent circuit (concerning Park’s vectors), with lumped or distributed param-
eters, provided the angular speed Ωr of the Park reference is assumed constant.
Usually it is just assumed, for network elements, Ωr = constant = ωnom, that is
Ωr equal to the nominal frequency.

Such important extension may be justified by considering Equations [A2.6′]
in Appendix 2, which are a generalization (for derivatives of any k-th
order) of Equations [A2.5]. Indeed, when passing from phase variables to the
corresponding Park’s vector, the application of the p operator (to the phase
variables) may be simply translated — for any order of derivation if Ωr is
constant — into the application of the operator (p + jΩr ) (to the Park’s vector),
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similar to the multiplication by jω under the steady-state equilibrium condition
at frequency ω.

Furthermore, if Ωr = constant, this applies not only to impedances and admit-
tances of each branch of a generic N -bipole, but also to “nodal” admittances
and impedances (see Section 2.1.4) that define the relationships between node
voltages and currents.

The deduction of transfer functions between the d , q components of different
voltage and/or current vectors is then immediate.

More precisely, by assuming Ωr = constant, if under a steady-state at a
(generic) frequency ω the relationship between two generic Park’s vectors wr

and yr is given by:
wr = A(jω)yr

then, in terms of transfer functions, it can be derived under any operating condi-
tion, that:

wr = Ar(s)yr [5.2.9]

where:
Ar(s) = A(s + jΩr)

i.e., using the (scalar) d , q components:

{
wdr = Gr(s)ydr −Hr(s)yqr

wqr = Hr(s)ydr +Gr(s)yqr

where: {
Gr(s) � Re(Ar(s)) = Re(A(s + jΩr))

Hr(s) � Im(Ar(s)) = Im(A(s + jΩr))

Because of the hypothesis of linearity, the extension to the case of a generic
vector wr depending on more vectors yr1, yr2, . . . is obvious.

However, such criterion for the deduction of transfer functions implies knowl-
edge of the analytic expression of the generic function A(jω), and may lead to
significant difficulties, particularly in the determination of the real and imag-
inary parts of Ar(s). (The deduction of the transfer functions for homopolar
components is not considered here, because it implies no particular problems.)

A substantial simplification can be obtained by considering the frequency
response characteristics of the system, which can be determined by assuming
that, in terms of d, q variables, the operating condition is sinusoidal (and, thus,
not an equilibrium condition), at a generic frequency ν.

By putting s = ̃ ν in the transfer functions (̃ is the imaginary unit in the pha-
sor plane; see Appendix 1), we obtain Ar(̃ν) = A(̃ν + jΩr) and consequently
Gr(̃ν) and Hr(̃ν), which are real and imaginary parts in the plane of Park’s
vectors (where the imaginary unit is j ).
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It can be demonstrated that:

Ar(̃ν) = 1 − j ̃

2
A(j (Ωr + ν)) + 1 + j ̃

2
A(j (Ωr − ν)) [5.2.10]

so that, setting:
A(jω) � R(ω) + jX(ω)

(where R(ω) is an even function, whereas X(ω) is an odd function) and more
concisely: 



R′ � R(Ωr + ν)

R′′ � R(Ωr − ν)

X′ � X(Ωr + ν)

X′′ � X(Ωr − ν)

the following equations can be derived:

Gr(̃ν) = R′ + R′′

2
+ ̃

X′ −X′′

2

Hr(̃ν) = X′ +X′′

2
− ̃

R′ − R′′

2




[5.2.10′]

which can be directly used for the “polar” representation (with s = ̃ ν) of such
transfer functions, according to Figure 5.4.

For instance, in the simple case of a branch including L,R,C series elements,
the impedance under the equilibrium condition at frequency ω is:

Z(jω) = jωL + R + 1

jωC

to which, at any possible operating condition (and with reference θr ), the follow-
ing operational impedance corresponds:

Zr(p) = (p + jΩr)L+ R + 1

(p + jΩr)C

Figure 5.4. Frequency response polar diagrams for a generic function Gr(s) +
jHr(s) (see text).
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Substituting p by s, it can be derived:




Re(Zr(s)) = sL + R + s

(s2 +Ω2
r )C

Im(Zr(s)) = ΩrL− Ωr

(s2 +Ω2
r )C

from which, at s = ̃ ν:




Re(Zr(̃ν)) = R + ̃ ν

(
L + 1

(Ω2
r − ν2)C

)

Im(Zr(̃ν)) = Ωr

(
L− 1

(Ω2
r − ν2)C

)

These last expressions can be directly obtained by Equations [5.2.10′], by
putting Z(jω) = A(jω) = R(ω) + jX(ω) and thus:



R(ω) = R

X(ω) = ωL − 1

ωC

from which:

R′ = R′′ = R, X′, X′′ = (Ωr ± ν)L − 1

(Ωr ± ν)C

Equation [5.2.10] can be demonstrated by assuming that:

ydr = √
2Y cos(νt + φ), yqr = 0

which, in phasor terms, is equivalent to:

ỹdr = Yε̃φ

ỹqr = 0

}
ỹr = ỹdr [5.2.11]

whereas, because of Equation [5.2.9]:

w̃r = Ar(̃ν)ỹdr [5.2.12]

The situation expressed by Equations [5.2.11] can be interpreted as the overlapping of:

ỹ ′
dr = ỹdr

2

ỹ ′
qr = −̃ ỹdr

2



ỹ ′
r = (1 − j ̃ )

ỹdr

2
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which correspond, because of Equation [5.2.7], to a steady-state at frequency ω = Ωr + ν,
and of: 


ỹ ′′

dr = ỹdr

2

ỹ ′′
qr = +̃ ỹdr

2



ỹ ′′
r = (1 + j ̃ )

ỹdr

2

which, instead, correspond to a steady-state at frequency ω = Ωr − ν. For ν > Ωr > 0,
the value ω < 0 corresponds to a three-phase sinusoidal operating condition of the negative
sequence, at frequency ω(2) = −ω = ν −Ωr > 0.

Using the previously defined notation, it is possible to derive from the superposition
of effects:

w̃r = A(j (Ωr + ν))ỹ ′
r + A(j (Ωr − ν))ỹ ′′

r = [A(j (Ωr + ν))(1 − j ̃ )

+ A(j (Ωr − ν))(1 + j ̃ )]
ỹdr

2

from which, recalling Equation [5.2.12], Equation [5.2.10] is derived.

Note that, by using the adopted notation, Equation [5.2.10] can be rewritten as:

Ar(̃ν) = 1 − j ̃

2
(R′ + ̃X′)+ 1 + j ̃

2
(R′′ − ̃X′′) [5.2.13]

but this does not mean that A(j (Ωr + ν)) � R′ + jX′ and A(j (Ωr − ν)) � R′′ + jX′′
are respectively equal to (R′ + ̃X′) and to (R′′ − ̃X′′).

A considerable advantage resulting from Equation [5.2.10] is constituted by
the possibility of deducing the generic function Ar(̃ν) starting from the knowl-
edge of R′, R′′, X′, X′′, i.e., of the function A(jω) corresponding to the steady-
state for different values (ω = Ωr ± ν) of the network frequency. This knowledge
can be easily achieved, e.g., by experimental tests on a network model, thus
avoiding any analytical complication even for very complex networks.

By inspecting the behavior of transfer functions (see Equations [5.2.10′]) for
varying ν, it is possible to quickly evaluate, for the most general cases, the actual
importance of the transient characteristics of network elements.

In this context, a preliminary evaluation may suggest useful analytical approx-
imations for the generic transfer functions Gr(s) and Hr(s), and possibly allow,
with particular reference to electromechanical phenomena, a practical justifica-
tion of the assumptions usually adopted (Ωr = ωnom, p = 0), which in reality
are exact only at steady-state at nominal frequency. (In the study of particu-
larly slow phenomena, it is also assumed Ωr = ω, p = 0, with a varying ω; see
Section 3.1.3.)

If phase variables are sinusoidal and of positive sequence (at a frequency ω > 0), then
ỹqr = ∓̃ ỹdr (see Equation [5.2.7]), i.e., ỹr = (1 ∓ j ̃ )ỹdr , according to whether ω =
Ωr ± ν ≷ Ωr . Under such conditions:
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• from Equations [5.2.9] and [5.2.10] it can be derived:

w̃r = Ar(̃ν)ỹr = A(j (Ωr ± ν))ỹr =
{
(R′ + jX′)ỹr if ω = Ωr + ν > Ωr

(R′′ + jX′′)ỹr if ω = Ωr − ν < Ωr

[5.2.14]

(in fact, it results (1 ∓ j ̃)2 = 2(1 ∓ j ̃ ), (1 − j ̃ )(1 + j ̃ ) = 0), but this does not
mean that Ar(̃ν) is equal to (R′ + jX′) or to (R′′ + jX′′);

• similarly, from Equations [5.2.9] and [5.2.13]:

w̃r = Ar(̃ν)ỹr =
{
(R′ + ̃X′)ỹr if ω = Ωr + ν > Ωr

(R′′ − ̃X′′)ỹr if ω = Ωr − ν < Ωr

[5.2.15]

without this implying the equality between Ar(̃ν) and (R′ + ̃X′), or Ar(̃ν)

and (R′′ − ̃X′′).

Actually, Equations [5.2.14] and [5.2.15] are equivalent, as they both lead to the following
final equations:

{
w̃dr = R(ω)ỹdr −X(ω)ỹqr = (R(ω)+ ̃X(ω))ỹdr

w̃qr = X(ω)ỹdr + R(ω)ỹqr = (R(ω)+ ̃X(ω))ỹqr

}
if ω = Ωr + ν > Ωr

{
w̃dr = R(ω)ỹdr −X(ω)ỹqr = (R(ω)− ̃X(ω))ỹdr

w̃qr = X(ω)ỹdr + R(ω)ỹqr = (R(ω)− ̃X(ω))ỹqr

}
if ω = Ωr − ν < Ωr

Such expressions can be extended to the case in which phase variables are sinusoidal
of negative sequence (at frequency ω(2) > 0), by formally assuming ω = −ω(2) < 0, ν =
Ωr + ω(2). Because of Equation [5.2.7] ỹqr = +̃ ỹdr , ỹr = (1 + j ̃ )ỹdr and thus:

• because of the second part of Equations [5.2.14]:

w̃r = (R′′ + jX′′)ỹr = (R(ω(2))− jX(ω(2)))ỹr

• because of the second part of Equations [5.2.15]:

w̃r = (R′′ − ̃X′′)ỹr = (R(ω)− ̃X(ω))ỹr = (R(ω(2))+ ̃X(ω(2)))ỹr

and both these expressions lead to:

{
w̃dr = R(ω(2))ỹdr +X(ω(2))ỹqr = (R(ω(2))+ ̃X(ω(2)))ỹdr

w̃qr = −X(ω(2))ỹdr + R(ω(2))ỹqr = (R(ω(2))+ ̃X(ω(2)))ỹqr
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5.3. TRANSFORMERS

5.3.1. Equivalent Circuits of the Two-Winding Transformer

Under the hypotheses of linearity and physical symmetry, a two-winding, three-
phase transformer may be defined, in terms of phase voltages and currents
(v′

(F )a, i
′
(F )a etc. at the primary side, and v′′

(F )a, i
′′
(F )a etc. at the secondary side;

see Fig. 5.5a), by the following equations:

• for the primary winding, and adopting the load convention (currents are
positive when entering):




v′
(F )a = R′i′(F )a + dψ ′

(F )a

dt
v′
(F )b = . . .

v′
(F )c = . . .




ψ ′
(F )a = L′i′(F )a −M ′(i′(F )a + i′(F )b + i′(F )c)

+Lm(−i′′(F )a)−Mm(−i′′(F )a − i′′(F )b − i′′(F )c)

ψ ′
(F )b = . . .

ψ ′
(F )c = . . .

where the expressions for v′
(F )b, v

′
(F )c and ψ ′

(F )b, ψ
′
(F )c are, respectively,

similar to v′
(F )a and ψ ′

(F )a (it is sufficient to “rotate” indices a, b, c);
• for the secondary winding, and adopting the generator convention (currents

are positive when outgoing):




v′′
(F )a = R′′(−i′′(F )a)+ dψ ′′

(F )a

dt
v′′
(F )b = . . .

v′′
(F )c = . . .




ψ ′′
(F )a = Lmi

′
(F )a −Mm(i

′
(F )a + i′(F )b + i′(F )c)

+L′′(−i′′(F )a)−M ′′(−i′′(F )a − i′′(F )b − i′′(F )c)

ψ ′′
(F )b = . . .

ψ ′′
(F )c = . . .

where the missing expressions are obtainable by a “rotation” of indices.
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phase phase phase

Figure 5.5. Two-winding three-phase transformer having phases (of each wind-
ing) not connected to one another: (a) schematic representation; (b), (c) equivalent
circuits.
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Such equations are similar, for the magnetic part, to those already written for the inductors
(see Section 5.2.1b). Inductances L′,M ′ refer to the magnetic couplings at the primary
side, and L′′,M ′′ refer to the secondary side, whereas Lm,Mm define the mutual couplings
between primary and secondary sides. In the case of three single-phase transformers, it
may be written that M ′ = Mm = M ′′ = 0.

By applying the Park’s transformation with a generic angular reference θr , it
can be derived (see Equations [A2.5] in Appendix 2):

v′
(F )r = R′ı ′(F )r + (p + jΩr)ψ

′
(F )r

v′
(F )o = R′i′(F )o + pψ ′

(F )o

}
ψ ′
(F )r = L′ı′(F )r − Lmı

′′
(F )r

ψ ′
(F )o = L′

oi
′
(F )o − Lmo i

′′
(F )o

}

[5.3.1]

v′′
(F )r = −R′′ı ′′(F )r + (p + jΩr)ψ

′′
(F )r

v′′
(F )o = −R′′i′′(F )o + pψ ′′

(F )o

}
ψ ′′
(F )r = Lmı

′
(F )r − L′′ı′′(F )r

ψ ′′
(F )o = Lmo i

′
(F )o − L′′

oi
′′
(F )o

}

[5.3.2]
where p � d/dt , Ωr � dθr/dt , whereas the “homopolar” inductances are
given by:

L′
o � L′ − 3M ′

Lmo � Lm − 3Mm

L′′
o � L′′ − 3M ′′




[5.3.3]

From these equations it is possible to determine the equivalent circuits in
Figure 5.5b, meaning (as already specified for inductors) that the symbol of the
generic inductance L represents, for any given branch:

• the operational impedance pL in the equivalent circuit for homopolar com-
ponents;

• the operational impedance (p + jΩr)L (which is reduced to jΩrL at equi-
librium conditions) in the equivalent circuit concerning the Park’s vectors.

Resistances and inductances appearing in equations and equivalent circuits
depend on the numbers of turns per phase N ′ (at primary side) and N ′′ (at sec-
ondary side). For a better account of the magnetic phenomena, reference circuits
in Figure 5.5c, where the inductances:




Λm � Lm

N ′N ′′

Λ′
l � L′

N ′2 − Lm

N ′N ′′

Λ′′
l � L′′

N ′′2 − Lm

N ′N ′′
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Λmo � Lmo

N ′N ′′ = Λm − 3
Mm

N ′N ′′

Λ′
lo � L′

o

N ′2 − Lmo

N ′N ′′

Λ′′
lo � L′′

o

N ′′2 − Lmo

N ′N ′′

can be interpreted in terms of “permeances,” substantially independent of N ′ and
N ′′ and dependent on the magnetic circuits of the transformer (whereas it holds
Lm = N ′N ′′Λm, L′ = N ′2(Λ′

l +Λm), L′′ = N ′′2(Λ′′
l +Λm), etc.). Specifically,

the current (N ′ı′(F )r −N ′′ı′′(F )r ), flowing through the inductance Λm, represents
the “magnetizing” magnetomotive force along the d and q axes, and so on.

The equivalent circuits may be used to reasonably take into account the magnetic satura-
tion (replacing Λm by a proper nonlinear inductive element) and the iron losses (adding
a proper resistive branch, in parallel to Λm). Furthermore, the magnetizing mmf can be
usually considered negligible, at least for the d and q axes. In this case, in the circuit
concerning the Park’s vectors, it is possible to assume Λm = ∞, which is equivalent
to neglect the shunt branch. Actually, the ratio Λm/(Λ

′
l +Λ′′

l ) can be some hundreds
in value. The similar ratio Λmo/(Λ

′
lo +Λ′′

lo), which refers to the homopolar circuit, can
instead vary over a wide range, such as from some units to some tens or hundreds,
according to the structure of the magnetic circuit.

Adopting the per-unit reduction, voltages, currents, and fluxes appearing in
the equivalent circuits are, respectively, referred as follows:




v′
(F )r , v′

(F )o to
√

3V ′
(F )nom

ı ′(F )r , i′(F )o to
√

3I ′
(F )nom

ψ ′
(F )r , ψ ′

(F )o to

√
3V ′

(F )nom

ωnom




v′′
(F )r , v′′

(F )o to
√

3V ′′
(F )nom

ı ′′(F )r , i′′(F )o to
√

3I ′′
(F )nom

ψ ′′
(F )r , ψ ′′

(F )o to

√
3V ′′

(F )nom

ωnom

where:

• V ′
(F )nom, V ′′

(F )nom = nominal rms values of phase voltages at primary and
secondary sides;
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• I ′
(F )nom, I ′′

(F )nom = nominal rms values of phase currents at primary and
secondary sides;

• ωnom = nominal frequency.

As a consequence, the nominal values of the per-phase impedance are equal to:

Z′
(F )nom �

V ′
(F )nom

I ′
(F )nom

, Z′′
(F )nom �

V ′′
(F )nom

I ′′
(F )nom

for primary and secondary side, respectively.

Given that Anom is the nominal apparent power of the transformer:

I ′
(F )nom = Anom

3V ′
(F )nom

, I ′′
(F )nom = Anom

3V ′′
(F )nom

Z′
(F )nom = 3V ′2

(F )nom

Anom
, Z′′

(F )nom = 3V ′′2
(F )nom

Anom

If, for purposes of uniformity with the other elements of the system, a power differ-
ent from Anom is assumed as reference, it is necessary to modify the reference currents
and impedances.

In the general case for which the transformation ratio N ′/N ′′ could be dif-
ferent from the nominal ratio V ′

(F )nom/V
′′
(F )nom (and N ′ and/or N ′′ could be

varied), it is convenient to refer to a clearly stated situation, for which the turn
numbers have given values (N ′ = N ′

nom, N
′′ = N ′′

nom) with a ratio equal to the
nominal one, so that:

Z′
(F )nom

N ′2
nom

= Z′′
(F )nom

N ′′2
nom

Based on the above, the circuits of Figure 5.5c can be translated, in per-unit
values, into those of Figure 5.6a, where the different variables in pu are indicated
by bold letters, and r ′ � R′/Z′

(F )nom, r ′′ � R′′/Z′′
(F )nom, whereas the pu reactances

(or inductances) xm, x ′
l , x

′′
l , xmo, x

′
lo, x

′′
lo are, respectively, obtained dividing the

permeances Λm,Λ
′
l , Λ

′′
l , Λmo,Λ

′
lo,Λ

′′
lo by the reference permeance:

Λnom �
Z′
(F )nom

ωnomN ′2
nom

= Z′′
(F )nom

ωnomN ′′2
nom

By recalling what has been already stated, the symbol of the generic pu reactance x

represents, for each given branch:

• the pu operational impedance px/ωnom, in the equivalent circuit concerning the
homopolar components;
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Figure 5.6. “Per-unit” equivalent circuits: (a) with ideal transformers (see
Fig. 5.5c); (b) without ideal transformers.

• the pu operational impedance (p + jΩr)x/ωnom (which is reduced to jΩrx/ωnom at
equilibrium conditions), in the equivalent circuit concerning the Park’s vectors.

These new circuits include “ideal transformers” which can be avoided if their
respective ratios (N ′/N ′

nom and/or N ′′
nom/N

′′) are equal to unity. Otherwise, it is
still possible to resort to equivalent circuits without ideal transformers, according
to Figure 5.6b, by writing for brevity:

n′ � N ′

N ′
nom

, n′′ � N ′′

N ′′
nom

These latter circuits can be significantly simplified if n′ and/or n′′ have unit
values. In the opposite case, each of the new reactances appearing as shunt
connections in the circuits of Figure 5.6b can be positive or negative, according
to the sign of (n′ − 1) or of (n′′ − 1) (e.g., if n′ > 1, the reactance n′2x ′

l /(1 − n′)
is of the type x < 0). At steady-state (where p = 0) the considered branch can
be viewed as a capacitive element. However, this conclusion does not hold for
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all operating conditions, as the corresponding operational impedance remains of
the type stated above, i.e.,

(p + jΩr)x

ωnom
= (−p − jΩr)|x|

ωnom

Moreover, the resistance values somewhat depend on N ′, N ′′ or equivalently
on n′, n′′, respectively.

In practice, it may be assumed that both ratios n′ and n′′ are equal to unity for
transformer with constant ratio, and that one is unitary (whereas the other ratio
varies, for instance, within the range 0.9–1.1) for transformers with variable
ratios. If it may be assumed, as already stated, that Λm = ∞, i.e., xm = ∞
and resistances may be disregarded, from the preceding Park’s vector circuits
(see Figs. 5.5c and 5.6a,b) it is possible to respectively determine the simplified
circuits of Figures 5.7a,b, for the cases reported.

Up to now it has been assumed (Fig. 5.5a) that the phases of each winding
are not directly connected to one another.

If the three primary and/or secondary phases are wye- or delta-connected, the
equivalent circuits of Figure 5.5 must to be completed, similarly to Section 5.2.1,
as indicated in Figure 5.8. In the case of a wye connection, the meaning
of the operational impedance Z′

nt (p) or Z′′
nt (p) is as specified for Znt (p) in

Section 5.2.1a.
Similarly, the pu circuits in Figure 5.6 (or simplified ones in Fig. 5.7) must

be completed as in Figure 5.9.
For ideal transformers with unity transformation ratio as shown in the homopo-

lar circuit with wye connections:

• if there is a wye connection at the primary only or at the secondary side
only, the corresponding ideal transformer can be avoided;

• if there is a wye connection at both windings, it is necessary to retain at
least one of the two ideal transformers, as neutral voltages (v′

n, v
′′
n) may

be different from each other (both transformers under consideration may,
however, be eliminated if their neutral nodes are directly grounded, with
v′
n = v′

t = v′′
t = v′′

n).

The (two-winding) autotransformer may be derived from Figure 5.5a by con-
necting its primary and secondary windings, phase by phase, as per Figure 5.10a.
Consequently, it must be assumed that voltages and currents of phase a are:

{
(v′

(F )a + v′′
(F )a) and i′(F )a at primary side (with (N ′ +N ′′) turns per phase)

v′′
(F )a and (i′(F )a + i′′(F )a) at secondary side (with N ′′ turns per phase)

and similarly for phases b and c.
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Figure 5.7. Simplified equivalent circuits relative to Park’s vectors: (a1),
(a2), (a3) case with nominal number of turns at the secondary side
(N ′′ = N ′′

nom, n
′′ = 1); (b1), (b2), (b3) case with nominal number of turns at

the primary side (N ′ = N ′
nom, n

′ = 1). The circuits (a1), (b1) derive from that
reported (for Park’s vectors) in Figure 5.5c. The “per-unit” circuits (a2), (b2)
and (a3), (b3), respectively, derive from those in Figures 5.6a and 5.6b.
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connections
at primary side at secondary side

ph
as

e-
sh

if
te

r

ph
as

e-
sh

if
te

r

equivalent circuits of
Figure 5.5b (or 5.5c)

Figure 5.8. Effects of connections at primary and secondary sides: (a),(a’) pri-
mary phases wye-connected; (b),(b’) primary phases delta-connected; (c),(c’)
secondary phases wye-connected; (d),(d’) secondary phases delta-connected.

By again using Equations [5.3.1] and [5.3.2], it is possible to determine the
equivalent circuits in Figure 5.10b,c, instead of those in Figure 5.5b,c, respec-
tively. If it is possible to assume Λm = ∞, the first circuit in Figure 5.10c can
be simplified and changed into that in Figure 5.11.

It is then possible to determine the “per-unit” equivalent circuits, instead of
those in Figure 5.6 or 5.7.

Finally, the type of phase connections for each winding can be considered
as in Figure 5.8 or 5.9. In the homopolar circuit, the ideal transformers with
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Figure 5.9. Effects of connections at primary and secondary sides in “per unit”
(different cases correspond to those in Fig. 5.8).

unit ratio can be disregarded (wye-wye connections), because the neutral is in
common and thus v′

n = v′′
n .

5.3.2. Outline of Other Types of Transformers

The treatment becomes more complicated when addressing other transformer
types, such as the three-winding transformer or the so-called “regulating”
transformer.

Therefore, only qualitative information will be given by assuming, at least for
the d and q axes, that the magnetizing mmf is negligible (recall the assumption
Λm = ∞). In all the equivalent circuits, the symbol for the generic inductance
retains the previously stated meaning, in terms of operational impedance.

In the above, the equivalent circuit of the three-winding transformer (or of the
autotransformer, with the further “compensating” winding) is, for what concerns
the Park’s vectors (i.e., the d and q axes), a generalization of that corresponding
to the two-winding case (see, from a qualitative point of view, the circuit reported
in Fig. 5.12).

Using pu values, ideal transformers can be eliminated if transformation ratios are at
nominal values, i.e., if, for the different windings, the numbers of turns per phase are
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phase
a

phase
b

phase
c

(c)

Figure 5.10. Three-phase autotransformer, having phases (of each winding) not
connected to one another: (a) schematic representation; (b), (c) equivalent circuits.
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Figure 5.11. Simplified equivalent circuit, relative to Park’s vectors, obtainable
from that in Figure 5.10c.

Figure 5.12. Three-winding three-phase transformer: structure of the simplified
equivalent circuit relative to Park’s vectors.

proportional to respective nominal voltages. Furthermore, the connections between phases
can be considered based on Figure 5.8.

As a general guideline, the “in-phase” regulating transformer and the
“quadrature”-regulating transformer (apart from actual realizations, possibly
including combined types) may be represented as in Figures 5.13a and 5.14a.

If such representations are accepted, the generic regulating transformer can be
seen as a variable ratio transformer, having:

• the primary side phases wye-connected in the case of in-phase regulation,
and delta-connected in the case of quadrature regulation;

• the secondary side phases not directly connected to one another.

By considering further connections between primary and secondary sides (see
Figs. 5.13a and 5.14a), it is possible to write:

• for the “in-phase” regulating transformer:

v′
(F )a = v1a − vn, i′(F )a = i1a − i2a, v2a = v1a + v′′

(F )a, i2a = i′′(F )a
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Figure 5.13. “In-phase” regulating transformer: (a) schematic representation;
(b) equivalent circuits; (c) simplified equivalent circuit, relative to Park’s vectors.

and similar equations (obtainable by “rotating” indices a, b, c), from which:

{
v′
(F )r = v1r

v′
(F )o = v1o − √

3vn

{
ı ′(F )r = ı1r − ı2r

i′(F )o = i1o − i2o

{
v2r = v1r + v′′

(F )r

v2o = v1o + v′′
(F )o

{
ı2r = ı′′(F )r
i2o = i′′(F )o

according to the equivalent circuits of Figure 5.13b;
• for the “quadrature”-regulating transformer:

v′
(F )a = ±(v1c − v1b), ±(i′(F )a − i′(F )b) = i1c − i2c,

v2a = v1a + v′′
(F )a, i2a = i′′(F )a

and similar equations (obtainable by “rotating” indices a, b, c), from which:

{
v′
(F )r = ±j√3v1r

v′
(F )o = 0



ı ′(F )r = ± j√

3
(ı1r − ı2r )

0 = i1o − i2o

{
v2r = v1r + v′′

(F )r

v2o = v1o + v′′
(F )o

{
ı2r = ı ′′(F )r
i2o = i′′(F )o

according to the equivalent circuits of Figure 5.14b.
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phase-
shifter
± 90°

phase-
shifter

a

Figure 5.14. “Quadrature”-regulating transformer: (a) schematic representation;
(b) equivalent circuits; (c) simplified equivalent circuit, relative to Park’s vectors.

If the simplification Λm = ∞ is accepted, it follows that:

N ′ı′(F )r =N ′′ı′′(F )r =
1

(p + jΩr)(Λ
′
l +Λ′′

l )

(
v′
(F )r − R′ı ′(F )r

N ′ − v′′
(F )r + R′′ı ′′(F )r

N ′′

)

and by developing the equations it is possible to derive, for Park’s vec-
tors, the equivalent circuits in Figures 5.13c and 5.14c, respectively, for
“in-phase” and “quadrature”-regulating transformers. In the latter case, α �
± arctan(

√
3N ′′/N ′) ≷ 0 has been written for brevity. In practical cases, the
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values of |α| may be a few degrees, so that α ∼= ±√
3N ′′/N ′ (radians),

cosα ∼= 1.
It is evident, based on Figures 5.13a and 5.14a, that the “in-phase” regulating

transformer essentially varies the amplitude of voltage and current vectors (in a
similar way to tap-changing transformers), whereas the “quadrature”-regulating
transformer varies the phase of the above-mentioned vectors. In both cases, the
impedance indicated in the equivalent circuit may be considered, together with
the impedances of the line to which the transformer is connected.

5.4. ALTERNATING CURRENT (AC) LINES

5.4.1. Basic Formulations

Because of its extension in length, the generic line is a typical “distributed”
parameter element, the variables of which (voltages, currents, etc.) depend not
only on time t but also on the distance x defined along the line itself.

Because of requirements of simplicity, it is assumed that the (three-phase)
line is not only linear and physically symmetrical but also uniform, i.e., it
has parameters that do not depend on distance x. Otherwise, the treatment can
remain valid for any section of the line within which the uniformity hypothesis
can be accepted.

We indicate by a the line length and label by indices A, B its variables at the
two terminals, respectively corresponding to distances x = 0 and x = a.

Under the hypotheses of linearity and physical symmetry, the generic elemen-
tary section within the distances x and (x +∆x) may be represented as the circuit
in Figure 5.15a. More precisely, it may be intended that the different (constant)
parameters shown in the figure represent, per unit of length:

• l −m = phase self-inductance
• −m = mutual inductance between phases
• r = phase resistance
• c′ = capacitance between phases

and moreover, because of the presence of “earth” (and again per unit of length):

• g = phase-to-earth conductance
• c′′ = phase-to-earth capacitance
• zt (p) = “earth′′ operational impedance

The parameter g, which accounts for possible leakages between conductors and earth, is
usually negligible. However, the situation is different in the presence of the corona effect,
which is caused by particular environmental conditions. In such a case even the adoption
of a value of g does not result in a good approximation, and it is convenient to make
use of a nonlinear model. Moreover, in the case of overhead lines, earth wires should be
considered as additional branches connected to earth in several locations.
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("earth")

Figure 5.15. Elementary section of a (three-phase) line: (a) schematic represen-
tation; (b) equivalent circuits.

By writing the equations for each phase and applying Park’s transformation
(Appendix 2), it is possible to derive (similarly to Section 5.2.1, and by usual
notation), for ∆x → 0:

∂vr(x, t)

∂x
= −(r + (p + jΩr)l)ır(x, t)

∂ır (x, t)

∂x
= −(g + (p + jΩr)c)vr(x, t)




[5.4.1]

∂(vo − √
3vt )(x, t)

∂x
= −(r + plo + 3zt (p))io(x, t)

∂io(x, t)

∂x
= −(g + pco)(vo − √

3vt )(x, t)




[5.4.2]



5.4 ALTERNATING CURRENT (AC) LINES 383

having put: 

c � 3c′ + c′′

lo � l − 3m

co � c′′

The above equations, referring to the considered elementary section, corre-
spond to the equivalent circuits of Figure 5.15b, where the symbols of inductances
and capacitances assume, in terms of operational impedances, the meanings
already specified in Section 5.2.1.

The parameters appearing in Equations [5.4.1] and [5.4.2] are the so-called “primary con-
stants” of the line. At an indicative level, and assuming g negligible in normal conditions:

• for a high-voltage overhead line:

• l ∼= 0.75–1.4 mH/km (corresponding to approximately 0.23–0.45 ohm/km at
50 Hz);

• c ∼= 8–14 nF/km (approximately 2.5–4.5 µS/km at 50 Hz);

• r , for instance, 0.25 ohm/km for 132 kV lines, and almost negligible
(0.05 ohm/km, or less) for higher voltages;

and furthermore, for homopolar components, by assuming r + plo + 3zt (p) �
ro tot + plo tot (where ro tot can be significantly affected by earth resistance);

• lo tot
∼= 2.5–5 mH / km (corresponding to approximately 0.8–1.6 ohm/km at

50 Hz);

• co ∼= 5–10 nF/km (approximately 1.6–3.2 µS/km at 50 Hz);

• ro tot
∼= 0.2–0.4 ohm/km;

• for a cable line:

• l ∼= 0.2–0.4 mH/km (corresponding to about 0.06–0.12 ohm/km at 50 Hz);

• c ∼= 150–400 nF/km (about 45–125 µS/km at 50 Hz);

• r highly variable from case to case: for instance, about 1 ohm/km for 15 kV lines
and even 0.05 ohm/km at high voltage;

and furthermore, for homopolar components:

• lo tot in the order of 2l,

• co somewhat smaller than c,

• ro tot even up to 10r .

For transfer functions, it is possible to derive equations similar to [5.4.1]
and [5.4.2] (by assuming that Ωr = constant) provided the operator p � d/dt is
formally replaced by the complex variable s, and the independent variables (x, t)
by (x, s) (however, purely for graphical ease, we will retain the same symbols
of functions vr , ır , etc.). The resulting equations are differential equations, with
respect to the only independent variable x.
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To define the behavior of the line for assigned conditions at its terminals (e.g.,
when voltages and currents are assigned at the sending terminal), it is necessary
to integrate the mentioned equations. Under the hypothesis of uniformity it can
be derived, for Park’s vectors:

vr(x, s) = vrA + zr ırA

2
ε−nrx + vrA − zr ırA

2
ε+nrx

= vrA cosh(nrx) − zr ırA sinh(nrx)

ır (x, s) = vrA + zr ırA

2zr
ε−nrx − vrA − zr ırA

2zr
ε+nrx

= −vrA

zr
sinh(nrx)+ ırA cosh(nrx)




[5.4.3]

where vrA = vrA(s) and ırA = ırA(s) are the Laplace transforms of vectors vr , ır
at the sending terminal (x = 0) and having posed that:

nr = nr(s) � [(r + (s + jΩr)l)(g + (s + jΩr)c)]1/2

zr = zr(s) � nr(s)

g + (s + jΩr)c
= r + (s + jΩr)l

nr(s)


 [5.4.4]

For the homopolar components, it is possible to derive similar equations,
which for brevity are not reported and to which the following considerations can
be extended in a trivial way.

In particular, for x = a, from Equations [5.4.3] the following result:

vrB = vrB (s) = vrA cosh(nra)− zr ırA sinh(nra)

ırB = ırB (s) = −vrA

zr
sinh(nra)+ ırA cosh(nra)


 [5.4.5]

which, making reference to the whole line as seen by its terminals, correspond to
the equivalent circuit of Figure 5.16, with the indicated operational impedances.

impedance

impedance

Figure 5.16. Equivalent circuit of a line (as seen by its terminals), relative to
Park’s vectors.
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By considering [5.4.5], Equations [5.4.3] can be substituted by other equiva-
lent equations, which relate the generic vr(x, s) and ır (x, s) to any two of the
four functions vrA, ırA, vrB , ırB .

Within this concern, by generically assuming:

v′
r = zr ı

′
r � vr + zr ır

2

v′′
r = −zr ı ′′r � vr − zr ır

2




[5.4.6]

the Equations [5.4.3] can be substituted by:

v′
r (x, s) = v′

rA(s)ε
−nr (s)x

v′′
r (x, s) = v′′

rB (s)ε
−nr (s)(a−x)

}
[5.4.7]

from which the block diagram of Figure 5.17 can be derived (note that it holds vr =
v′
r + v′′

r , ır = ı ′r + ı ′′r = (v′
r − v′′

r )/zr , and that, for given vrA and vrB , it follows that v′
rA =

vrA − v′′
rA, v

′′
rB = vrB − v′

rB ).

According to the following, such a block diagram is particularly suitable to derive some
interesting interpretations for propagation phenomena (the different line sections, involved
in such phenomena, are indicated aside each single block).

For reasons which will follow, nr(s) is called the “propagation function” of the line,
whereas zr(s) is called “characteristic” impedance (or “natural” impedance) of the line.

Furthermore, the line is called “nondistorting” if r/ l = g/c (and “distorting” for the con-
trary case). The simplest case of a nondistorting line is constituted by the “nondissipative”
line, defined by r = g = 0.

onward
system

downward
system

Figure 5.17. Block diagram of a line.
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The first of Equations [5.4.4] implies two possible solutions, opposite each other, in nr(s),
and the same can be said for zr(s), based on the second of Equations [5.4.4]. However,
when passing from a solution nr(s), zr(s) to the other solution, we simply obtain a change
between the definitions of v′

r , v
′′
r as well as ı ′r , ı

′′
r .

For the internal behavior of the line, first assume, for simplicity, that r = g =
0, i.e., the line is (nondistorting, and) nondissipative.

As to the first of Equations [5.4.4], which becomes:

nr(s) = [(s + jΩr)
2lc
]1/2

assume the solution:

nr(s) = (s + jΩr)
√
lc = s + jΩr

u

where the parameter:

u � 1√
lc

[5.4.8]

is called the “propagation speed.” In a corresponding way, from the second of
Equations [5.4.4], it can be derived:

zr(s) = z(o)

where:

z(o) �
√
l

c
[5.4.9]

is a real positive constant, also called the “wave impedance.”
With such assumptions, in the block diagram of Figure 5.17:

ε−nrx = ε−jΩrx/uε−sx/u

where:

ε−jΩrx/u means a rotation equal to −Ωrx/u (i.e., a phase-lag)
in the plane of Park’s vectors,

ε−sx/u means a pure delay equal to x/u, in the time domain;

and similar conclusions hold for ε−nr (a−x).
As a consequence, the transfer from v′

rA(s) to the generic v′
r (x, s), up to v′

rB (s)

at x = a, corresponds to a pure propagation phenomenon (i.e., with no distortion
or attenuation), at the speed u and in the direction of increasing x, accompanied
by a progressive phase-lag; see the qualitative example of Figure 5.18, where
τ � x/u = √

lcx is the time necessary to cover the distance x.
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Figure 5.18. Nondissipative line: example of a “direct” traveling voltage wave
(Park’s vector). It is assumed τ = x/u = √

lcx = time necessary to cover dis-
tance x.

Similarly, the transfer from v′′
rB (s) to the generic v′′

r (x, s), up to v′′
rA(s) at

x = 0, corresponds to a similar phenomenon but in the direction of decreasing x.

From the first of Equations [5.4.7] it can be derived, by inverse transformation:

v′
r (x, t) = v′

rA

(
t − x

u

)
ε−jΩrx/u

In terms of phase variables (Fig. 5.15a), having set:

vα + jvβ � vrε
jθr =

√
2

3
(va + vbε

j120◦ + vcε
j240◦

)

(Appendix 2) and thus: 

vα =

√
2

3

(
va − vb + vc

2

)

vβ = vb − vc√
2

it is then possible to derive, with obvious symbols:




v′
α(x, t) = v′

αA

(
t − x

u

)

v′
β(x, t) = v′

βA

(
t − x

u

)

i.e., the scalar signals v′
α and v′

β propagate at a speed u. Similar conclusions can be derived
from the latter of Equations [5.4.7], when addressing the scalar signals v′′

α and v′′
β .
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Consequently, the (vector) functions v′
r (x, t) and ı ′r (x, t) can be interpreted

in terms of “direct” (or “progressive”) traveling waves, of voltage and current,
respectively, whereas v′′

r (x, t) and ı ′′t (x, t) can be similarly interpreted in terms
of “inverse” (or “regressive”) traveling waves. The name of “propagation speed”
attributed to u appears to be justified.

Furthermore, the distance λr after which the phase-lag is 360◦ (if a is suffi-
ciently large), so that the generic wave again assumes the same time behavior
(with the same phase), is equal to:

λr � 2πu

Ωr

= 2π

Ωr

√
lc

[5.4.10]

and is called the “wavelength” of the line.
If the line is nondistorting but dissipative (r/ l = g/c 
= 0) it can be set

similarly:

nr(s) =
( r
l

+ s + jΩr

)√
lc =

(r
l

+ s + jΩr

) 1

u

(with the “propagation speed” u � 1/
√
lc), whereas it still results in:

zr(s) =
√
l

c

It then follows that:

ε−nrx = ε−(r/ l)x/uε−jΩrx/uε−sx/u

i.e., compared to the previously treated nondissipative case, we must consider
the factor ε−(r/ l)x/u, which implies an attenuation of the waves along the line
(still with no distortion); a similar conclusion holds for ε−nr (a−x).

Generally, if r, g 
= 0 and r/ l 
= g/c (distorting and dissipative line), the real
and imaginary parts, in the plane of Park’s vectors, of nr(s) are no longer rational
functions of s. Compared to the previous case, a distortion of the waves along
the line is also added.

Based on the previous values for the “primary constants,” the hypothesis of the nondis-
sipative line is usually a good approximation for higher-voltage overhead lines (e.g.,
220 kV, 380 kV, etc.), for which:

z(o) �
√
l

c
∼= 250 − 400 ohm

u � 1√
lc

∼= 3·105 km/sec
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and furthermore, at 50 Hz (Ωr = 2π ·50 rad/sec):

λr � 2πu

Ωr

∼= 6000 km

whereas at 60 Hz it is λr ∼= 5000 km.

For cable lines, the propagation speed and the wavelength are smaller, e.g., u ∼=
(1–1.4)105 km/sec, and λr ∼= 2000–2800 km at 50 Hz, 1700–2300 km at 60 Hz.

For the behavior of the line at its terminals, first assume that the downstream
system is defined by the equation vrB = ZrB (p)ırB , i.e., the line is terminated,
at x = a, with the operational impedance ZrB (p) (which is itself defined by
applying Park’s transformation with reference θr ).

For transfer functions, by remembering that as a result of Equations [5.4.6],
vrB = v′

rB + v′′
rB , ırB = ı ′rB + ı ′′rB , with v′

rB = zr(s)ı
′
rB , v′′

rB = −zr(s)ı ′′rB , it fol-
lows that:

ı′′rB = ρB(s)ı
′
rB

v′′
rB = −ρB(s)v′

rB

}
[5.4.11]

having set:

ρB(s) � zr(s) − ZrB (s)

zr(s) + ZrB (s)
[5.4.12]

By interpreting ı ′rB (t) and v′
rB (t) as “incident” waves (of current and voltage,

respectively) at the receiving line terminal, the functions ı ′′rB (t) and v′′
rB (t) consti-

tute (see also Fig. 5.17) the waves “reflected” on the line itself. For this reason,
ρB(s) is called the “reflection function” of the current at the receiving terminal,
whereas −ρB(s) is the similar reflection function for the voltage. Furthermore,
the functions ırB (t) and vrB (t), which are the sum of the respective incident and
reflection waves, represent the waves “refracted” into the downstream system.

Note that ρB is generally a function of s. This means that current and voltage reflections
are accompanied by distortion. This, however, does not happen in the following cases.

(1) If ZrB (s) = zr(s), i.e., if the line is terminated with its characteristic impedance,
ρB = 0, and thus no (current or voltage) reflection occurs. At every x ∈ [0, a] it
can be derived v′′

r (x, s) = 0, ı ′′r (x, s) = 0:

vr(x, s) = vrA(s)ε
−nr (s)x

ır (x, s) = ırA(s)ε
−nr (s)x = vrA(s)

zr (s)
ε−nr (s)x

from which also:
vr(x, s)

ır (x, s)
= zr(s) ∀x ∈ [0, a]
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and it is easy to determine that the line behaves like a section [0, a] belonging to a
line of infinite length. It should be noted that the present assumption ZrB (s) = zr(s)

is much more stringent than what might appear; in fact, it must hold at any s, and
not for only s = 0 as at steady-state (see Section 5.4.2).

(2) If ZrB (s) = ∞, i.e., if the line is interfaced with an open circuit, ρB = −1, so that
the reflected current wave is opposite to the incident one (and ırB = ı ′rB + ı ′′rB = 0,
as obvious), whereas the voltage wave is reflected unaltered.

(3) If ZrB (s) = 0, i.e., if the line is short-circuited, ρB = +1, so that the current wave
is reflected unaltered, whereas the voltage wave simply changes its sign (and
obviously, vrB = v′

rB + v′′
rB = 0 holds).

(4) If the line is nondistorting (and then zr(s) = z(o) = √
l/c, which is real) and the

downstream impedance is purely resistive (i.e., ZrB (s) = RB , which is real, posi-
tive and s-independent), then ρB is real and independent of s, with an amplitude
smaller than unity. In such a case, the reflections are accompanied by attenuation
and a possible sign variation according to the sign of ρB (see Equations [5.4.11]).
(If RB = z(o) it then follows that ρB = 0, and reflections are absent; see case (1).)

Similar considerations can be applied to the sending terminal (x = 0) of the
line, by interpreting (Fig. 5.17) ı′′rA(t) and v′′

rA(t) as incident waves, and assum-
ing that the upstream system is defined by an equation vrA = ZrA(p)ırA. The
reflecting waves are then described by:

{
ı ′rA = ρA(s)ı

′′
rA

v′
rA = −ρA(s)v′′

rA

where:

ρA(s) � zr(s) − ZrA(s)

zr(s) + ZrA(s)

is the reflection function for the current at the sending terminal of the line,
whereas −ρA(s) is the analogous reflection function for the voltage, and so on.

Generally, if the up and downstream systems are defined by equations
(Fig. 5.19):

vrA = erA − ZrA(p)ırA

vrB = erB + ZrB (p)ırB

}
[5.4.13]

Figure 5.19. Example of a line closed at its terminals (the equivalent circuits
refer to Park’s vectors).
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Figure 5.20. System in Figure 5.19: (a) block diagram; (b) deduction of volt-
ages e(o)rA , e(o)rB defined in the block diagram.

from Figure 5.17 we can derive Figure 5.20, which shows both the phenomena
of propagation along the line and those of reflection at its terminals, as well as
the dependence of the different line variables on “inputs” erA, erB .

According to the block diagram in Figure 5.20a, it is possible to consider as
inputs the voltages:

e
(o)
rA � zr

zr + ZrA
erA, e

(o)
rBA � zr

zr + ZrB
erB

defined by the circuits in Figure 5.20b, in which the line, as seen from each of its
terminals, is simply represented by its characteristic impedance zr . Nevertheless,
ZrA, ZrB , zr play a role also in the expressions of ρA, ρB .

As an example, assume that:

• the line is nondissipative (and thus nr(s) = (s + jΩr)(1/u), zr(s) = z(o),
with u and z(o) defined by Equations [5.4.8] and [5.4.9]), and the impedances
ZrA, ZrB are purely resistive (i.e., ZrA = RA and ZrB = RB , are real, posi-
tive, and s-independent);

• the function erA(t) is constituted by a step of value E, applied at the instant
t = 0, whereas erB (t) = 0.

The application of the step results, at the beginning, into direct waves of
voltage (equal to z(o)E/(z(o) + RA)) and current (equal to E/(z(o) + RA)), which
travel in the direction of increasing x, with a progressive lag shift. At the receiving
terminal x = a of the line, such waves reflect according to Equations [5.4.11], and
(if RB 
= z(o)) originate the inverse waves. Note that ρB = (z(o) − RB)/(z

(o) +
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RB) is real and with an amplitude smaller than unity. In their turn, the inverse
waves reflect when they reach the sending terminal x = 0, where ρA is real and
with an amplitude smaller than unity, thus modifying the direct waves, and so on.

Therefore, the voltage and current transients are, if RB 
= z(o):

• of the stepwise type, caused by the absence of distortion (both in the prop-
agation along the line and in reflection at its terminals);

• damped, because of attenuations in the subsequent reflections (whereas the
propagation along the line occurs without attenuation).

In particular, it is possible to recognize that the vector vrB = v′
rB + v′′

rB =
(1 − ρB)v

′
rB assumes in sequence the following values:

vrB =




0 at t ∈
[
0,
a

u

)

V rB(1) � (1 − ρB)
z(o)E

z(o) + RA

ε
−jΩr

a
u at t ∈

(
a

u
,

3a

u

)

V rB(1)

(
1 + ρAρBε

−jΩr
2a
u

)
at t ∈

(
3a

u
,

5a

u

)

V rB(1)

(
1 + ρAρBε

−jΩr
2a
u +
(
ρAρBε

−jΩr
2a
u

)2
)

at t ∈
(

5a

u
,

7a

u

)

. . .

(where ρA and ρB are real, and in particular 1 − ρB = 2RB/(z
(o) + RB)), with:

vrB → V rB(1 )
1

1 − ρAρBε
−jΩr

2a
u

at t → ∞

(|ρAρB | < 1). The vector ırB is given by vrB/RB .
More particularly, the transient of vrB and ırB is either aperiodic or oscillatory,

according to ρAρB ≷ 0.
If instead, RB = z(o) = √

l/c, ρB = 0 holds, then more simply:

vrB = z(o)ırB =




0 at t ∈
[
0,
a

u

)

z(o)E

z(o) + RA

ε
−jΩr

a
u at t >

a

u

5.4.2. Steady-State Operation

If phase voltages and currents are sinusoidal and of the positive sequence, at
frequency ω, then the homopolar components are zero, and furthermore (by
assuming Ωr = ω):
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• vectors vrA, ırA, vrB , ırB are constant;

• inside the line, voltage and current vectors are functions only of the distance
x, so that it can be written that vr = vr(x), ır = ır (x).

As a consequence, it must be assumed that p = 0 in Equations [5.4.1] (in addi-
tion to Ωr = ω) and similarly s = 0 in the different transfer functions defined in
Section 5.4.1. In particular, from the first of Equations [5.4.4], it can be derived:

nr(0) = [(r + jωl)(g + jωc)]1/2 � n(jω)

and, since the phase of (r + jωl)(g + jωc) is within [0◦, 180◦], the two solutions
in nr(0) = n(jω) have phases within [0◦, 90◦] and [180◦, 270◦], respectively. By
considering the former one, the constant n(jω), called the “propagation constant”
at the frequency ω, may be written:

n(jω) � α + jβ [5.4.14]

where α (the “attenuation constant” at the frequency ω) and β (the “phase
constant” at the frequency ω) are both nonnegative. From the second of Equations
[5.4.4] it follows, as a unique solution, the value zr(0) � z(jω) (the characteristic
impedance, at the frequency ω). More particularly, if r and/or g are nonzero,
it holds that:

α =
√
rg − ω2lc +√(r2 + ω2l2)(g2 + ω2c2)

2
> 0

β = ω(rc + gl)

2α
> 0




[5.4.15]

Re(z(jω)) =
r + g

√
r2 + ω2l2

g2 + ω2c2

2α
> 0

Im(z(jω)) =
ω

(
l − c

√
r2 + ω2l2

g2 + ω2c2

)

2α




[5.4.16]

where Im(z(jω)) ≷ 0 according to gl ≷ rc (usually gl < rc, and thus
Im(z(jω)) < 0). If r = g = 0 (nondissipative line) it holds that:

α = 0

β = ω
√
lc = ω

u


 n(jω) = j

ω

u
[5.4.15′]
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(e.g., β ∼= 1 mrad/km for overhead lines at higher voltages and at 50 Hz), and
furthermore, independently of ω:

Re(z(jω)) =
√
l

c
= z(o)

Im(z(jω)) = 0


 z(jω) = z(o) [5.4.16′]

By recalling Equations [5.4.6] and [5.4.7], we may derive vr(x) = v′
r (x)+ v′′

r (x), with:

v′
r (x) = v′

rAε
−n(jω)x = v′

rAε
−αxε−jβx

v′′
r (x) = v′′

rBε
−n(jω)(a−x) = v′′

rBε
−α(a−x)ε−jβ(a−x)

}
[5.4.17]

whereas it then holds, at any given x, ır (x) = ı ′r (x)+ ı ′′r (x), with ı ′r (x) = v′
r (x)/z(jω),

ı ′′r (x) = −v′′
r (x)/z(jω).

If vrB = z(jω)ırB , i.e., if the line is terminated with an impedance which, at steady-state
and at the assigned frequency ω, is equal to its characteristic impedance, then (∀x ∈
[0, a]) v′′

r (x) = 0, ı ′′r (x) = 0, and thus, similar to a section [0, a] belonging to a line of
infinite length:

vr(x) = vrAε
−n(jω)x = vrAε

−αxε−jβx

ır (x) = ırAε
−n(jω)x = ırAε

−αxε−jβx

}
[5.4.18]

where ırA = vrA/z(jω), from which it also follows that:

vr(x)

ır (x)
= z(jω) [5.4.19]

In [5.4.18], the factor ε−n(jω)x = ε−αxε−jβx defines (for positive α and β) an attenuation
and a lag rotation, respectively, as a result of the terms ε−αx , ε−jβx . Consequently, the
vector vr(x) describes, for varying x and for any given value of vrA, a logarithmic spiral (of
the type reported in Fig. 5.21) which degenerates into a circle in the case of nondissipative
line (α = 0). The same can be said for ır (x). Specifically, the magnitudes vr(x) and ir (x)

decrease with x, being proportional to ε−αx . Furthermore, the distance after which the
phase-lag is 360◦ (if the line is sufficiently long) is in any case equal to 2π/β, and it is
called the “wavelength” of the line, at steady-state at the given frequency ω (instead, the
Equation [5.4.10] refers to a nondissipative line under any operating condition).

By the first of Equations [5.4.18], it can be derived, with Ωr = ω, θr = θr(0)+ ωt :

(vα + jvβ)(x, t) � vr(x)ε
jθr = vrAε

−αxεj (θr (0)+ωt−βx) = (vα + jvβ)

(
0, t − βx

ω

)
· ε−αx

from which, for va(x, t)+ vb(x, t)+ vc(x, t) = 0 (see Fig. 5.15a and Appendix 2):

va(x, t) =
√

2

3
vα(x, t) = va

(
0, t − βx

ω

)
· ε−αx
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logarithmic
spiral

Figure 5.21. Line at steady-state terminated with its characteristic impedance:
behavior of the voltage vector along the line.

Figure 5.22. Line at steady-state terminated with its characteristic impedance:
behavior of the generic phase voltage along the line at different instants.

as if the signal va(0, t) would travel along the line at a speed ω/β, being attenuated
according to the law ε−αx (and covering, in the period 2π/ω, a distance equal to the
wavelength 2π/β); see Figure 5.22. The same conclusion holds for vb(0, t) and vc(0, t)
and for currents ia(0, t), ib(0, t), ic(0, t). In the case of nondissipative line ω/β = u, and
there is no attenuation.

Because of Equation [5.4.19] it is true that the phase-shift between voltage and current (at
the same x), and thus the “power factor,” is constant along the line. Usually r/ l > g/c

and thus (as already seen) Im(z(jω)) < 0, whereas Re(z(jω)) > 0. Therefore, at any x,
current leads voltage.
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Concerning the active (P ) and reactive (Q) powers flowing into the line, which are
defined by:

P(x) + jQ(x) = vr(x)ı
∗
r (x) =

∣∣∣∣ vrA

z(jω)

∣∣∣∣
2

z(jω)ε−2αx

it can be derived, under the above-mentioned conditions, that P(x) > 0 and Q(x) < 0
(note that P(x) and Q(x) decrease in amplitude with x, in a way proportional to ε−2αx).

If r = g = 0 (nondissipative line), vectors vr(x) and ır (x) would be in phase with each
other, and their amplitudes would remain constant along the line. Moreover, it would
hold that P(x) = constant > 0, Q(x) = 0 for all the values of x. The equation Q(x) = 0
means, with reference to the first circuit in Figure 5.15b, that the reactive power absorbed
by the element l∆x is exactly balanced by the reactive power generated by the ele-
ment c∆x.

Concerning the whole line as seen by its terminals, it is possible to refer to
the equivalent circuit in Figure 5.16, with p = 0 and Ωr = ω in the operational
impedances, and thus assuming nr = nr(0) � n(jω) and zr = zr(0) � z(jω),
with n(jω) and z(jω) defined by Equations [5.4.14], [5.4.15], and [5.4.16]. The
equivalent circuit in Figure 5.23a is obtained, in which the impedance of the
series branch is equal to:

Zs � z(jω) sinh(n(jω)a) = z(jω)(sinh(αa) cos(βa) + j cosh(αa) sin(βa))
[5.4.20]

whereas that of the shunt branches is:

Zd � z(jω)

tanh
n(jω)a

2

= z(jω)
sinh(αa) − j sin(βa)

cosh(αa) − cos(βa)
[5.4.21]

(z(jω) is in general complex: recall Equation [5.4.16]).
The behavior of vr(x) and ır (x) inside the line is defined, for given vrA and ırA,

by Equations [5.4.3], with nr = n(jω) and zr = z(jω). In practical applications,

Figure 5.23. Line at steady-state: (a) equivalent circuit of the line (as seen by its
terminals), relative to Park’s vectors; (b) simplified circuit, deducible from the
previous one in the case of a relatively short line.
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however, it can appear more significant to refer to other assignments (instead of
vrA, ırA). In particular:

(1) for a line interconnecting two networks of relatively large power, it can
be assumed, at least as a limiting condition, that the terminal voltages
(vectors) vrA and vrB are assigned; therefore, from the previous equations
it follows, in terms of vrA and vrB , that:

vr(x) = vrA sinh(n(jω)(a − x)) + vrB sinh(n(jω)x)

sinh(n(jω)a)

ır(x) = vrA cosh(n(jω)(a − x)) − vrB cosh(n(jω)x)

z(jω) sinh(n(jω)a)




[5.4.22]

(2) for a line which, through its receiving terminal, supplies a load or is pos-
sibly open-circuited (ırB = 0), it can be assumed that one of the voltages
is assigned (i.e., vrA or vrB ), as well as the impedance vrB/ırB = ZB with
which the line is terminated; by assigning vrB and ZB , it follows that:

vr(x) = vrB

(
z(jω)

ZB

sinh(n(jω)(a − x)) + cosh(n(jω)(a − x))

)

ır (x) = vrB

(
1

ZB

cosh(n(jω)(a − x)) + 1

z(jω)
sinh(n(jω)(a − x))

)




[5.4.23]
where ZB is evaluated at steady-state at the given frequency ω, with ZB =
∞ for the case of open-circuited line; furthermore, in these conditions,
the current ırB , and the active and reactive powers flowing out of the line
are assigned.

Specifically, it is possible to derive Equations [5.4.18] and [5.4.19], if vrB =
vrAε

−n(jω)a in case (1), or ZB = z(jω) in case (2).
By considering the values of the “primary constants” (see Section 5.4.1), it is

immediate to determine that, for most of the lines, the magnitude of n(jω)a is
very small. Actually:

|n(jω)| = [(r2 + ω2l2)(g2 + ω2c2)]1/4

can be, for instance, (1000 km)−1 for an overhead line and (400 km)−1for a cable
line. Correspondingly, |n(jω)a| can be approximately 0.05 for a 50-km length
overhead line or for a 20-km cable line. Therefore, for relatively short lines,
the hyperbolic functions that appear in the previous equations can be adequately
approximated. More precisely, by neglecting the per unit of length conductance
(g), Equations [5.4.20] and [5.4.21] can be substituted by:

Zs
∼= z(jω)n(jω)a = (r + jωl)a = Rtot + jωLtot � Z′

s [5.4.20′]

Zd
∼= z(jω)

n(jω)a/2
= 2

jωca
= 2

jωCtot
� Z′

d [5.4.21′]
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according to Figure 5.23b. Note that Rtot � ra, Ltot � la and Ctot � ca represent
the total resistance, inductance, and capacitance of the line, respectively. Often,
for high-voltage overhead lines it may be assumed that Rtot = 0 and possibly
(especially if the line length a is modest) that Ctot = 0, i.e., Z′

d = ∞. In this
case, the line is represented only by the parameter Ltot. The situation may be
different for cable lines; in some cases, the most significant parameters may be
Rtot and Ctot, whereas Ltot may, at a first approximation, be disregarded.

Similarly, Equations [5.4.22] and [5.4.23] may be approximated by:

vr(x) = vrA(a − x)+ vrBx

a

ır (x) =
vrA

(
1 + (n(jω)(a − x))2

2

)
− vrB

(
1 + (n(jω)x)2

2

)

z(jω)n(jω)a

= vrA − vrB

Z′
s

+ vrA(a − x)2 − vrBx
2

a2Z′
d




[5.4.22′]

vr(x) = vrB

(
z(jω)

ZB

n(jω)(a − x)+ 1 + (n(jω)(a − x))2

2

)

= vrB

(
1 + Z′

s

ZB

a − x

a
+ Z′

s

Z′
d

(
a − x

a

)2
)

ır (x) = vrB

(
1

ZB

(
1 + (n(jω)(a − x))2

2

)
+ 1

z(jω)
n(jω)(a − x)

)

= vrB

(
1

ZB

(
1 + Z′

s

Z′
d

(
a − x

a

)2
)

+ 2

Z′
d

a − x

a

)




[5.4.23′]

However, by setting vrB/ırB = ZB , from Equations [5.4.22′] it is possible to deduce,
for x ∈ (0, a), equations that are somewhat different from [5.4.23′]. On the other hand,
Equations [5.4.22′] are based on an approximation of only the line model, whereas
Equations [5.4.23′] correspond to an approximation of the overall model (line, and
impedance ZB ).

In case (1) for which the voltages vrA and vrB are assigned, it can be derived:

PA = vrA

(1 + ρ2)ωLtot
(vrB sin δ + ρ(vrA − vrB cos δ))

PB = vrB

(1 + ρ2)ωLtot
(vrA sin δ − ρ(vrB − vrA cos δ))




[5.4.24]

having set ρ � Rtot/(ωLtot) = r/(ωl), δ � 
 vrA − 
 vrB and by intending that PA
and PB are, as indicated in Figure 5.23, the active power entering into the line
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arctan p

Figure 5.24. Case of a relatively short line, at steady-state: dependence of active
powers (PA) entering into the line and (PB) flowing out of the line, on the
phase-shift (δ) between voltage vectors at line terminals, under the assumption
vrA = vrB � E.

at x = 0, and the active power flowing out at x = a (if Rtot = 0, it simply holds
PA = PB = (vrAvrB/(ωLtot)) sin δ).

By assuming for simplicity vrA = vrB � E, the diagrams in Figure 5.24 can
be deduced.

Furthermore, the reactive power entering into the line at x = 0 and the one
flowing out at x = a (Fig. 5.23) can be, respectively, put in the form:

{
QA = QAs −QAd

QB = QBs +QBd

where QAs and QBs (related to the series branch) are equal to:

QAs = vrA

(1 + ρ2)ωLtot
(vrA − vrB cos δ − ρvrB sin δ)

QBs = vrB

(1 + ρ2)ωLtot
(−vrB + vrA cos δ − ρvrA sin δ)




[5.4.25]

whereas QAd and QBd are the reactive powers generated by the (capacitive) shunt
branches and are given by:

QAd = ωCtotv
2
rA

2
, QBd = ωCtotv

2
rB

2



400 CHAPTER 5 DYNAMIC BEHAVIOR OF NETWORK ELEMENTS AND LOADS

Assuming vrA = vrB � E and ρ = 0, then QAs +QBs = 0, with QAs > 0 and
QBs < 0 for all the values δ 
= 0. If ρ 
= 0, then QAs < 0 for δ ∈ (0, 2 arctanρ),
and QBs > 0 for δ ∈ (2π − 2 arctanρ, 2π).

The behaviors of vr(x) and ır (x) (from which those of P(x) and Q(x)), are,
within the adopted approximations, given by Equations [5.4.22′].

The analysis of case (2), when the voltage vrB and the impedance ZB are
assigned, is similarly obvious (for vr(x) and ır (x), Equations [5.4.23′] should be
recalled).

Having set:

Z′
dZB

Z′
d + ZB

= ZB

1 + jωCtotZB

2

� ZdB � RdB + jXdB

it follows that:
vrA

Z′
s + ZdB

= vrB

ZdB
= PB − jQBs

v∗
rB

and thus, specifically:

• if 
 ZdB = 
 Z′
s (i.e., XdB = RdB/ρ > 0), vrA and vrB are in phase (i.e.,

δ = 0), and the voltage drop is:

vrA − vrB = ωLtot
QBs + ρPB

vrB
= (1 + ρ2)ωLtot

QBs

vrB

• to obtain vrA = vrB (zero voltage drop) it is necessary that XdB < 0 and thus
QBs < 0 (more precisely, it is necessary that XdB = −((1 + ρ2)(ωLtot/2) +
ρRdB )).

In the case of a line under “open-circuit” operation (ırB = 0, ZB = ∞), it
can be derived:

vrB

vrA
= 1√

1 − ω2LtotCtot + (1 + ρ2)
ω4L2

totC
2
tot

4

and for a nondissipative line (ρ = 0), with ω2LtotCtot/2 < 1 (i.e., |n(jω)a| < √
2):

vrB

vrA
= vrB

vrA
= 1

1 − ω2LtotCtot

2

[5.4.26]

and thus vrB > vrA (“Ferranti effect”; see Equation [5.4.29], of which
Equation [5.4.26] is an approximation when βa is sufficiently small).
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If the line is not short enough, the previous approximations cannot be accepted.
Regarding the behavior of the line as seen from its terminals, treatment is similar
to that presented above, except that Z′

s = Rtot + jωLtot and Z′
d = 2/(jωCtot)

are substituted by the impedances Zs and Zd defined by Equations [5.4.20]
and [5.4.21], respectively. Therefore, in the case for which vrA and vrB are
assigned, the powers relative to the series branch remain expressed by equations
similar to [5.4.24] and [5.4.25], and so on. The only significant difference can be
caused by the presence of a nonzero real part in Zd . Moreover, for the internal
behavior of the line, it is necessary to refer to Equations [5.4.22] or [5.4.23], as
already specified.

In practice, however, the analysis can be reasonably simplified especially in
the case of relatively long lines (e.g., having a length of hundreds of kilometers
or more), typically constituted by overhead lines at high or extra-high voltage.
By considering the values of the primary constants (see Section 5.4.1), the sim-
plification r = g = 0 (i.e., the assumption of nondissipative line) indeed appears
to be acceptable. It follows that:

{
n(jω) = jβ

z(jω) = z(o)

where: 


β = ω
√
lc = ω

u
= 2π

λr

z(o) =
√
l

c

Specifically, u is the propagation speed, approximately 3.105 km/sec, whereas λr
is the wavelength at the frequency ω, equal to approximately 6000 km at 50 Hz.

Concerning the behaviors of voltages, currents, and powers along the line, it is interesting
to note that because of Equations [5.4.1] it results that:

1

vr

dvr
dx

+ j
d 
 vr
dx

= 1

vr

dvr
dx

= −(r + jωl)
ır

vr
(if vr 
= 0)

1

ir

dir
dx

+ j
d 
 ır
dx

= 1

ır

dır
dx

= −(g + jωc)
vr

ır
(if ir 
= 0)

where ır/vr = (P − jQ)/v2
r , vr/ır = (P + jQ)/i2

r . Thus, if vr 
= 0 it holds:




dvr
dx

= − rP + ωlQ

vr

d 
 vr
dx

= rQ− ωlP

v2
r
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and analogously, if ir 
= 0: 


dir
dx

= −gP + ωcQ

ir

d 
 ır
dx

= −gQ+ ωcP

i2
r

Specifically, for a nondissipative line it can be derived:

dvr
dx

= −ωlQ

vr
,

d 
 vr
dx

= −ωlP

v2
r

,
dir
dx

= ωcQ

ir
,

d 
 ır
dx

= −ωcP

i2
r

so that:

• the voltage magnitude decreases, and the current magnitude increases, in the direc-
tion in which the reactive power Q flows (at the given x);

• both phases 
 vr and 
 ır decrease in the direction in which the active power P

(constant along the line) flows.

In the case (1) for which the voltages vrA and vrB are assigned,
Equations [5.4.22] become:




vr(x) = vrA sin(β(a − x)) + vrB sin(βx)

sin(βa)

ır(x) = vrA cos(β(a − x)) − vrB cos(βx)

jz(o) sin(βa)

from which, recalling that P + jQ = vr ı
∗
r and by assuming for simplicity that

vrA = vrE � E, it is possible to derive:

P = P (o) sin δ

sin(βa)
[5.4.27]

Q(x) = P (o) sin(β(a − 2x))(cos(βa)− cos δ)

sin2(βa)

where δ � 
 vrA − 
 vrB defines the phase-shift between terminal voltages,
whereas:

P (o) � v2
rB

z(o)
= E2

z(o)

(the “characteristic” or “natural” active power of the line) is the active power
that would flow along the line if it were terminated, at the given vrB , with its
characteristic impedance.
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Specifically, QA = −QB and, in general, Q(x) = −Q(a − x), whereas
vr(x) = vr(a − x). In the midpoint of the line, it holds that Q(a/2) = 0 and:

vr

(a
2

)
= E

∣∣∣∣∣∣∣
cos

δ

2

cos
βa

2

∣∣∣∣∣∣∣
[5.4.28]

At δ = βa and δ = 2π − βa it, respectively, holds that P = ±P (o), whereas
Q(x) = 0, vr(x) = E ∀x ∈ [0, a].

If the line length is smaller than half of the wavelength (i.e., if a < λr/2, that
is a < 3000 km for λr = 6000 km) and thus βa < π , the dependence of P on
δ is of the type indicated in Figure 5.25a, with P = P (o) at δ = βa, and with P

at its maximum for δ = 90◦. This maximum is given by P (o)/sin(βa) and can
be approximated by E2/(z(o)βa) = E2/(ωLtot) if βa is sufficiently small: see
Figure 5.24, for ρ = 0.

It can be directly verified that Q(x) becomes zero only in the midpoint of
the line, where the value of vr (expressed by Equation [5.4.28]) is the mini-
mum or the maximum of vr(x) according to whether cos δ ≶ cos(βa): see the
qualitative outlines of vr(x) and Q(x) reported in Figure 5.25b for various val-
ues of δ.

Specifically, if a < λr/4 or, equivalently, if βa < π/2 (a < 1500 km for λr =
6000 km), for δ ∈ (0, 90◦

) it follows that:

P ≷ P (o), QA = −QB ≷ 0, vr

(a
2

)
≶ E according to whether δ ≷ βa

In practical cases, especially for lines which are not very long, δ ∈ (βa, 90◦
). In this

regard, a typical value of βa = |n(jω)a| for a 200-km length overhead line can be
200/1000 = 0.2 (rad), which corresponds to an angle of approximately 12◦.

In the infrequent case for which a ∈ (λr/2, λr ) and βa ∈ (π, 2π), the depen-
dence of P on δ is indicated in Figure 5.25c. Furthermore, Q(x) becomes zero not
only in the middle of the line (x = a/2), but at x = a/2 ∓ π/2β = a/2 ∓ λr/4,
where vr assumes the value:

vr

(
a

2
∓ π

2β

)
= E

∣∣∣∣∣∣∣
sin

δ

2

sin
βa

2

∣∣∣∣∣∣∣
smaller or greater than E according to whether vr(a/2) ≷ E: see, qualitatively,
the diagrams of Figure 5.25d.
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Figure 5.25. Case of a relatively long (and nondissipative) line, at steady-state
and having voltage vectors assigned at its terminals: (a), (c) dependence of trans-
mitted active power P on the phase-shift δ between voltage vectors at line ter-
minals, respectively, for the cases a < λr/2 and a ∈ (λr/2, λr); (b), (d) outlines
of voltage magnitude vr and reactive power Q along the line, for the same cases
as above. It is intended a = line length, λr = wavelength and vrA = vrB � E.

Instead, in case (2) for which the voltage vrB and the impedance ZB are
assigned, because of Equations [5.4.23]:




vr(x) = vrB

(
jz(o)

ZB

sin(β(a − x)) + cos(β(a − x))

)

ır (x) = vrB

(
1

ZB

cos(β(a − x)) + j

z(o)
sin(β(a − x))

)
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By assuming for simplicity that ZB = RB , i.e., QB = 0, it results that P =
v2

rB/RB and (with P (o) = v2
rB/z

(o), P/P (o) = z(o)/RB ):

Q(x) = v2
rB

(
z(o)

R2
B

− 1

z(o)

)
sin(2β(a − x))

2

= P (o)

((
P

P (o)

)2

− 1

)
sin(2β(a − x))

2

v2
r (x) = v2

rB

(
cos2(β(a − x)) +

(
P

P (o)

)2

sin2(β(a − x))

)

Moreover, the phase-shift δ � 
 vrA − 
 vrB is defined by:

tan δ = P

P (o)
tan(βa)

and (for P 
= 0) is in the same quadrant as βa. Consequently, it is possi-
ble to write:

vrA = vrB
cos(βa)

cos δ

Specifically, the condition P = P (o) (i.e., RB = z(o)) implies δ = βa, vrA = vrB ,
and more generally Q(x) = 0, vr(x) = vrB along the whole line, according to
information already presented.

From the previous equations, it follows that:

vrA ≷ vrB according to whether P ≷ P (o)(i.e., RB ≶ z(o))

and furthermore:

• if a < λr/4 (i.e., if βa < π/2):

Q ≷ 0, dvr/dx ≶ 0 according to whether P ≷ P (o), along the whole line,

whereas δ ∈ (0, π/2);
• if a ∈ (λr/4, λr/2) (i.e., if βa ∈ (π/2, π)):




as above, for x > a − π

2β
= a − λr

4

the opposite, for x < a − π

2β
= a − λr

4

whereas δ ∈ (π/2, π);

and so on (see Fig. 5.26a).
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Figure 5.26. Case of a relatively long (and nondissipative) line, at steady-state,
terminated with a load impedance: (a) outlines of voltage magnitude vr and reac-
tive power Q along the line, for resistive load impedance; (b) idem, with infinite
load impedance (line under “open-circuit” operation). It is assumed a < λr/2.

Under “open-circuit” operation (ırB = 0, ZB = ∞):

vr(x) = vrB cos(β(a − x))

ır (x) = jvrB

z(o)
sin(β(a − x))

P = 0

Q(x) = − v2
rB

2z(o)
sin(2β(a − x))

and therefore:
• at the receiving terminal the voltage magnitude assumes its maximum value

(“Ferranti effect”), with:

vrB

vrA
= 1

|cos(βa)| [5.4.29]
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• the impedance seen at the generic distance x is purely reactive, and it is
given by vr(x)/ır (x) = −jz(o)/ tan(β(a − x)) � jXeq(x), with:

Xeq(x) = −z(o)
tan(β(a − x))

(at x = 0: Xeq(0) = −z(o)/tan(βa));
• the generic vr(x) is in phase or in opposition of phase with respect to vrB .

Specifically:

• if a < λr/4:

Q < 0,
dvr
dx

> 0, Xeq < 0, 
 vr − 
 vrB = 0, along the whole line

(at x = 0: purely capacitive impedance, and δ = 0);
• if a ∈ (λr/4, λr/2):




as above, for x > a − λr

4

Q > 0,
dvr
dx

< 0, Xeq > 0, 
 vr − 
 vrB = 180◦
, for x < a − λr

4

(at x = 0: purely inductive impedance, and δ = 180◦);

and so on (see Fig. 5.26b).

5.4.3. Dynamic Models of Different Approximation

Whichever the operating condition, the line can be seen as a system having six
scalar “inputs” (voltages and/or currents at its terminals) and several “outputs.”
To set concepts, in the following we will assume:

• as inputs: the voltages, i.e., the vectors vrA, vrB (each one having two scalar
components) and the zero-sequence components voA, voB ;

• as outputs: the currents at line terminals, i.e., the vectors ırA, ırB and the
zero-sequence components ioA, ioB .

Under the adopted assumptions (linearity, physical symmetry, uniformity) the
dependence of ırA, ırB , on vrA, vrB is defined by:

ırA = vrA cosh(nr(p)a) − vrB

zr(p) sinh(nr(p)a)
= vrA − vrB

Zrs(p)
+ vrA

Zrd (p)

ırB = vrA − vrB cosh(nr(p)a)

zr(p) sinh(nr(p)a)
= vrA − vrB

Zrs(p)
− vrB

Zrd (p)




[5.4.30]
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(recall Equations [5.4.5] and Fig. 5.16), where nr and zr are expressed by
Equations [5.4.4]. The operational impedances:



Zrs(p) � zr(p) sinh(nr(p)a)

Zrd (p) � zr(p)

tanh(nr(p)a/2)

can be also put in the form:

Zrs(p) = Z′
rs(p)

sinh(nr(p)a)

nr(p)a

Zrd (p) = Z′
rd (p)

nr(p)a/2

tanh(nr(p)a/2)




[5.4.31]

by assuming:

Z′
rs(p) � nr(p)zr(p)a = Rtot + (p + jΩr)Ltot

Z′
rd (p) � 2zr(p)

nr(p)a
= 2

Gtot + (p + jΩr)Ctot


 [5.4.32]

The dependence of ioA, ioB on voA, voB is defined by similar equations, to
which the following considerations can be extended.

With reference to Equations [5.4.20], [5.4.21], [5.4.20′], and [5.4.21′], which refer to the
steady-state at frequency ω, it is also possible to write:

Zrs(p) = Zs(p + jΩr), Zs = Zrs (j (ω −Ωr)) = Zs(jω)

Zrd (p) = Zd(p + jΩr), Zd = Zrd (j (ω −Ωr)) = Zd(jω)

(recall Equation [5.2.8]), and similarly for Z′
rs , Z′

rd , Z′
s , Z

′
d .

By applying the Laplace transformation, from Equations [5.4.30] it is possible
to derive:

∂ırA

∂vrA
= − ∂ırB

∂vrB
= 1

zr(s) tanh(nr(s)a)
= 1

Zrs(s)
+ 1

Zrd (s)

− ∂ırA

∂vrB
= ∂ırB

∂vrA
= 1

zr(s) sinh(nr(s)a)
= 1

Zrs(s)




[5.4.33]

from which the characteristic equation is obtained:

0 = |zr(s) sinh(nr(s)a)|2 = |Zrs(s)|2
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or by accounting for the first of Equations [5.4.31] and recalling that sinh x/x =∏∞
1 h(1 + (x/hπ)2):

0 =
∣∣∣∣∣Z′

rs(s)

∞∏
1

h

(
1 +
(
nr(s)a

hπ

)2
)∣∣∣∣∣

2

[5.4.34]

from which:

0 = |Z′
rs(s)|2 = (Rtot + sLtot)

2 + (ΩrLtot)
2 [5.4.34′]

0 =
∣∣∣∣∣1 +
(
nr(s)a

hπ

)2
∣∣∣∣∣
2

(h = 1, . . . ,∞) [5.4.34′′]

From Equation [5.4.34′] it is possible to derive two of the characteristic roots:

s = −Rtot

Ltot
± ̃Ωr [5.4.35]

(in the s-plane, the imaginary unit is ̃ ), which correspond, for Rtot 
= 0, to a
damped resonance. The other (infinite) characteristic roots can be derived from
Equation [5.4.34′′].

By assuming for simplicity that the line is nondissipative (r = g = 0),
Equation [5.4.35] is reduced to:

s = ±̃Ωr

whereas Equation [5.4.34′′] becomes:

0 =
∣∣∣∣∣∣1 +
(
(s + jΩr)

√
lca

hπ

)2
∣∣∣∣∣∣
2

from which:

s = ±̃
(
Ωr − k

π

a
√
lc

)
= ±̃Ωr

(
1 − k

λr

2a

)

where k = ±h, that is k = ±1,±2, . . ., and where λr is the “wavelength” of the
line, defined by Equation [5.4.10]. The above corresponds to infinite undamped
resonances, at frequencies;

νk = Ωr

∣∣∣∣1 − k
λr

2a

∣∣∣∣
with k = 0,±1,±2, . . ., according to Figure 5.27.
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Figure 5.27. Nondissipative line: resonance frequencies as functions of line
length (under the conditions specified in text).

Specifically, ordered at increasing values, the resonance frequencies are:

• if a <
λr

4
: Ωr,

(
λr

2a
− 1
)
Ωr,

(
λr

2a
+ 1
)
Ωr, . . .

• if a ∈
(
λr

4
,
λr

2

)
:
(
λr

2a
− 1
)
Ωr,Ωr,

(
λr

a
− 1
)
Ωr, . . .

• if a ∈
(
λr

2
,

3λr
4

)
:
(

1 − λr

2a

)
Ωr,

(
λr

a
− 1
)
Ωr,Ωr, . . .

• if a ∈
(

3λr
4
, λr

)
:
(
λr

a
− 1
)
Ωr,

(
1 − λr

2a

)
Ωr,

(
3λr
2a

− 1
)
Ωr,Ωr, . . .

and so on. Therefore, the smallest resonance frequency can be smaller than Ωr

(it is sufficient that a > λr/4) and it is very small if the line length a is close to
λr/2, λr , . . . (at these values there are two zero characteristic roots). Therefore, for
the same primary constants, the dynamic behavior of a line with a length a = ao <

λr/4 can be very different from that of a line with a length a = ao + λr/2, etc.
In practice, the above-mentioned resonances are somewhat damped, because

of the line resistances (see Equation [5.4.35]).

In the case of a nondissipative line, from the first of Equations [5.4.33] it is possible
to derive:

∂ırA

∂vrA
= − ∂ırB

∂vrB
= 1

z(o) tanh
(
(s + jΩr)

a

u

) = Gr(s)+ jHr(s)
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having set: 


Gr(s) �
sinh

2sa

u

2z(o)
[(

sinh
sa

u

)2

+
(

sin
Ωra

u

)2
]

Hr(s) �
− sin

2Ωra

u

2z(o)
[(

sinh
sa

u

)2

+
(

sin
Ωra

u

)2
]

where z(o) = √
l/c, u = 1/

√
lc = Ωrλr/(2π).

By decomposing vectors along the d and q axes, it follows:




∂idrA

∂vdrA
= ∂iqrA

∂vqrA
= − ∂idrB

∂vdrB
= − ∂iqrB

∂vqrB
= Gr(s)

− ∂idrA

∂vqrA
= ∂iqrA

∂vdrA
= ∂idrB

∂vqrB
= − ∂iqrB

∂vdrB
= Hr(s)

from which the meaning of Gr(s) and Hr(s) in terms of transfer functions is evident.

It is possible to reach similar conclusions starting from the second part of
Equations [5.4.33], by deducing the real and imaginary parts of 1/(z(o) sinh((s +
jΩr)a/u)). Furthermore, all the transfer functions under examination have, as their poles,
the above-defined characteristic roots.

The difference in the dynamic behavior between lines of length a = ao < λr/4 and
a = ao + λr/2, can be clearly shown by the frequency response characteristics. See for
instance, the diagrams of:




z(o)Gr(̃ ν)/̃ =
sin

2νa

u

2

[
−
(

sin
νa

u

)2

+
(

sin
Ωra

u

)2
]

z(o)Hr(̃ν) =
− sin

2Ωra

u

2

[
−
(

sin
νa

u

)2

+
(

sin
Ωra

u

)2
]

reported in Figure 5.28 for the two lines, by assuming ao = λr/20 (e.g., ao = 300 km if
λr = 6000 km) and thus Ωrao/u = π/10.

The model described up to now is of an infinite dynamic order, with crit-
ical frequencies relatively high in the usual case of a � λr/2, for which the
convenience of adopting simplified models appears evident. This is particularly
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Figure 5.28. Frequency response of a line (under the conditions specified in
text): comparison between two lines of different length, with a difference in
length equal to half wavelength.

true for the analysis of mechanical or electromechanical phenomena in which
the machine inertias, etc. can make the effects of lines’ dynamics negligible. If
a � λr/2, the generic line often can be represented by its static model (s = 0),
i.e., by the model relative to the steady-state (see Section 5.4.2, at Ωr = ω).
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If we intend consider, in some measure, the dynamics of the lines (e.g., when
addressing long lines or predominantly electrical phenomena), we may adopt
different approaches that can be classified as follows:

• simplifications of the starting equations (i.e., of Equations [5.4.1] and
[5.4.2]), through discretization of the independent variable x;

• simplification of the resulting equations, and specifically, of those defining
the transfer functions (i.e., Equations [5.4.33]).

This latter approach allows adaptation of the simplifications to the specific
problem, with direct estimation of the resulting degree of approximation.
However, it generally requires that linearity holds.

The considerations developed below refer to the model for Park’s vectors,
with the extension to the model for the homopolar components being trivial.

To discretize the variable x, the most traditional way is to consider the line
as a cascade of (one or) more lumped parameter “cells.” In the case of a single
cell, the equivalent circuit relative to Park’s vectors is similar to the exact one
(see Fig. 5.16), but with Zrs(p), Zrd (p) respectively substituted by:



Z′

rs(p) = Rtot + (p + jΩr)Ltot

Z′
rd (p) = 2

Gtot + (p + jΩr)Ctot

so that the series branch considers the total resistance and reactance of the line,
whereas the total conductance (however negligible) and the total capacitance
are shared, into equal parts, between the two shunt branches. Note that, for
p = 0 and Ωr = ω, the equivalent circuit in Figure 5.23b applies, whereas that
in Figure 5.23a does not.

In the more general case of m cells, assuming for the sake of simplicity
that each cell corresponds to a line section of a/m length, the equivalent
circuit becomes the one reported in Figure 5.29. Instead of Equations [5.4.33],

Figure 5.29. Simplified equivalent circuit, relative to Park’s vectors, for a line
treated as a cascade of m-lumped parameter cells.
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it is possible to derive, by recalling that Z′
rd (s) = 2Z′

rs(s)/(nr(s)a)
2 (because

of Equations [5.4.32]) and intending for brevity nr = nr(s), Z′
rs = Z′

rs(s), the
following simplified expressions:

• for m = 1:
∂ırA

∂vrA
= − ∂ırB

∂vrB

∼= 1 + (nra)
2/2

Z′
rs

− ∂ırA

∂vrB
= ∂ırB

∂vrA

∼= 1

Z′
rs




[5.4.36]

• for m = 2:

∂ırA

∂vrA
= − ∂ırB

∂vrB

∼=
1 + (nra)

2

2
+ (nra)

4

32

Z′
rs

(
1 + (nra)

2

8

)

− ∂ırA

∂vrB
= ∂ırB

∂vrA

∼= 1

Z′
rs

(
1 + (nra)

2

8

)




[5.4.37]

and so on.
The characteristic equation that results from Equations [5.4.36] exactly

corresponds to Equation [5.4.34′] (with roots s = −Rtot/Ltot ± ̃Ωr ), whereas
Equation [5.4.34′′] is ignored.

Instead, for m = 2, Equations [5.4.37] lead again to Equation [5.4.34′] and to:

0 =
∣∣∣∣1 + (nr(s)a)

2

8

∣∣∣∣
2

which can be considered an approximation of Equation [5.4.34′′] for h =
1 (instead of π2 there is 8). By assuming, for simplicity, that the line is
nondissipative, the solutions of this last equation correspond to two resonance
frequencies, respectively, equal to Ωr |1 ∓ √

8λr/(2πa)|.
Therefore, for m = 2, we obtain three resonance frequencies that correspond

(one of them exactly, the other with some approximation) to the lowest
ones for a < λr/4 (see Fig. 5.27). However, for larger values of a, for
which the mentioned simplifications are more interesting, the results obtained
may be unsatisfactory, and therefore the number of cells may have to be
increased.

Other simplified models can be obtained, by adequately approximating
Equations [5.4.33]. As a starting idea, the hyperbolic functions appearing in
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the operational impedances [5.4.31] or, more directly, in Equations [5.4.33],
can be approximated by truncating the corresponding Taylor series. By recalling
that sinh x/x = 1 + x2/6 + x4/120 + . . ., cosh x = 1 + x2/2 + x4/24 + . . ., it is
possible to derive, by truncating the series at their second term, and by intending
for brevity nr = nr(s), Z′

rs = Z′
rs(s):




∂ırA

∂vrA
= − ∂ırB

∂vrB
= nra

Z′
rs tanh(nra)

∼=
1 + (nra)

2

2

Z′
rs

(
1 + (nra)

2

6

)

− ∂ırA

∂vrB
= ∂ırB

∂vrA
= nra

Z′
rs sinh(nra)

∼= 1

Z′
rs

(
1 + (nra)

2

6

)

From the corresponding characteristic equation, one can again derive
Equation [5.4.34′], and furthermore:

0 =
∣∣∣∣1 + (nr (s)a)

2

6

∣∣∣∣
2

i.e., a new approximation of Equation [5.4.34′′] for h = 1 (instead of π2 there
is 6). If the line is nondissipative, there are resonance frequencies Ωr ,Ωr |1 ∓√

6λr/(2πa)|, similarly, although at a slightly lower precision, to what can be
obtained by the subdivision into two cells. The analysis can be extended, with
truncation of the series done at higher-order terms.

A much more useful approach is that based on the “modal decomposition”
of the transfer functions, in which the contributions corresponding to their
“dominant” poles (the poles that can be considered the most important ones, for
the problem under examination) are exactly retained and the contributions of the
remaining poles are approximated. This approach will be specifically considered
in Section 8.4.3.

The modal decomposition can be obtained by developing the func-
tions 1/(zr (s) tanh(nr (s)a)), 1/(zr(s) sinh(nr(s)a)), which constitute the
Equations [5.4.33], into a series of elementary fractions (the Mittag-Leffler devel-
opment, which is similar to the usual Heaviside development related to functions
with a finite number of poles).

By assuming for simplicity that:

• the line is nondissipative,
• its length a is not multiple of λr/4 (so that the characteristic roots are all

simple ones; recall Fig. 5.27),
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and thus zr(s) = z(o), nr(s) = (s + jΩr)
√
lc, it is possible to derive the following

equations (equivalent to Equations [5.4.33]):




∂ırA

∂vrA
= − ∂ırB

∂vrB
= 1

z(o)
+ 1

Ltot

+∞∑
−∞

k

1

s + jΩr(1 − kλr/(2a))

− ∂ırA

∂vrB
= ∂ırB

∂vrA
= 1

Ltot

+∞∑
−∞

k

(−1)k

s + jΩr(1 − kλr/(2a))

(recall that Ltot � la = z(o)
√
lca, λr � 2π/(Ωr

√
lc)). The generic term in the

sums corresponds to the poles s = ±̃Ωr(1 − kλr/2a), defined by the equation
|s + jΩr(1 − kλr/(2a))| = 0.

The usefulness of such expressions is clear; if, for instance, the only two poles
corresponding to k = 0 and k = 1 are considered as “dominant,” as in the case of
a line with a ∈ (λr/4, λr/2) (see Fig. 5.27), such expressions can be respectively
approximated by:




1

z(o)
+ 1

Ltot

(
1

s + jΩr

+ 1

s + jΩr(1 − λr/(2a))

)
+ c1

1

Ltot

(
1

s + jΩr

− 1

s + jΩr(1 − λr/(2a))

)
+ c2

where, to keep the behaviors at s = 0 unchanged, it must be assumed that:




c1 = 1

ΩrLtot

[
j (4a − λr)

2a − λr
− 2πa

λr

(
1 + j

1

tan(2πa/λr)

)]

c2 = −j
ΩrLtot

[
λr

2a − λr
+ 2πa

λr

1

sin(2πa/λr)

]

By doing so, the simplified model leads to only two resonance frequencies, which
are exactly equal to the “dominant” ones. Furthermore, it exactly considers the
transient contributions corresponding to such resonances, as well as the static
behavior (s = 0). On the contrary, the subdivision into two cells, for instance,
leads to three resonance frequencies, only one of which is exact. Therefore,
comparing the two approaches, we may state that the modal simplification can
allow a better approximation even by using a lower-order dynamic model. Such
advantages can become even more apparent when the line length is longer
than λr/2.

As a concluding remark, it must be considered that the data given up to
now refers to the dependence of currents ırA and ırB on voltages vrA and
vrB , by assuming that the time behavior of these voltages is assigned. In the
case of other assignments (e.g., vrA and the impedance vrB/ırB ), the terms
of comparison between the exact model and the possible simplified models
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change with respect to what is described above. All this considered, it appears
convenient, for general cases, to refer to the assignments concerning the whole
network under examination. To correctly simplify the whole network model,
valuable information can be obtained by inspecting the steady-state behavior
at different values of network frequency, according to Section 5.2.2 (recall
Equations [5.2.10′] and subsequent comments).

5.5. DIRECT CURRENT (DC) LINKS

5.5.1. Generalities

The use of a dc link can be suitable in the following typical cases:

• the points to be connected are very distant, so that an ac link would
imply difficulties in limiting voltage drops, in increasing transmittable active
power (e.g., by inserting series capacitors, compensators at intermediate
nodes, etc.) and in preventing loss of synchronism between the two sets of
generators connected by the link;

• the link must be realized, at least for long sections, by cable (e.g., because
of the necessity of crossing a sea or crowded metropolitan areas), and by
adopting the ac solution difficulties would arise in compensating (by shunt
reactors) the reactive power generated by the line;

• the networks to be connected operate at different frequencies.

In the following, we will refer to the typical “two-terminal” basic diagram in
Figure 5.30, which includes:

• a dc line;

• two converters;

• between each converter and the line: a (series) “smoothing” inductor and a
(shunt) dc filter;

   ac
system

   ac
system

ac filter

tap-changing
transformer

converter converter
smoothing
inductor

dc filter

 dc
line

if if

Figure 5.30. Typical diagram of a dc link.
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• between each converter and the respective ac system: a tap-changing
transformer and an ac filter.

The system includes protective and maneuvering devices such as surge arresters, “bypass”
valves, disconnectors, etc., that will not be considered. Following a fault on the link (short-
circuit in the line, malfunction of a converter, etc.) the current limitation can be left to
the control systems described later on, to avoid the use of breakers.
In case of a link interconnecting networks at different frequencies, the line may even be
absent (back-to-back configuration).

By using one of the converters as a rectifier and the other as an inverter, an
(active) power flow from the former to the latter can be achieved. For instance,
using the notation of Figure 5.30(1), if converter 1 is a rectifier and converter 2 an
inverter, then v1 > 0 and v2 < 0, so that the power flows in the direction 1 → 2
(power −P2 is positive like P1 and slightly smaller because of line losses).

To reverse the direction of the power flow (it is not possible to invert that
of the current), it is necessary to invert the sign of voltages by interchanging
the role of converters. To obtain the desired voltage level at the dc side,
each terminal may be equipped with more converters, in parallel on the ac
side and in series on the dc side: however, a single (equivalent) converter
will be considered at each terminal. The following considerations may be
extended, although with some complication, to the case of links with more than
two terminals.

The dc line can be represented, under the hypothesis of uniformity, by the
equivalent circuit shown in Figure 5.31a (based on equations similar to those in
Section 5.4), by assuming that a is the line length and:

n(s) � [(r + sl)(g + sc)]1/2

z(s) � n(s)

g + sc
= r + sl

n(s)

Figure 5.31. A dc line as seen by its terminals: (a) equivalent circuit;
(b) simplified equivalent circuit.

(1) As the roles of the two converters can be interchanged, it is convenient to adopt the same sign
convention for both of them, e.g., the generators’ convention (Fig. 5.30). Similarly, it is convenient
to define voltages at line terminals with the polarities indicated in Figure 5.30.
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where r , l, g, c are the (series) resistance and inductance, and the (shunt)
conductance and capacitance, per unit of length, respectively.

In practice, the shunt conductance can be disregarded, and the equivalent
circuit may be approximated (except in the case of very fast phenomena) as
a single lumped-parameter “cell” as indicated in Figure 5.31b. Specifically, the
total resistance Rl and total inductance Ll of the line are shared into equal parts
between the two series branches, whereas the total capacitance Cl defines the
shunt branch (Rl � ra, Ll � la, Cl � ca).

Referring to Figure 5.30, because of the smoothing inductors and dc filters,
currents and voltages at the two line terminals vary slowly, and it can be
assumed that:

Il1 ∼= I1, Il2 ∼= I2

Vl1 ∼= V1 − sLs1I1, Vl2 ∼= V2 − sLs2I2

}
[5.5.1]

where I1, I2 and V1, V2 are, respectively, the slowest components of currents i1,
i2 and voltages v1, v2 at the converter outputs.

Regarding the operating characteristics of each converter, it is possible to refer
to the typical scheme indicated in Figure 5.32, having six valves connected in the
Graetz bridge configuration, and three “switching” inductances Lc (considering
the presence of the transformer) on the ac side.

By assuming that:

• the voltages va , vb, vc are sinusoidal and of positive sequence at frequency
ω, with a rms value Ve (the corresponding Park’s vector has an amplitude
vr = √

3Ve; see Appendix 2);

• the current i is constant, i.e., i = I (obviously positive);

• the valves are ideal ones, controlled by “firing” at every one-sixth of a cycle
(ω∆t = 60◦), in the sequence 1, 2, . . . , 6;

the time behaviors in Figure 5.33 can be derived for the voltages vM , vN and
currents ia , ib, ic (it is intended that voltages va , vb, vc, vM , vN are evaluated

Figure 5.32. Typical scheme of a converter.
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firing of
valve 1

extinction
of valve 1

firing of
valve 1

extinction
of valve 1

Figure 5.33. Time behaviors of voltages and currents (under the conditions
specified in text): (a) operation as a rectifier; (b) operation as an inverter.
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with the same reference), with:

0 < α < α + u < 180◦

where:

• the angle α, called the “firing angle,” defines the delay at firing with respect
to the natural switching (which would occur at ωt = 30◦ for the valve 1,
and so on);

• the angle u, called the “overlapping angle,” corresponds to intervals of
simultaneous conduction of two valves (it must be u ≤ 120◦, and in the
figure, as well as in the following, it is assumed u < 60◦; note that the
value of u is usually no larger than 20◦ –25◦).

Specifically, having posed, for brevity:

δ � α + u

it follows that:

• for ωt ∈ (30◦ + α, 30◦ + δ):




ib = −I ic = i − ia

vM = va − Lc

dia
dt

vM = vc − Lc

dic
dt

= vc + Lc

dia
dt

vN = vb − Lc

dib
dt

= vb

from which: 


vM = va + vc

2

Lc

dia
dt

= va − vc

2
vN = vb

• for ωt ∈ (30◦ + δ, 90◦ + α):

{vM = va

vN = vb
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and so on. Through trivial developments, by setting:

Eo � 3
√

6

π
Ve = 3

√
2

π
vr

λ � 3

π
ωLc




[5.5.2]

it is possible to derive that:

• the voltage (vM − vN ) has a mean value of:

V = Eo

cosα + cos δ

2
[5.5.3]

or equivalently:

V = Eo cos
(
α + u

2

)
cos

u

2

so it follows that:



V > 0 if α + u

2
< 90◦

(operation as a rectifier)

V < 0 if α + u

2
> 90◦

(operation as an inverter)

• the angle δ is determined by:

λI = Eo

cosα − cos δ

2
[5.5.4]

By eliminating δ it is possible to derive, under the above hypotheses, the
converter equation:

V = Eo cosα − λI [5.5.5]

which defines the mean value V of the dc voltage as a function of Eo (i.e.,
of the amplitude of the alternating voltage), the firing angle α, and the (dc)
current I (2).

Moreover, the currents ia , ib, ic are periodic with a zero mean value. By
considering only their fundamental components (sinusoidal and of positive
sequence, at frequency ω), it is possible to determine that the active and reactive
powers entering into the converter from the ac side are respectively:

(2) Harmonic components at relatively high frequencies are superimposed to this mean value; their
effects on the line voltage (and, in practice, on the current i itself) can be considered negligible, as
already said, because of the presence of the smoothing inductor and the dc filter.
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P = E2
o

4λ
(cos2 α − cos2 δ) = V I

Q = E2
o

4λ
(u+ sinα cosα − sin δ cos δ)




[5.5.6]

(where u = δ —α)(3).
Specifically:

• The active power P = V I is a power purely “transmitted” by the converter,
with no losses. This corresponds to the adopted hypotheses; note that the
parameter λ, which appears in Equation [5.5.5] as an equivalent output
resistance, does not actually imply any loss at all. Moreover, active power
P = V I has the same sign of V , so that it is positive or negative according
to whether the converter operates as a rectifier or an inverter.

• The reactive power Q is positive with no counterpart from the dc side, so
that it is, in any case, a power “absorbed” by the converter.

The previous equations are related to the adopted hypotheses. However, they
can be accepted for a dynamic operating condition, provided it is slow for the
frequency (6ω) at which valve firing meanly occurs. For a better approximation,
it is possible in Equation [5.5.5] to account for the voltage drops in the valves
and in the transformer resistances, and for the further drop, proportional to dI/dt ,
on the switching inductance during transients.

Also, by recalling Figure 5.31b and Equations [5.5.1], the whole link can
be represented, using the stated approximations and not considering the control
systems, by the equivalent circuit shown in Figure 5.34.

5.5.2. Operating Point

If the converter firing angles α1 and α2 were kept constant, the operating point
of the link would be defined, based on the above, by:

Eo1 cosα1 + Eo2 cosα2 = (λ1 + Rl + λ2)I

(3) As a first approximation, the rms value I ′
e of the fundamental components of ia , ib, ic is

I ′
e

∼= (
√

6/π)I ; this corresponds to:

• an apparent power 3VeI ′
e

∼= EoI ;

• a power factor (with a lagging current) P/(3VeI ′
e)

∼= V/Eo.

Currents include harmonic components at relatively high frequencies. However, the effects of
such harmonics on the ac network (and, in practice, on the voltages va , vb, vc themselves) are modest
if the considered node has a large short-circuit power, and furthermore are reduced by the ac filter
(including possible shunt condensers used for reactive compensation).
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dc line

Figure 5.34. Equivalent circuit of the whole link in the absence of control.

where I1 = I2 � I > 0, and the voltage in the middle of the line (Fig. 5.34)
would be:

Eo1 cosα1 −
(
λ1 + Rl

2

)
I = −Eo2 cosα2 +

(
λ2 + Rl

2

)
I

However, such a situation would not be acceptable in practice, as it would
easily lead to large variations in current for relatively small variations in Eo1,
Eo2 (caused by perturbations in the ac systems).

For nominal conditions of the midline voltage and current, each of the relative voltage
drops caused by λ1, Rl , λ2 can be, for instance, 5–10%, so that the relative current
variations are approximately 3–7 times larger than those of Eo1 cosα1, Eo2 cosα2.
These last variations can be limited by regulating the ac voltages, particularly by the
tap-changing transformers (Fig. 5.30). However, such effects are usually negligible in
short times because of the relative slowness of the considered regulations. (By varying the
transformation ratio, the corresponding value of Lc and that of λ are modified. However,
in the following, this fact will be disregarded.)

The most traditional solution is to achieve, for each converter (and for given
Eo), a static characteristic (V, I ) as shown in Figure 5.35a, in which:

• for intermediate values of voltage: I = constant = Irif (and thus α auto-
matically adapted, for varying V , so to regulate the current to its reference
value Irif);

• for the upper and lower voltage values:
α = constant = αmin, when operating as a rectifier (V > 0);
γ = constant = γrif ≥ γmin, when operating as an inverter (V < 0);

where γ � 180◦ − δ = 180◦ − (α + u) is the so-called “margin angle” of
the inverter (Fig. 5.33b).

For a good operation of the converter, it is convenient that:

• α ≥ αmin > 0 when operating as rectifier (with αmin, e.g., 5◦);
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Figure 5.35. Steady-state behavior: (a) static characteristic for each converter
(typical example, in the presence of control); (b) determination of the operating
point (converter 1: rectifier; converter 2: inverter).

• γ ≥ γmin > 0 when operating as inverter (with γmin, e.g., 10◦ –15◦; correspondingly,
the reference γrif can then be, e.g., 15◦ –20◦).

In Figure 5.35a:

• the piece at α constant has a slope ∂V/∂I = −λ < 0 as a result of Equation [5.5.5];

• the piece at γ constant instead has a positive slope equal to +λ; in fact, from
Equations [5.5.3] and [5.5.4], by eliminating cosα and recalling that δ = α + u,
cos δ = − cos γ , it follows that:

V = −Eo cos γ + λI

Since the operating point is defined by:

V1 = −V2 + RlI

(Fig. 5.34), it becomes possible by a proper choice of the set points, to achieve the
operation at the desired values of current (Ides) and voltages, by keeping I = Ides

even following (moderate) variations of Eo1, Eo2. Refer to Figure 5.35b, where
the operating point (A) is defined by the intersection of the two characteristics
(in the example, converter 1 operates as rectifier).

More precisely:

• The value of current is equal to the larger of I1rif and I2rif, which must
be set at the value Ides. The corresponding converter (converter 1 in the
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figure) operates as the rectifier, thus transmitting power toward the line.
Therefore, representing variables related to the rectifier and the inverter by
the subscripts R, I , respectively, it holds that:

I = IR rif = Ides > II rif

The positive difference (IR rif − II rif) is called the “margin of current” and
it is assumed to be, e.g., 15% of the nominal current.

• For the given I , the voltage V1 (and thus V2, etc.) depends on EoI cos γI ,
and it can be set to the desired value, at a reasonable EoI , through a proper
choice of γI rif.

In other words:

• the current I is determined by the current reference of the rectifier;
• the values of voltages are then determined by the margin angle reference

of the inverter;

and, for the example in Figure 5.35b, it is possible to relate to the operating point
A, the equivalent circuit in Figure 5.36a (note that the equivalent resistance (−λ2)
of the inverter is negative).

To interchange the roles (rectifier and inverter) of the two converters, i.e., to
reverse the direction of the power, it is sufficient to invert the sign of the differ-
ence (I1 rif − I2 rif) between the current references, by transferring the contribution
corresponding to the “margin of current” from one set-point to the other. In prac-
tice, this requires some caution, as the line capacitances must be discharged and
recharged at opposite polarity.

In normal operating conditions, the variations of EoR have, from one steady-state to
another, the effect of modifying αR (to keep the desired current value) within a relatively
narrow range, e.g., 10◦ –20◦. On the contrary, for γI = γI rif, the variations of EoI directly
influence the voltage steady-state of the whole link.

The control of the tap-changing transformers can neutralize such effects by returning EoR

and EoI to their original values. However, this can be done only within given limits and

Figure 5.36. Equivalent circuit at steady-state: (a) around the point A(γ2 = γ2rif)

or A′′(γ2 = γ2 min) (Fig. 5.35b); (b) around the point A′(α1 = α1 min) (Fig. 5.35b).



5.5 DIRECT CURRENT (DC) LINKS 427

in relatively long times. To improve the support of the steady-state voltages, it may be
better to control the inverter by regulating the voltage instead of the “margin angle,”
according to Section 5.5.3 and with the obvious condition γI ≥ γI min. It is possible that
the voltage control may be activated only when the absolute value of the voltage error
becomes larger than a predefined value.

Generally, a short-circuit on one of the two ac networks can cause significant decrements
in EoR or in EoI .

In the former case, the operating point can be changed (in the example of Fig. 5.35b)
from A to A′, where the rectifier is kept at the minimum firing angle, whereas the role of
regulating current (to the value II rif < Ides) is taken by the inverter (see Fig. 5.36b).

In the latter case, a significant voltage drop can occur, which may be limited (but only for
γI ≥ γI min) by the inverter control, according to above. For example, refer to the point
A′′ (Fig. 5.35b), and to the equivalent circuit in Figure 5.36a, with γ2 rif replaced by γ2 min.

As an alternative to the above solution, the rectifier may be used to regu-
late (instead of the current) the transmitted power at a proper point of the link,
such as the power Pm at the middle of the line. Assuming, as per Figure 5.35b,
that converter 1 acts as rectifier (and thus that Pm = VlmI , with Vlm = V1 −
(Rl/2)I ), the piece of its characteristic I = I1 rif = Ides must be substituted by a
piece defined by:

I = I1 rif = Pm des

Vlm
= Pm des

V1 − Rl

2
I

or equivalently:

V1 = Pm des

I
+ Rl

2
I

with the condition that I ∈ [Imin, Imax] (where Imin and Imax have proper val-
ues, possibly variable with voltage). Similar considerations hold for the inverter,
considering the margin of current (see Fig. 5.37). The power regulation may

margin of
current

Figure 5.37. Static characteristics and operating point under power regulation
(converter 1: rectifier; converter 2: inverter).
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terminal 1 terminal 2

thyristor firing
command system

controlling
   system

controlling
   system

  thyristor firing
command system

converter and
  smoothing
    inductor

converter and
  smoothing
    inductor

dc line

ac system ac system

Figure 5.38. Dynamic behavior: overall block diagram.

be used in the context of the primary or secondary f/P control, according to
Section 3.3.1.

5.5.3. Dynamic Behavior

The analysis of the system for any operating condition can be based on
Figure 5.38 (for simplicity, frequency variations in the ac systems are dis-
regarded).

For each block “converter and smoothing inductor,” from Equations [5.5.1]
and [5.5.5] it is evident that, for given Eo and I , the voltage Vl depends in a
linear way not on α, but on cosα. To linearize the dependence of Vl on the output
w of the controlling system, it is convenient that the “thyristor firing command
system” be defined by an equation α = arcos(w/B) or equivalently w = B cosα,
where B is a proper constant.

In principle, such a law can be achieved by comparing the variable w with a
sinusoidal signal with amplitude B, frequency ω, and (for each valve) a proper
phase. For instance, with the notation of Figure 5.33, it may be imposed that
valve 1 is fired at the instant t1 where the signal B cos(ωt − 30◦

) reaches, during
decreasing, the value w (it then holds B cosα = B cos(ωt1 − 30◦

) = w), and so
on. In the more traditional “analog” solutions, for which the reference signals
are derived from the ac network, the amplitude B is proportional to Eo, and this
must be considered, as specified below.

Actually, the subsequent valve firing, and thus the updating of α, does not occur con-
tinuously, but rather on the average of one-sixth of a cycle, i.e., after a time equal to
τ = π/(3ω) (τ = (1/300) sec at 50 Hz). For phenomena that are not varying quickly,
this can be considered by approximating the actual (discontinuous) behavior of α with
that of arcos(w/B), delayed of the quantity τ/2. It then follows that:

α(t) = arccos
w
(
t − τ

2

)
B
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and thus, in terms of transfer functions for small variations:

∆(cosα) ∼= ε
−s τ2
(
∆w

Bo
− σ

∆Eo

Eo
o

)
[5.5.7]

where σ = 0 if B is constant, and σ = cosαo if B is proportional to Eo (steady-state
values are indicated by the superscript “o”).

By linearizing Equations [5.5.1] and [5.5.5] it can be derived, for the generic
block “converter and smoothing inductor”:

∆Vl ∼= cosαo∆Eo + Eo
o∆(cosα) − (λ+ sLs)∆I

from which, eliminating ∆(cosα) by Equation [5.5.7] and omitting the approxi-
mation sign:

∆Vl = Eo
o

Bo
ε

− sτ
2 ∆w + (cosαo − σε

− sτ
2 )∆Eo − (λ + sLs)∆I [5.5.8]

For the outputs P , Q, from Equations [5.5.6] it can be similarly derived:



∆P =
(

2P

Eo

− I cos δ
)o

∆Eo +
[
E2
o

2λ
(cosα − cos δ)

]o
∆(cosα)

+ (Eo cos δ)o∆I

∆Q =
(

2Q

Eo

− I sin δ
)o

∆Eo +
[
E2
o

2λ
(sinα − sin δ)

]o
∆(cosα)

+ (Eo sin δ)o∆I

(recall that the angle δ depends on Eo, α, I , and more precisely it is, as a result of
Equation [5.5.4], cos δ = cosα − 2λI/Eo), from which ∆P , ∆Q can be derived
as functions of ∆w, ∆Eo, ∆I , by eliminating ∆(cosα) using Equation [5.5.7].

Furthermore, among the outputs of the block it is necessary to include the
margin angle γ , as it may act (as well as voltage Vl and current I ) on the
converter control feedbacks. Since γ � 180◦ − δ, it is possible to derive from
Equation [5.5.4]:

cos γ = − cos δ = − cosα + 2λI

Eo

− sin γ o∆γ = −∆(cosα) + 2λ

Eo
o

(
∆I − I o

∆Eo

Eo
o

)

and by eliminating ∆(cosα) (see Equation [5.5.7]):

∆γ = 1

sin γ o

[
ε

− sτ
2
∆w

Bo
+
(

2λIo

Eo
o

− σε
− sτ

2

)
∆Eo

Eo
o

− 2λ

Eo
o

∆I

]
[5.5.9]
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For each of the two blocks called “ac system,” it may be assumed that vr ı ′r
∗ =

P + jQ, where the Park’s vectors ı′r and vr are defined as per Figure 5.30, thus:

(P + jQ)o
∆vr

vor
+ vor∆ı

′
r
∗ = ∆P + j∆Q

and as a result of the first part of Equations [5.5.2] (aside from considering the
possible control of the tap-changing transformer):

∆vr

vor
= ∆Eo

Eo
o

By assuming, for small variations, the following law:

∆ı′r = −(Gr(s) + jBr(s))∆vr + . . .

where the dotted term corresponds to perturbations on the ac system, it is possible
to derive:

∆Eo = −KEP (s)∆P −KEQ (s)∆Q + . . . [5.5.10]

where: 


KEP (s) � Eo
o(P +Gr(s)v

2
r )

o

(G2
r (s) + B2

r (s))v
o4
r − (P 2 +Q2)o

KEQ(s) � Eo
o(Q− Br(s)v

2
r )

o

(G2
r (s) + B2

r (s))v
o4
r − (P 2 +Q2)o

For instance, in the simple case for which the ac system output impedance
is purely inductive, by recalling Section 5.2.2 (with Ωr = ω), it is possible to
write:

∆ı ′r = − 1

(s + jω)L
∆vr + . . .

from which Gr(s) = s/((s2 + ω2)L), Br(s) = −ω/((s2 + ω2)L). Therefore, in
this case, each of the functions KEP (s) and KEQ (s) has two zeros and two poles.

Alternatively, if there is interest in analyzing the effects of the dc link on the ac system,
it is necessary to express, based on the link equations, ∆P and ∆Q as functions of ∆Eo

and the inputs that act on the link itself (set points of the converter controls, possible
disturbances, etc.).

Finally, by considering Equation [5.5.10] and the expressions relating ∆P and
∆Q to ∆w, ∆Eo, ∆I , it is possible to obtain ∆Eo in the form of:

∆Eo = −KEw (s)∆w −KEi (s)∆I + . . . [5.5.11]
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where, by omitting the indication of the argument s:



KEw �

(
E2
o

2λB

)o
[KEP (cosα − cos δ)o +KEQ(sin α − sin δ)o]

ε−sτ/2

D(s)

KEi � Eo
o(KEP cos δo +KEQ sin δo)

1

D(s)

having assumed for brevity that:

D(s) � 1 +KEP

[
2P

Eo

− I cos δ − Eo

2λ
(cosα − cos δ)σε− sτ

2

]o

+KEQ

[
2Q

Eo

− I sin δ − Eo

2λ
(sinα − sin δ)σε− sτ

2

]o

and intending that the dotted term corresponds to perturbations in the ac system.
By eliminating ∆Eo in Equations [5.5.8] and [5.5.9] it can be derived, for the

set of three blocks considered up to now (i.e., for the generic terminal without
control ):

∆Vl = K(s)∆w − Zn(s)∆I +∆N

∆γ = Kγ (s)∆w −Hγ (s)∆I +∆Nγ

}
[5.5.12]

with:

K �
(
Eo

B

)o
ε

− sτ
2 −KEw

(
cosαo − σε

− sτ
2
)

Zn � λ+ sLs +KEi

(
cosαo − σε

− sτ
2
)

Kγ � 1

Eo
o sin γ o

[(
Eo

B

)o
ε

− sτ
2 −KEw

(
2λIo

Eo
o

− σε
− sτ

2

)]

Hγ � 1

Eo
o sin γ o

[
2λ+KEi

(
2λIo

Eo
o

− σε
− sτ

2

)]




[5.5.13]

whereas ∆N , ∆Nγ act as disturbances caused by perturbations in the ac system
(see Fig. 5.39).

Specifically, note that Zn(s) is the equivalent “natural” (i.e., in the absence of control)
impedance (−∂Vl/∂I ). In its expression there are three terms, the first two of which (λ
and sLs), respectively, correspond to the switching and smoothing inductances, whereas
the last accounts for the effects of the ac system.

The complexities caused by the output impedance on the ac side are evident. In
fact, if this impedance were zero, then Gr = Br = ∞, KEP = KEQ = 0, KEw =
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Figure 5.39. Block diagram of each terminal for small variations in the absence
of control.

Kei = 0 and thus, in a much simpler way:

K =
(
Eo

B

)o
ε

− sτ
2

Zn = λ+ sLs

Kγ = 1

(B sin γ )o
ε

− sτ
2

Hγ = 2λ

(Eo sin γ )o




[5.5.13′]

For sufficiently slow phenomena, Equations [5.5.13] can be simplified by
disregarding the pure delay τ/2 (this holds also for Equation [5.5.13′]) and sub-
stituting KEw (s), KEi (s) by their respective static gains KEw (0), KEi (0).

For each terminal of the link, it is necessary to account for the control actions.
By recalling Section 5.5.2, the situations of practical interest are the following;

(1) Rectifier:

• Operation at αR = constant = αR min: see Figure 5.40a.
• Operation under current (or power) regulation: see Figure 5.40b, where
GR(i) = GR(i)(s) is the transfer function of the current regulator. (Under
power regulation IR rif = Pm des/V̂lm , where V̂lm � VlR − (Rl/2)IR is the
estimated value of the voltage at the midpoint of the line. It follows,
by assuming PR rif = Pm des, that ∆IR rif = ∆PR rif/V̂

o
lm − (PR rif/V̂

2
lm)

o∆V̂lm ,
where ∆V̂lm = ∆VlR − (Rl/2)∆IR.)

(2) Inverter:

• Operation under margin angle or voltage regulation: see Figs. 5.41a and
5.41b, where GI(γ ) = GI(γ )(s) and GI(v) = GI(v)(s) are the regulator
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Figure 5.40. Block diagram of the terminal when operating as a rectifier, for
small variations: (a) in the absence of control (αR = constant = αRmin); (b) under
current regulation (without dotted blocks), or under power control.

Figure 5.41. Block diagram of the terminal when operating as an inverter,
for small variations: (a) under margin angle regulation; (b) under voltage
regulation.

transfer functions for the two cases respectively. It is intended that in the
latter case the regulated voltage is, apart from its sign, that on the rectifier
side, i.e., the estimated voltage −V̂lR = VlI − RlII .

• (Occasional) operation under current regulation: the diagram is similar to
that of the rectifier (it is sufficient to substitute the index R by I ), with
II rif smaller than IR rif of a quantity equal to the margin of current. If the
rectifier is under power regulation, its reference IR rif depends not only on
Pm des but also on the voltage. Consequently, the same happens for II rif. It is
worth avoiding, even during transient operation, that the margin of current
drops below the desired value.



434 CHAPTER 5 DYNAMIC BEHAVIOR OF NETWORK ELEMENTS AND LOADS

Under margin angle regulation, the measurements of γI for the subsequent valves are
available, on average, at every one-sixth of a cycle (corresponding to time τ ). To avoid
unacceptable reductions of γI caused by abrupt current increments, it is convenient to
add, for dI/dt > 0, a term proportional to dI/dt to the measure of γI . If variations of Eo

can be considered negligible, the margin angle may be regulated in an open-loop mode.
By recalling that cosα = 2λI/Eo − cos γ , it is necessary to modify wI (which can be
considered proportional to cos αI , with a delay τ/2) for varying current, to maintain γI
to the desired value. Moreover, similarly to above, a term proportional to dI/dt can be
added (when dI/dt > 0) to the measured value of I .

The synthesis of regulators, for different situations, must be performed account-
ing for the equations of the dc line. Therefore, the previous block diagrams must
be integrated with the one that refers to the line. Alternatively, the equations
of the two terminals can be translated into proper equivalent circuits, con-
nected to each other through the equivalent circuit of the line, according to
Figure 5.42, for which:

• ZRn , ZIn are the equivalent natural impedances related, respectively, to the
rectifier and the inverter;

• ∆EI(γ ), ZI(γ ) and ∆EI(v), ZI(v) are the emfs and the equivalent impedances
(for small variations) of the inverter, respectively, under margin angle reg-
ulation and voltage regulation. They are expressed as in the legend of
Figure 5.42.

If the (relatively small) delays of the margin angle regulation are disregarded,
it can be derived more simply, as if GI(γ ) = ∞:

∆EI(γ ) = KI

KIγ

(∆γI rif −∆NIγ ) +∆NI

ZI(γ ) = ZIn − KIHIγ

KIγ




[5.5.14]

Analogously, if delays in voltage regulation are disregarded, it may be assumed
that GI(v) = ∞ and thus ∆EI(v) = −∆VR rif, ZI(v) = −Rl .

Moreover, Equations [5.5.14] can be further simplified if the output impedance
of the ac system is negligible. In such a case, recalling Equations [5.5.13′] it
follows:

∆EI(γ ) = (EoI sin γI )o(∆γI rif −∆NIγ )+∆NI

ZI(γ ) = ZIn − 2λI = −λI + sLsI

}
[5.5.14′]

(note the negative term −λI , which is the equivalent resistance of the inverter
under the operation at Eo, γ constant; see Fig. 5.36a).
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admittance

dc line

dc line

Figure 5.42. Equivalent circuit of the whole link for small variations with:

(a) rectifier under current regulation and inverter under margin angle regula-
tion (see point A or A′′ in Fig. 5.35b), with:

∆EI(γ ) = KIGI(γ )

1 +KIγGI(γ )

(∆γI rif −∆NIγ )+∆NI,

ZI (γ ) = ZIn − KIGI(γ )HIγ

1 +KIγGI(γ )

or rectifier under current regulation, and inverter under voltage regulation,
provided ∆EI(γ ), ZI(γ ) are respectively replaced by:

∆EI(v) = −KIGI(v)∆VR rif +∆NI

1 +KIGI(v)

, ZI (v) = ZIn −KIGI(v)Rl

1 +KIGI(v)

(b) rectifier at minimum firing angle, and inverter under current regulation
(see point A′ in Fig. 5.35b).

.

Specifically, if:

• the rectifier is under current regulation,
• the inverter is under margin angle regulation

(see Fig. 5.42a and points A or A′′ in Fig. 5.35b), the total transfer function
of the current regulation loop is given by GR(i) KRYeq, where Yeq = Yeq(s) �
∂IR/∂(KRwR) is the equivalent admittance reported in Figure 5.42a.
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By accepting Equations [5.5.13′] and [5.5.14′], and representing the line by
the circuit in Figure 5.31b, the function Yeq(s) may be written:

Yeq(s) = Yeq(0)

1 + 2ζ ′ s
ν′
o

+ s2

ν′2
o

(1 + sT )

(
1 + 2ζ

s

νo
+ s2

ν2
o

)

with two zeros and three poles. More precisely, considering the usual values
assumed by parameters:

• the zeros are complex conjugate, with a critical frequency ν′
o (“antire-

sonance” frequency) within 100–300 rad/sec, and damping factor ζ ′ (posi-
tive or negative) of small absolute value;

• the real pole −1/T lies instead within a range of much lower frequencies,
e.g., 3–10 rad/sec (corresponding to T ∼= 0.1–0.3 sec);

• finally, the remaining two poles are complex conjugate, with a critical fre-
quency νo (“resonance” frequency) slightly higher than ν′

o and again with
a damping factor ζ of small absolute value.

For the case under examination, having set for brevity:



R1 � λR + Rl

2

L1 � LsR + Ll

2



R2 � Rl

2
− λI

L2 � Ll

2
+ LsI

and furthermore:

Z1 � ZRn + Rl + sLl

2
= R1 + sL1, Z2 � Rl + sLl

2
+ ZIn = R2 + sL2

it is trivial to derive:

Yeq(s) = 1 + sClZ2

Z1 + Z2 + sClZ1Z2

= 1 + sR2Cl + s2L2Cl

R1 + R2 + s(L1 + L2 + R1R2Cl)+ s2(R1L2 + R2L1)Cl + s3L1L2Cl

More particularly, it can then be derived Yeq(0) = 1/(R1 + R2), and furthermore that:

ν ′
o = 1√

L2Cl

, ζ ′ = R2

2

√
Cl

L2
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so that ζ ′ > 0 if and only if:
R2 > 0 [5.5.15]

which is equivalent to saying that λI < Rl/2.

Regarding the poles of Yeq(s), it can be first stated, by applying the Routh-Hurwitz
criterion, that they all have negative real part (so that the system is asymptotically stable
for GR(i) = 0, i.e., in the absence of current regulation) if and only if, simultaneously:



R1L2 + R2L1 > 0

R1L
2
2 + R2L

2
1 + R1R2Cl(R1L2 + R2L1) > 0

R1 + R2 > 0

The last term in the left-hand side of the second condition is usually negligible (because
of the relatively small value of Cl). It is then easy to verify that the first condition is no
longer necessary, so that in practice, the following conditions hold:

R1 + R2 > 0

R1L
2
2 + R2L

2
1 > 0

}
[5.5.16]

or even only the condition R1 + R2 > 0, if LsR = LsI and thus L1 = L2.

Finally, by similar approximations it is possible to derive:




T ∼= L1 + L2

R1 + R2

νo ∼=
√
L1 + L2

L1L2Cl

ζ ∼=
√

Cl

L1L2(L1 + L2)

R1L
2
2 + R2L

2
1

2(L1 + L2)

to which conditions [5.5.16] correspond, to have T , ζ both positive. Specifically, if LsR

= LsI , it holds:

T ∼= 2L1

R1 + R2
, νo ∼=

√
2

L1Cl

= √
2ν ′

o ζ ∼=
√
Cl

L1

R1 + R2

4
√

2
∼= 1

2νoT

If the full model of the line were considered, infinite resonances and antiresonances at
higher frequencies would result. Moreover, for frequencies not much lower than 6ω (the
frequency at which the valve firings occur on average), it would be necessary to review
also the model of converters, filters, etc.

The synthesis of GR(i)(s) is simpler if conditions [5.5.15] and [5.5.16] are
satisfied. However, in many practical cases this does not happen for condition
[5.5.15], and the zeros of Yeq(s) imply further undesirable phase delays.
Moreover, the pure delay term ε−sτ/2 should be considered in KR(s). As a result
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of stability requirements, the above practically limits the cutoff frequency of the
loop, e.g., within 20–30 rad/sec. By doing so, modeling the higher frequencies
may become less relevant.

Assuming a proportional-integral regulator, i.e.,

GR(i)(s) = Ki

1 + sT ′
i

s

the integral gain Ki is chosen so as to obtain an acceptable cutoff frequency,
whereas 1/T ′

i can be, e.g., 20–50 sec−1. However, if the integral effect is omitted,
thus accepting a (small) nonzero steady-state error (∆IR rif −∆IR), it is possible
to assume a function GR(i)(s) = KiTi(1 + sT ′

i )/(1 + sTi), with Ti � T ′
i (e.g.,

1/Ti = 0.2–0.3 sec−1).
The treatment can be extended to other situations. Specifically, the case of

Figure 5.42b (for which the rectifier operates at minimum firing angle, and the
inverter is under current regulation; see point A′ in Fig. 5.35b) is apparently
similar to the cases above. On the contrary, this situation is actually much less
critical, since the converter that does not regulate the current (i.e., in this case,
the rectifier) has a positive equivalent resistance (λR), instead of a negative one
(−λI ) as in the previous case.

If the ac systems have output impedances that cannot be neglected, it is necessary to adopt
Equations [5.5.13]. The possible use of the low-frequency approximations (ε−sτ/2 ∼= 1,
KEw (s) ∼= KEw (0), KEi (s) ∼= KEi (0)) requires some cautions. For instance, such simplifi-
cations appear difficult to justify in the frequency range of interest for the line resonance.

5.6. SINGLE AND COMPOSITE LOADS

5.6.1. Generalities

A dynamic model overview for types of loads should first cover a wide and
heterogeneous number of cases, much larger than the limits of the present work.
It should make use of updated and not easily available information. On the
other hand, a detailed representation of loads can be justified only for particular
problems concerning, e.g., a limited number of loads supplied by a prevailing
(schematically: infinite) power network and undergoing given perturbations. Vice
versa, for problems which involve the whole system or a relevant part of it, the
modeling simplifications can be not only less critical, but even reasonable, if
uncertainty of actual load data (and the set itself) is considered.

Therefore, in the following, some illustrative information concerning “sin-
gle” and “composite” loads (i.e., sets of loads, as seen from the nodes of the
distribution or transmission network) will be reported. Also, for the sake of
homogeneity (and of formal comparison) to what has already been presented
about the synchronous machine and transformers, some deeper detail will be
devoted to the asynchronous machine in Section 5.6.2.
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As a single load we may intend a single user, with possible auxiliary equip-
ment adopted to improve its behavior (e.g., voltage stabilizers, etc.) or for protec-
tive reasons (e.g., devices for automatic shedding on low-voltage or overcurrent
conditions, etc.).

Single loads may be broadly classified into “static” and “rotating” loads.
According to Section 3.1.3:

• electrical loads (lighting, heaters, arc furnaces, TV sets, etc.), as well as elec-
trochemical loads and dc electromechanical loads (each including rectifier,
dc motor, and mechanical load), can be considered “static” loads;

• ac electromechanical loads (each including asynchronous or, more rarely
synchronous motor, and mechanical load), that depend on network fre-
quency through their inertias, will be considered as “rotating” loads.

Actually, a generic load apparatus can include components of both the above-
mentioned categories.

The static characteristics relating the absorbed active (P ) and reactive (Q)
powers to the voltage amplitude v and to the frequency ω, can be generally
approximated, apart from possible additional constant terms, by the follow-
ing functions:

P ∝ vapvωapω

Q ∝ vaqvωaqω

}
[5.6.1]

at least in a proper neighborhood around the nominal operating point (e.g., in “per
unit,” |∆v| < 20%, |∆ω| < 5%). On the other hand, the operation at abnormal
values of v and ω can be considered unlikely and not allowed by the protective
devices through automatic shedding of the load from the network.

If the load could be described, at any assigned ω, as a constant admittance,
in Equations [5.6.1] it would evidently be that apv = aqv = 2. However, such
a situation is true only in few cases. The simplest example is the case of an
electrical heater (stoves, boilers, irons, etc.), for which it can be assumed that
P ∝ v2, Q = 0 and consequently apv = 2, as it is for a simple constant con-
ductance. Incandescent lamps can be considered as purely resistive, with Q = 0,
but the increase of the resistance with the temperature (i.e., with voltage) leads
to a somewhat smaller value of apv , approximately 1.5–1.6. For the other load
types it is necessary, more generally, to consider Equations [5.6.1] with proper
and relatively diverse values of apv , aqv , apω, aqω. For instance, the following
variation ranges have been identified for “static” loads:




apv ∈ (0.9, 2.4)

apω ∈ (−0.55,+1.5)

aqv ∈ (0.9, 4.3)

aqω ∈ (−2.7,+1.4)
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whereas the values corresponding to “rotating” loads can vary significantly from
case to case, according to motor parameters and to the static characteristic that
relates the resistant torque (or mechanical power) to the speed Ωc of the mechan-
ical load (e.g., a resistant power proportional to Ωα

c , with α usually 1–3; see
Section 3.1.3).

At any assigned ω, with P = P(v), Q = Q(v) (see Equations [5.6.1]), and assuming a
three-phase and physically symmetrical load, it is possible to derive (in terms of Park’s
vectors, with Ωr = ω and omitting the subscript “r”) ı = (P − jQ)/v∗ and thus the
equivalent admittance:

Y eq � ı

v
= P(v)− jQ(v)

v2

Apart from the case for which P(v) and Q(v) are proportional to v2 (and thus apv = aqv =
2), such admittance depends on v, so that the load is called “nonlinear.” For instance, a
load is nonlinear if, at steady-state, and at assigned ω and any v, the following quantities
are constant:

• the active and reactive powers (as well as the power factor) and thus apv = aqv = 0;

• or alternatively, the current (in amplitude) and the power factor, and thus apv =
aqv = 1.

Such a definition of nonlinearity only refers to the relationship between vectors ı and
v. As a particular consequence, for any generic steady-state at v constant, it follows
that ı = Y eqv = constant, so that not only phase voltages but also phase currents are
sinusoidal and of positive sequence, without any current harmonics despite nonlinearity.
Similar considerations apply for the synchronous machine in the presence of magnetic
saturation, according to the model described in Section 4.3.3 and in Figure 4.16.

The dynamic characteristics of the different loads can involve the transient
behavior of inductive and/or capacitive elements (see Section 5.2.1), and of asyn-
chronous or synchronous motors, in addition to what defines the final parts of
loads (chemical and mechanical parts, etc., including possible dc motors), accord-
ing to very specific models. Herein we will limit ourselves to observe that, for
phenomena not varying too fast, Equations [5.6.1] can appear applicable for
“static” loads. However, for “rotating” loads, a dynamic dependence of P , Q
on v, ω must be considered, at least for the most important electromagnetic tran-
sients in motors and the mechanical transients related to inertias. (In a dynamic
operating condition, the meaning itself of ω requires further specifications; see
also Section 5.6.2.)

For instance, in the case of a load driven by an asynchronous motor, if the
electromagnetic transients are disregarded it is possible to derive, through consid-
erations similar to those developed in Section 3.1.3, transfer functions such as:

• (∂P /∂v)(s), (∂P /∂ω)(s), (∂Q/∂ω)(s) having one zero (and one pole,
which corresponds however to a relatively high critical frequency; recall
Equations [3.1.15] and [3.1.16]);
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• (∂Q/∂v)(s) almost constant (or alternatively, having one zero and the same
pole as above, both corresponding to relatively high critical frequencies).

A “composite” load, defined at a node of the distribution or transmission
network, can include many users, besides condensers for power factor correction,
lines, transformers (step-down transformers, from high to low voltages), voltage
regulation, and protection systems. The presence of these devices can significantly
modify the characteristics of the composite load with respect to individual loads
contributing to it.

For static characteristics, it is possible to refer, in terms of Park’s vectors
and under the hypothesis of physical symmetry, to the equivalent circuit in
Figure 5.43a and to the block diagram in Figure 5.43b, with an obvious meaning
of symbols (the “generic user” block can include more than one load and other
devices, connected to the node at voltage vi).

It is evident that, in the ideal case where the single vi’s can be considered
assigned because of voltage regulations:

• powers Pi , Qi can only vary with frequency ω;
• the dependence of powers P , Q (absorbed by the composite load) on v is

determined by the parameters of the “interposed network”;
• the dependence of P , Q on ω is determined by the above and by the

relationship between Pi , Qi , and ω;

whereas no trace is kept of the dependence of Pi , Qi on their respective vi , as
caused by the characteristics of individual loads.

If the generic vk is the secondary voltage of a tap-changing transformer and the regulation
of vk is done by acting on the transformer ratio, the dependence of P and Q on ω (with all
the vi’s assigned) is influenced by the relationship between Pk , Qk and ω, as noted above.

  interposed
    network
(frequency w)

generic
   user

generic
   user

interposed
  network

 generic
 voltage
regulator

Figure 5.43. Composite load: (a) general equivalent circuit; (b) block diagram.
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Instead, if the regulation of vk is performed by means of a compensator, by acting on
the reactive power that it supplies, it is easy to verify that (with all the vi’s assigned) the
powers P and Q are not influenced by Qk , so that no trace remains of the dependence of
Qk on ω. In other words, the characteristics of the k-th load influence the characteristics
of the composite load only for the dependence of Pk on ω.

With the assumption of ideal voltage regulations, a further simplification can
be accepted if losses in the “interposed network” are negligible. In such a case,
the active power P =∑i Pi can be practically considered independent of v.

Instead, in the opposite case for which there is no voltage regulation, it can
be expected that the effect of the “interposed network” will be to reduce the
nonlinearities at any given ω, thus making the dependence of P , Q on v closer
to the quadratic-type relationship that corresponds to a constant admittance.

In general, it seems convenient to derive the model of composite loads based
on specific evaluations and experimental measurements.

Indicatively, by assuming Equations [5.6.1] with reference to existing compo-
site loads, it has been found that:




apv ∈ (0.2, 1.8)

apω ∈ (0.2, 1.5)

aqv ∈ (0.5, 3.0)

aqω ∈ (−0.1,+0.5)

where the smaller values of apv, e.g., apv ∈ (0.2, 1), and the larger of apω cor-
respond to industrial loads, predominantly of the rotating type.

The matter becomes more complicated for the dynamic characteristics of com-
posite loads. Even if the faster phenomena are disregarded, it should be necessary
to consider the (electromagnetic and mechanical) transient behavior of rotating
loads, as well as voltage regulation. It becomes particularly important to group,
into properly simplified dynamic equivalents, asynchronous motor loads (see
Section 5.6.2), whose number can be very large. If only predominantly mechan-
ical phenomena are of interest, as a first approximation (regarding the transfer
functions (∂P/∂v)(s), (∂P/∂ω)(s) etc.) it is possible to reach conclusions sim-
ilar to those reported above for single loads, with the advice to consider the
tap-changers’ control which, because of its relative slowness, can interact with
the mechanical transients in a nonnegligible way.

5.6.2. The Asynchronous Machine

With some usually acceptable approximations, consider an asynchronous machine
including a three-phase symmetrical winding on the stator (indices a, b, c) and
a three-phase symmetrical winding on the rotor (indices A, B, C), as indicated,
for a bipolar machine, in the diagram of Figure 5.44a. For each winding, phases
are wye-connected with isolated neutral (Fig. 5.44b) so that homopolar currents
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axis A

axis a

(stator) (rotor)

Figure 5.44. Schematic representation of the bipolar asynchronous machine with
three stator circuits (subscripts a, b, c) and three rotor circuits (subscripts A, B, C).

are zero. Under these conditions, the d and q components will be considered
(without considering the homopolar ones) when applying Park’s transformation.

With respect to the electrical part of the machine, the following equations
can be assumed.

(1) For stator circuits, by using the loads’ convention (the most adequate for
motor operation): 



va − vn = Ria + dψa

dt

vb − vn = Rib + dψb

dt

vc − vn = Ric + dψc

dt

intending that (va − vn), ia , ψa are, respectively, the voltage, current, and
flux of phase a, and similarly for phases b and c, whereas vn is the neutral
voltage and R is the phase resistance. By applying Park’s transformation
(Appendix 2) with an arbitrary angular reference θr , it can be derived,
with Ωr � dθr/dt :

vr = Rır + (p + jΩr)ψr [5.6.2]

(2) For rotor circuits, by using the generators’ convention:




vA − vN = −RRiA + dψA

dt

vB − vN = −RRiB + dψB

dt

vC − vN = −RRiC + dψC

dt
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intending that (vA − vN ), iA, ψA are, respectively, the voltage, current,
and flux of phase A, and similarly for phases B and C, whereas vN is
the neutral voltage and RR is the phase resistance. Indicating the leading
electrical angle of the first rotor phase axis (A) with respect to the first
stator phase axis (a) by θas (Fig. 5.44a) (so that Ωas � dθas/dt is equal to
the electrical speed of the rotor), and by applying Park’s transformation
but with an angular reference (θr − θas ), it is possible to derive:

vRr = −RRıRr + (p + j (Ωr −Ωas))ψRr [5.6.3]

(the subscript “R” stands for rotor variables).

For the magnetic part (which will be assumed as linear and conservative,
excluding saturation, hysteresis, etc.), it is possible to write the following
equations:



ψa = Laa ia + Lab ib + Lacic − LaAiA − LaB iB − LaC iC

ψb = . . .

ψc = . . .



ψA = LAa ia + LAb ib + LAcic − LAAiA − LAB iB − LAC iC

ψB = . . .

ψC = . . .

where the expressions of the dotted terms can be found in a trivial way by
“rotating” the indices a, b, c and A, B, C.

For the inductances appearing in these equations, it can be assumed (with a
usually acceptable approximation, particularly under the assumption of isotropy):

{
Laa = Lbb = Lcc = constant

Lab = Lba = Lbc = Lcb = Lca = Lac = constant

{
LAA = LBB = LCC = constant

LAB = LBA = LBC = LCB = LCA = LAC = constant

whereas for the remaining inductances (which define the mutual inductances
between stator and rotor windings, and consequently are surely varying with θas )
it is possible to assume:



LaA = LAa = LbB = LBb = LcC = LCc = Mmax cos θas

LbA = LAb = LcB = LBc = LaC = LCa = Mmax cos(θas − 120◦
)

LcA = LAc = LaB = LBa = LbC = LCb = Mmax cos(θas − 240◦
)

with Mmax constant.
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By applying Park’s transformation as already described (with an arbitrary
reference θr for stator variables, and (θr − θas ) for rotor variables), and by setting:

LS � Laa − Lab

LR � LAA − LAB

Lm � 3
2Mmax

it then follows:
ψr = LSır − LmıRr

ψRr = −LRıRr + Lmır

}
[5.6.4]

From Equations [5.6.2], [5.6.3], and [5.6.4] it is possible to derive, whatever the choice
of θr , any one of the equivalent circuits reported in Figure 5.45. In normal operation it
must be intended that the rotor winding is short-circuited, i.e., vRr = 0.

Note that:

• for θr = θas (and thus Ωr = Ωas ) and vRr = 0, there is a formal analogy — apart
from the interchange between the loads’ sign convention and the generators’
one — between the circuits in Figure 5.45a and the equivalent circuits of the
synchronous machine with damper windings (Fig. 4.8), under the hypothesis of
isotropy and not considering the field circuit;

• for θas = constant (and thus Ωas = 0), there is a formal analogy between the circuit
in Figure 5.45b and the equivalent circuit of the two-winding transformer (Fig. 5.5b).

If the rotor is of the “squirrel-cage” type, it is possible to obtain a better approximation
by considering two rotor windings instead of one (each equivalent circuit includes a
further rotor branch, similar to that in Figure 5.45). Furthermore, to account for magnetic
saturation, the equivalent circuits may be modified similarly to the synchronous machine
and the transformer.

The circuit of Figure 5.45c is formally interesting, because it is a generalization of the
well-known steady-state equivalent circuit, reported (for vRr = 0) in Figure 5.46a.

Finally, for the mechanical part, equations similar to those in Section 4.1.2
for the synchronous machine can be adopted. More precisely, it is possible to
derive, for any θr :

Ce = Np〈jψr, ır〉 [5.6.5]

where Ce is the (“electromagnetic”) generated torque, and Np the number of pole
pairs. It is easy to verify that the generated mechanical power Pe = CeΩas/Np

is equal to the total electric power absorbed by the voltage generators reported in
Figure 5.45a or by that of Figure 5.45b(4). In fact, as a result of Equations [5.6.4],

(4) In the equivalent circuit of Figure 5.45c there are no voltage generators, but the operational
impedance (p + jΩr)RR/(p + j (Ωr −Ωas )) varies with Ωas , as well as the voltage (p + jΩr)vRr/

(p + j (Ωr −Ωas )).
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Figure 5.45. Equivalent circuits of the asynchronous machine (electrical and
magnetic parts) in the absence of magnetic saturation.

it follows that: 〈
jψr, ır

〉 = −Lm 〈jıRr , ır〉 = 〈jψRr , ıRr
〉

and thus:

〈
jΩrψr, ır

〉+ 〈j (Ωas −Ωr)ψRr , ıRr
〉 = 〈jΩasψRr , ıRr

〉

= Ωas
〈
jψr, ır

〉 = Ωas
Ce

Np

= Pe

As to active power flows in the machine:

P − Ri2
r = PS = Re

(
dψr

dt
ı∗r

)
+ Ωr

Ωas
Pe
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(where (Ωr/Ωas)Pe = CeΩr/Np) and furthermore, for vRr = 0:

Re

(
dψRr

dt
ı∗Rr

)
+ Ωr

Ωas
Pe = PR = Pe + RRi

2
Rr

where (Fig. 5.45b,c) P is the active power entering through the stator terminals,
and PS , PR are the active powers flowing through the pairs of terminals (S1, S2)
and (R1, R2), respectively (the difference (PS − PR) is the active power absorbed
by the magnetic part of the machine).(5)

By (steady-state) “equilibrium” operation of the asynchronous machine, we
refer to the operation in which:

• the rotor winding is short-circuited, i.e.,

vRr = 0

(if instead, each rotor phase were connected to an external impedance ZRe ,
it would be sufficient to formally substitute RR by RR + ZRe);

• stator currents are sinusoidal and of positive sequence, at frequency ω, i.e.,




ia = √
2I(F ) cos(ωt + αI )

ib = √
2I(F ) cos(ωt + αI − 120◦

)

ic = √
2I(F ) cos(ωt + αI − 240◦

)

where I(F ), αI are constant (more specifically, I(F ) is the rms value of
phase-currents);

• electrical speed Ωas is constant but different from ω, i.e.,

Ωas = (1 − σ ′)ω

where σ ′ � (ω −Ωas)/ω (constant) is the “relative slip.”

By assuming Ωr = ω, i.e., θr = ∫ Ωrdt = ωt + θro (reference of Park’s trans-
formation for stator variables), it follows that:

ır = √
3I(F )ε

j (αI−θro) = constant

so that the equivalent circuit is under static operation, i.e., at constant voltages,
currents, and fluxes. Therefore, it can be determined that stator voltages and

(5) In Section 3.1.3, a partially different notation from the present one was adopted (more particularly,
Pcj , Pmcj , Ωcj instead of P , Pe , Ωas ).
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fluxes (as well as currents) are sinusoidal of the positive sequence at frequency
ω, whereas rotor currents, voltages, and fluxes are sinusoidal of the positive
sequence at the “slip” frequency (equal to the slip ω −Ωas = σ ′ω).

More precisely, from Equations [5.6.2] and [5.6.3] with p = 0, it follows that:

{
vr = Rır + jωψr

ıRr = jσ ′ωψRr/RR

whereas Equations [5.6.4], which allow one to derive ψr and ψRr , can be rewrit-
ten as:

ψr − (LS − Lm)ır = Lm(ır − ıRr ) = ψRr + (LR − Lm)ıRr

Such equations correspond to the equivalent circuit in Figure 5.46a and to the
vector diagram in Figure 5.46b.

If ω, Ωas (or equivalently σ ′) and ψr are assumed as assigned, from
Equations [5.6.3] and [5.6.4] it is possible to derive:

total resistance

Figure 5.46. Asynchronous machine at steady-state: (a) equivalent circuit;
(b) vector diagram.
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ψRr = LmRR

LS(RR + jωσ ′L′
R)
ψr

ıRr = jωσ ′Lm

LS(RR + jωσ ′L′
R)
ψr

ır = RR + jωσ ′LR

LS(RR + jωσ ′L′
R)
ψr




[5.6.6]

where L′
R � LR − L2

m/LS is the inductance seen from terminals (R1, R2) when
(S1, S2) are short-circuited (see Figs. 5.45 and 5.46a). Furthermore, it follows that:

PS = PR = ωCe

Np

= (ωψrLm/LS)
2(RR/σ

′)
(RR/σ ′)2 + (ωL′

R)
2

[5.6.7]

from which Pe can be derived (by multiplying for Ωas/ω), whereas active and
reactive powers entering through stator terminals are:



P = PS + Ri2

r

Q = (ωψr)
2

(
1

ωLS

+ (Lm/LS)
2ωL′

R

(RR/σ ′)2 + (ωL′
R)

2

)
= ωψ2

r

LS

+ ωL′
Rσ

′

RR

PS

Equation [5.6.2] then gives vr = Rır + jωψr , and it allows the evaluation of
ψr , etc. starting from the voltage vr , when vr is assigned instead of ψr .

Finally, the previous equations presume, as Ωas is constant, the equality
between the generated torque (which is considered as driving, with reference
to the case of the asynchronous motor) and the resistant torque, which generally
depends on Ωas . Such a condition allows the determination of Ωas (or of σ ′),
etc. starting from ω and ψr (or vr ).

From Equation [5.6.7] it is possible to derive, for assigned ω and ψr , a characteristic (Ce,
Ωas ) as indicated in Figure 5.47a.

Regarding the dependence of P and Q on ω and ψr , in practice, it is often possible to
assume, at least as a first approximation, Ri2

r � PS, (ωL
′
R)

2 � (RR/σ
′)2 and thus:




P ∼= PS = ωCe

Np

∼= σ ′

RR

(
ωψr

Lm

LS

)2

Q ∼= ω

(
ψ2
r

LS

+ L′
R

(
Ce

Np

)2 (
LS

ψrLm

)2
)

where Ce is equal to the resistant torque and thus depends, generally, on Ωas = (1 − σ ′)ω.
In the simple case when Ce can be considered constant, it can be concluded that, with
the above-mentioned approximations:
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constant

constant

Figure 5.47. Static characteristics of the asynchronous machine: (a) dependence
of the torque on speed, for an assigned amplitude of the stator flux and at an
assigned frequency; (b) dependence of active and reactive powers on the ampli-
tude of the stator flux and on the frequency, for an assigned torque (see text).

• both powers P and Q are proportional to ω;

• only Q depends on ψr , and it is the sum of two terms that are respectively propor-
tional to ψ2

r and to 1/ψ2
r ;

according to Figure 5.47b.

The dynamic behavior for small variations, around a generic operating point
indicated by the superscript “o,” can be analyzed in transfer functions by first
linearizing Equations [5.6.3] and [5.6.4], with Ωr = ωo and vRr = 0 (note the
convenience of assuming Ωr = constant = ωo). By eliminating ∆ψRr and ∆ıRr ,
it can be derived:

∆ır = A(s)∆ψr + B(s)∆Ωas [5.6.8]

having posed for brevity:




A(s) � 1 + sT ′
o + jωoσ ′oT ′

o

LS(1 + sT ′ + jωoσ ′oT ′)

B(s) � −jLmψ
o

Rr

RRLS(1 + sT ′ + jωoσ ′oT ′)

from which, expressing ψ
o

Rr by the first of Equations [5.6.6], it also follows that:

B(s) = −j A(s) − A(0)

s
ψ
o

r

where T ′ � L′
R/RR and T ′

o � LR/RR are, respectively, the so-called “short-
circuit (transient)” and “open-circuit (transient)” time constants. Recall the
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similar definitions for the synchronous machine; with reference to Figure 5.45,
the specifications “short-circuit” and “open-circuit” refer to terminals (S1, S2).
For similar reasons, the stator inductance LS is then called “synchronous” or
“open-circuit” (or “at zero slip”), whereas L′

S � LS − L2
m/LR = LST

′/T ′
o is the

“transient” or “short-circuit” inductance.
It can be derived:




∆PS + j∆Q = (s + jωo)∆ψrı
o∗
r + jωoψ

o

r∆ı
∗
r

∆P = ∆PS + 2RRe(ıor∆ı
∗
r )

∆(Ce/Np) = − Im(∆ψrı
o∗
r + ψ

o

r∆ı
∗
r )

and by applying Equation [5.6.8] it is possible to determine the dynamic depen-
dence of ∆PS , ∆P , ∆Q, ∆Ce on ∆ψr and ∆Ωas . Specifically, by observing
that (as a result of the third of Equations [5.6.6]) ıor = A(0)ψ

o

r , it follows that:

∆

(
Ce

Np

)
= Im(A(s) + A(0))ψo

r ∆ψr + Re(A(s) − A(0))ψo2
r ∆ 
 ψr

+ Im(ψ
o∗
r B(s))∆Ωas = Im(A(s) + A(0))ψo

r ∆ψr

+ Re

(
A(s) −A(0)

s

)
ψo2
r ∆(ωψ −Ωas) [5.6.9]

where ωψ � ωo + d
 ψr/dt can be interpreted as the frequency associated with
the stator flux (i.e., with the vector ψr ), whereas Ωas � dθas/dt is the electric
speed of the rotor.

This last equation defines the transfer functions that relate ∆(Ce/Np) to ∆ψr ,
∆ωψ , ∆Ωas , or, more precisely, to the variation ∆ψr and to the slip variation
∆(ωψ −Ωas ). Similarly, with inputs ∆ψr , ∆ωψ , ∆Ωas , it is possible to derive
the transfer functions relative to other output variables.

One can immediately determine that the poles of such transfer functions are
the poles of Re(A(s)) and Im(A(s)), and thus satisfy the equation:

0 = (1 + sT ′)2 + (ωoσ ′oT ′)2

from which s = −1/T ′ ± ̃ωoσ ′o. Therefore, there are two complex conjugate
poles, that can be written in the usual form:

s =
(
−ζ ± ̃

√
1 − ζ 2

)
νo [5.6.10]

with a “resonance frequency”:

νo =
√(

1

T ′

)2

+ (ωoσ ′o)2 [5.6.11]
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and a “damping factor”:

ζ = 1√
1 + (ωoσ ′oT ′)2

[5.6.12]

In conclusion, by using such a notation and recalling the expression of A(s),
from Equation [5.6.9] it is possible to derive ∆(Ce/Np) = Gψ(s)∆ψr +Gσ(s)

∆(ωψ −Ωas), with:

Gψ(s) � ∂(Ce/Np)

∂ψr

(s) = 2ζ 2(T ′
o − T ′)

ωoσ ′oψo
r

LS

1 + 2ζ ′ s
ν′
o

+ s2

ν′2
o

1 + 2ζ
s

νo
+ s2

ν2
o

Gσ (s) � ∂(Ce/Np)

∂(ωψ −Ωas)
(s) = (2ζ 2 − 1)ζ 2(T ′

o − T ′)
ψo2
r

LS

1 + s
ζ 2T ′

2ζ 2 − 1

1 + 2ζ
s

νo
+ s2

ν2
o




[5.6.13]

and moreover:

ν′
o = √

2νo, ζ ′ = ζ√
2

Note that the static gains Gψ(0) and Gσ(0) are equal, respectively, to the partial
derivatives of Ce/NP in respect to ψr and ωσ ′, which can be determined from
Equation [5.6.7].

For many practical cases, it can be assumed as a first approximation (as
already stated), that (ωoσ ′oT ′)2 � 1 and thus νo ∼= 1/T ′, ζ ∼= 1, ν′

o
∼= √

2/T ′,
ζ ′ ∼= 1/

√
2. Through the second of Equations [5.6.13] it can be specifically

derived:

Gσ (s) ∼= (T ′
o − T ′)

ψo2
r

LS

1

1 + sT ′

As a result of Equation [5.6.2], the variations ∆ψr and ∆ır are related to ∆vr by:

∆vr = R∆ır + (s + jωo)∆ψr [5.6.14]

If ∆vr and ∆Ωas are considered as the inputs (instead of ∆ψr and ∆Ωas ), this equation
allows one to derive (from Equation [5.6.8]):

∆ψr = ∆vr − RB(s)∆Ωas

s + jωo + RA(s)
[5.6.15]
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and thus all the transfer functions that relate ∆ır , ∆(Ce/NP ) etc. to ∆vr and ∆Ωas .

These new transfer functions have four poles which, as a result of the expressions of A(s)
and B(s), are the solutions of:

0 =
[
s(1 + sT ′)+ R

LS

(1 + sT ′
o)− ωo2σ ′oT ′

]2

+ ωo2

[
1 + s(1 + σ ′o)T ′ + R

LS

σ ′oT ′
o

]2

As a first approximation, by neglecting the stator resistance R, Equation [5.6.15]
becomes more simply ∆ψr

∼= ∆vr/(s + jωo) (whereas ∂ır/∂vr ∼= (∂ır/∂ψr)/(s + jωo),
etc.), and the four poles are given by the Equation [5.6.10] and by the solutions (s =
±̃ωo) of equation 0 = s2 + ωo2. Specifically, with R = 0, it follows that:

∆ψr = ωo∆vr − vor ∆ωv

s2 + ωo2

∆ωψ =
ωo

(
s2∆vr

vor
+ ωo∆ωv

)

s2 + ωo2




[5.6.16]

where ωv � ωo + d 
 vr/dt is the frequency associated with the stator voltage. Therefore,
contrary to ∆ωψ , the transient effects of ∆ωv on ∆(Ce/Np) cannot be added to those
of (−∆Ωas ). This means that, for transient operation, it is not correct to assume the slip
variation ∆(ωv −Ωas ) as input.

Finally, it is necessary to add to the previous equations the equation of the
whole mechanical part, including that associated with the machine.

For an asynchronous machine operating as a motor, assuming that a variation
∆Ωas/Np of the mechanical speed causes a variation Kc∆Ωas/Np of the resistant
torque, and indicating by J the total moment of inertia, it is possible to write:

∆

(
Ce

Np

)
= (K ′

c + sJ ′)∆Ωas

with K ′
c � Kc/N

2
p, J ′ � J/N2

p. By also considering Equations [5.6.13] (and
[5.6.16]), we can then derive the block diagram in Figure 5.48 and, specifically,

Figure 5.48. Block diagram of the asynchronous machine and the mechanical
system connected to it.
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the equation:

∆Ωas = Gψ(s)∆ψr +Gσ (s)∆ωψ

Gσ (s) +K ′
c + sJ ′

which expresses the dynamic dependence of ∆Ωas on ∆ψr and ∆ωψ , and allows,
with the equations already written, one to derive the transfer functions concerning
different output variables, by assuming ∆ψr and ∆ωψ (or similarly ∆vr and ∆ωv)
as the inputs.

It can be easily recognized that:

• if ∆ψr and ∆ωψ are assumed as the inputs, the poles of the transfer func-
tions are the three roots of the equation:

0 = Gσ (s) +K ′
c + sJ ′ [5.6.17]

• if, instead, ∆vr and ∆ωv are assumed as the inputs and the stator resistance
is disregarded, the two poles s = ±̃ωo are added to the above three roots.

The single parameters of the asynchronous machine — considering the mecha-
nical load that it drives during the operation as a motor — exhibit different values
depending on the situation. This is indicatively illustrated in Table 5.1(6), for
different orders of nominal active power Pnom.

(6) Stator parameters R, LS , L′
S are reported in per unit, by intending, as for the synchronous machine,

• V(F )nom = nominal rms value of the phase voltages;
• Anom = nominal apparent power;
• Z(F)nom = 3V 2

(F )nom/Anom = nominal value of the per-phase impedance;
• ωnom = nominal (network) frequency.

If the stator inductances are formally augmented, according to the following, by the addition of
an external inductance (xe, in pu), the value corresponding to the time constant T ′

o does not change,
whereas xS , x′

S , T ′ � x′
ST

′
o/xS must be substituted, by (xS + xe), (x′

S + xe), (x′
S + xe)T

′
o/(xS + xe),

respectively.
Furthermore, for the parameters of the mechanical part it can be observed that:

• by assuming a resistant torque proportional to Ω
β
as (i.e., a resistant power proportional to Ωα

as ,
with α � β + 1; see also Section 3.1.3), it follows that:

K ′
cω

2
nom

Anom
= β

P o
e

Pnom
cosϕnom

(
ωnom

Ωas

)2

• by defining the “start-up time” as for the synchronous machine, i.e., Ta � (J ′ω2
nom)/Pnom (see

Tac , in Section 3.1.3):
J ′ω2

nom

Anom
= Ta cosϕnom

where cosϕnom � Pnom/Anom is the nominal power factor.
It must be indicated that the value of J ′ is particularly subject to changes for what is shown in

Table 5.1, depending on the contribution of the mechanical load.
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Table 5.1 Indicative Values of Asynchronous Machine
Parameters

Pnom <∼ 50 kW >∼ 50 kW

r � R

Z(F)nom
0.02–0.06 0.01–0.02

xS � ωnomLS

Z(F)nom
1.5–3.0 3.0–5.5

x ′
S � ωnomL

′
S

Z(F )nom
0.1–0.2 0.15–0.25

T ′
o 0.15–3.00 sec 2.0–6.0 sec

T ′(xe = 0) 0.01–0.20 sec 0.15–0.30 sec

K ′
cω

2
nom

Anom
0.2–1.5

J ′ω2
nom

Anom
0.04–0.50 sec 0.2–6.0 sec

In the case of several asynchronous loads, supplied in a parallel way (with
the same vr , i.e., the same vr and ωv), it is important to define, for at least
small variations, a proper “equivalent load” (or equivalent loads, in the smallest
possible number), corresponding to transfer functions close to actual ones, and
of small dynamic order. The equivalence must be referred, in particular, to the
relationship between the total absorbed powers (active and reactive) and the
inputs vr and ωv .

On the other hand, the possibility of grouping more loads into an equivalent
load of a minimal dynamic order, equal to that of a generic single load, is
obvious if and only if the transfer function poles have the same values for all
considered loads.

By disregarding, as is usually acceptable, the stator resistances, the problem
becomes that of checking for which loads Equation [5.6.17] has approximately
the same set of solutions.

Apart from the opportunity of specific, more accurate evaluations (and other criteria,
considering the behavior for large variations):

(1) if (ωoσ ′oT ′)2 � 1, Equation [5.6.17] can be substituted by:

0 = 1 + sT ′

0 = (T ′
o − T ′)

ψo2
r

LS

+K ′
c + s(K ′

cT
′ + J ′)+ s2J ′T ′


 [5.6.17′]

(2) the first of Equations [5.6.17′] leads to the solution s = −1/T ′;
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(3) in the second of such equations, the “known term,” which (at nominal voltage and
frequency) is: (

(T ′
o − T ′)Anom

xSωnom
+K ′

c

)

and the coefficient of s, which is (K ′
cT

′ + J ′), may be often approximated by
T ′
oAnom/(xSωnom) and J ′ respectively, so that the solutions become:

s1,2
∼= −1 ± √

1 − a

2T ′ [5.6.18]

where:

a � 4T ′
oT

′Anom

xSJ ′ωnom

For varying a, the behavior of s1,2 in the complex plane is reported in Figure 5.49 (accept-
ing the Equation [5.6.18]). Such solutions are associated with a damping factor equal to
1/

√
a, and are real if a < 1, and complex conjugate, with a magnitude

√
a/2T ′, if a > 1

(for a > 4 it holds |s1| = |s2| > 1/T ′).
As a conclusion, within the acceptable limits of the above-mentioned approximations:

• for the generic load, the different transfer functions include, in the denominator, a
product:

D(s) � (1 + sT ′)
(

1 + s

−s1

)(
1 + s

−s2

)(
1 + s2

ωo2

)

where s1, s2 are functions of a and T ′ according to Equation [5.6.18];

• it is possible to group those loads with equal values of both T ′and a.

Figure 5.49. Dependence of the characteristic roots s1 and s2 on the parameter
a (see text).
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However, if the examined phenomena are slow, the adopted criterion can be applied by
not considering poles with a relatively large magnitude. For frequency response (s = ̃ ν),
if we are interested in accurately reproducing the behavior for ν < 1/T ′ (neglecting the
delays associated with the poles −1/T ′, ± ̃ωo):

• for the generic load, it can be assumed that D(s) ∼= (1 + s/ − s1)(1 + s/−s2) or even
D(s) ∼= 1, according to the value of a (analogous approximations may concern the
numerators of the transfer functions, according to the values of respective zeros);

• loads with a relatively large a (for instance a > 4; see Fig. 5.49) can be grou-
ped together;

• other loads can be grouped based on the values of s1, s2 (a < 4).

A similar problem is posed if the generic load is connected to the common
supply node, through a link that can be viewed (in terms of equivalent circuit)
as a proper external inductance. In such a case, however, new values must be
considered, as in footnote (6), instead of xS and T ′, so that the approximations
indicated above in (1) and (3) may no longer be applicable. Further complications
can arise from the interaction with voltage regulation. However, for predom-
inantly mechanical phenomena, the simplified analysis in Section 3.1.3 should
be recalled.

5.7. PURELY ELECTRICAL PHENOMENA

5.7.1. Preliminaries

According to Section 1.8.2, an important category of dynamic phenomena is that
of purely electrical ones:

• caused by perturbations on the electrical part of the system;
• sufficiently fast so that it is possible to assume as constant not only the speed

of the rotating machines, but also the amplitudes and electrical rotating
speeds of the rotor fluxes (the operation of control systems is not considered,
because it is unavoidably delayed).

More particularly, we will assume that perturbations consist of opening and/or
closing of connections, caused by:

• maneuvers (typically a breaker operation);
• faults (typically a short-circuit, i.e., the closing of an anomalous connection

between two points which should be isolated);

by disregarding:

• the effects of possible voltage and/or current harmonics, which can be ana-
lyzed in a relatively obvious way (such effects can be enhanced by electrical
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resonances, as illustrated in the following, with frequencies close to those
of the harmonics);

• the effects of “externally originated” perturbations (lightning etc.), which
should be considered through proper models (more or less detailed) based
on specific hypotheses and/or experimental indications.

The analysis of the perturbed system implies the determination of voltages
and currents at the most interesting points, referring to the choice or check of:

• insulation conditions, based on time behavior of overvoltages;

• conditions avoiding the arc restriking after breaker opening, based on the
time behavior of the voltage at breaker terminals;

• protection setting (to be coordinated to guarantee a quick, secure, and selec-
tive intervention), based on voltage and current time behaviors;

• breakers’ capacity, based on the value of interrupted currents (even in rel-
atively short times; the automatic opening of a breaker may be performed
with a delay of few tenths of second);

and so on. Therefore, the phenomena to be analyzed are, at most, relatively fast,
so that the above-stated hypotheses (constancy of the speed of the machines and
amplitude and speed of rotor fluxes) may be accepted.

For the generic synchronous machine, remembering Chapter 4 (and not consid-
ering magnetic saturation), it is easy to determine that the hypothesis of constant
rotor fluxes can be translated into an equation:

v = eψR − Rı − (p + jΩ)
(
(Ld)ψRid + (Lq)ψRjiq

)
[5.7.1]

where:

• the emf eψR is proportional to the electrical speed Ω (eψR/Ω depends only
on rotor fluxes, and thus is constant in amplitude and phase);

• the inductances (Ld)ψR and (Lq)ψR are those seen from the stator (along
the d and q axes, respectively) under operation at constant rotor fluxes (in
pu they are ld (∞) and lq(∞), respectively; see Sections 4.1.3 and 4.3.2).

In practice, such inductances differ slightly from one another, so that they can
both be substituted by a single value LψR (typically LψR = L2, where L2 is the
negative sequence inductance; see Section 4.4.3). The previous equation can be
then written as:

v ∼= eψR − (R + (p + jΩ)LψR

)
ı [5.7.1′]

The approximation (Ld)ψR ∼= (Lq)ψR , i.e., ld (∞) ∼= lq(∞), actually results from the pres-
ence of additional rotor circuits, according to Section 4.3.2. If these circuits were not
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considered and if, therefore, the model described in Sections 4.1.2 and 4.1.3 was adopted,
it would result in, at constant ψf :

v = −Rı + (p + jΩ)ψ [4.1.5′′ repeated]

ψ = Lmd

Lf

ψf − (L̂′
d id + Lqjiq) [4.1.7′′′ repeated]

from which Equation [5.7.1] with eψR = jΩ(Lmd/Lf )ψf (recall the “transient emf” e′

defined by Equation [4.2.9], at Ω = ωnom and in pu values), and (Ld)ψR = L̂′
d , (Lq)ψR =

Lq where L̂′
d and Lq can be considerably different.

Furthermore, Equation [5.7.1] is derived from the application of Park’s trans-
formation with an angular reference θ defined by the electrical angular position
of the rotor, whereas when analyzing the whole system, it is necessary to refer
to a common angular reference θr . If it is assumed that δ � θ − θr it follows
vr = vεjδ, ır = ıεjδ , and Equation [5.7.1′] becomes:

vr ∼= (eψR)r − (R + (p + jΩr)LψR

)
ır [5.7.2]

where:
(eψR)r = eψRε

jδ [5.7.3]

and Ωr � dθr/dt (note that (pı)εjδ = pır − j (Ω −Ωr)ır ).
For the generic asynchronous machine, applying the model described in

Section 5.6.2 and assuming that the resulting rotor flux has a constant magnitude
ψR and a phase θψR (which corresponds to the electrical rotating speed ΩψR �
dθψR/dt), it is possible to write, by adopting the loads’ convention, the following
equation:

vr = (eψR)r − (R + (p + jΩr)L
′
S)ır [5.7.4]

similar to [5.7.2], in which:

(eψR)r = jΩψR

Lm

LR

ψRε
jδ [5.7.5]

with δ � θψR − θr . Similar conclusions can be obtained with several rotor
windings.

If, in terms of Park’s variables, the models of network elements and “static”
loads are considered, it is possible to determine that, for the system under
examination:

• the input variables are constituted by the emfs (of the motional type) of
synchronous and asynchronous machines (see Equations [5.7.3] and [5.7.5],
respectively);

• the state variables are constituted by currents into inductive elements and
voltages on capacitive elements.
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Figure 5.50. Two-port element in terms of Park’s vectors.

During the transients considered, the inductive and capacitive elements can deliver or
absorb active power, with consequent variation in their stored energy. As a simple
example, consider a symmetrical two-port element defined (see also Fig. 5.50) by:

{
ırA = (GrAA(s)+ jBrAA(s))vrA + (GrAB (s)+ jBrAB (s))vrB

ırB = −(GrAB (s)+ jBrAB (s))vrA − (GrAA(s)+ jBrAA(s))vrB

and assume that it is nondissipative (consequently, it only includes inductive and/or capac-
itive elements), so that:

GrAA(0) = GrAB (0) = 0

By linearizing the equations around a generic operating point (denoted by the superscript
“o”), and intending vrA = vAε

jαrA , PA = Re(vrAı
∗
rA) etc., it follows that:

∆PA = [BrAB (0)v
o
B sin(αrA − αrB )

o +GrAA(s)v
o
A]∆vA

+ [BrAB (s)v
o
A sin(αrA − αrB )

o +GrAB (s)v
o
A cos(αrA − αrB )

o]∆vB

+ [(BrAA(0)− BrAA(s))v
o2
A + BrAB (0)v

o
Av

o
B cos(αrA − αrB )

o]∆αrA

+ [−BrAB (s) cos(αrA − αrB )
o +GrAB (s) sin(αrA − αrB )

o]voAv
o
B∆αrB

and similarly for (−∆PB ). It is easily determined that ∆PA and ∆PB are not equal (apart
from the condition s = 0, i.e., at the end of transients).

Moreover, the dependence of ∆PA and ∆PB on the phase variations ∆αrA, ∆αrB cannot
be related (apart from the condition s = 0) to a dependence on the phase-shift variation
∆(αrA − αrB ) only.

The following simplifying assumptions will be used in the development of
the analysis:

(1) the system is linear;
(2) for t < 0, the system is at steady-state and thus, more particularly:

• the system is physically symmetrical;
• the electrical speeds related to the rotor fluxes of the synchronous (Ω =

dθ/dt) and asynchronous (ΩψR = dθψR/dt) machines are all equal;
• for Park’s variables, by assuming Ωr = Ω (equal to the above-men-

tioned electrical speed), all the emfs (eψR)r (see Equations [5.7.3] and
[5.7.5]) acting on the system are constant;
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• for phase variables, the operating condition is sinusoidal and of the
positive sequence at the frequency Ω ;

(3) the configuration of the system is subject to a perturbation of the type
mentioned (i.e., opening or closing), which is actuated instantaneously at
t = 0.

Within this concern, it can be observed that:

• the hypothesis (1) can be considered verified, if nonlinear static loads have
little effect on the phenomenon under examination, and can be accounted
for by proper linear composite loads (in practical cases, it may be sufficient
that nonlinear loads are far enough both from the point of application of the
perturbation, and from the system part where the response to the perturbation
is of more interest for the analysis);

• the hypotheses (2) and (3) exclude the case of multiple perturbations, such
as a short-circuit followed by the opening (and possible reclosing) of a
breaker, or an arc restriking after the opening of a breaker, etc.;

• the hypothesis (3) implies the ideal operation of breakers (instantaneous arc
extinction during the opening, etc.).

For greater generality, both “symmetrical” and “nonsymmetrical” perturba-
tions will be considered. The former (three-phase symmetrical opening or closing)
are the simplest to analyze. However, it is not always true, as in the following, that
they are the most severe type (even if they affect all the three phases). Further-
more, they are less likely to happen and can be considered somewhat unrealistic,
because of the nonsimultaneous opening of the three poles of breakers, or the
nonsimultaneous short-circuit on the three phases.

Moreover, the typical nonsymmetrical perturbations are:

• opening of a single phase, e.g., as the result of breaker operation (activated
by the protection system) following a single-phase short-circuit;

• opening of two phases, because of the failed opening of the third phase by
the breaker;

• single-phase (phase-to-earth) short-circuit, which is the most frequent fault,
caused by insulation failure or accidental contact;

• two-phase to earth short-circuit (phase-to-phase-to-earth), which is quite
frequent, also as a consequence of a single-phase short-circuit;

• two-phase isolated short-circuit (phase-to-phase), which is rare and, e.g.,
may occur because of the action of wind on two windings.

5.7.2. Response to Symmetrical Perturbations

If the perturbation is symmetrical, the system remains physically symmetrical
even for t > 0. Consequently it can be examined by considering the Park’s vec-
tors, avoiding the consideration of homopolar components.
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opening on
  residual
impedance

impedance

Figure 5.51. Opening of a link: (a) circuit under examination; (b) equivalent
circuit, for the determination of the voltage ur(t) caused by the opening.

Furthermore, since the system is at steady-state for t < 0 and inputs (that is
vectors (eψR)r , with Ωr = Ω) remain constant, the “response” to the assigned
perturbation is determined by the initial (t = 0) values of the state variables,
which no longer correspond to a steady-state condition. As a consequence, the
problem becomes evaluation of the “free” response of the system in its new
configuration.

For the opening of a link, it is possible to refer to Figure 5.51a, where it is
intended (for greater generality) that the opening occurs on a residual impedance
Zpr (p) (in parallel to the terminals), so that:

ı ′r = ır − ur

Zpr (p)

whereas the rest of the system is represented by:

• a constant emf er (vector) resulting from the emfs of the machines;
• an output impedance Zr(p), equal to the impedance seen from the exam-

ined terminals.

It is then possible to derive:

ur = e′
r − Z′

r (p)ı
′
r

where e′
r � Zprer/(Zr + Zpr ), Z′

r � ZrZpr/(Zr + Zpr ). (At t = 0− it is
ur(0−) = 0 and the system is at equilibrium; thus: ı ′r (0−) = ır (0−) = e′

r/Z
′
r (0) =

er/Zr(0).)
Similarly, when closing a link (on a residual impedance Zsr (p), in series to

the terminals) it is possible to write, according to Figure 5.52a:

v′
r = vr − Zsr (p)J r
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closing on
  residual
impedance

impedance

Figure 5.52. Closing of a link: (a) circuit under examination; (b) equivalent cir-
cuit, for the determination of the current J r (t) caused by the closing.

and furthermore:

J r = er − v′
r

Z′
r (p)

where Z′
r � Zr + Zsr . ( At t = 0− it is J r (0−) = 0 and the system is at equili-

brium; thus: v′
r (0

−) = vr(0−) = er .)
The voltage ur(t) caused by the opening, with ur(0−) = 0, can be deter-

mined as the “forced” response of the only impedance Z′
r (p) to a current step

(“equivalent injection”) equal to −ır (0−), according to Figure 5.51b. Similarly,
the current J r (t) caused by the closing, with J r (0−) = 0, can be determined as
the forced response of 1/Z′

r (p) to a voltage step equal to −vr(0−), according to
Figure 5.52b.

In both cases it must be assumed that:

• the emfs are short-circuited;
• the state variables have a zero initial value (i.e., the inductive and capacitive

elements are initially “discharged”).

On the other hand, in terms of Laplace transforms:

• at opening (Fig. 5.51):

(Lur)(s) = (L∆ur)(s) = −Z′
r (s)(L∆ı ′r )(s) = Z′

r (s)
ır (0−)
s

[5.7.6]

• at closing (Fig. 5.52):

(LJ r )(s) = (L∆J r )(s) = − 1

Z′
r (s)

(L∆v′
r )(s) = 1

Z′
r (s)

vr(0−)
s

[5.7.7]
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Figure 5.53. Schematic representation of a breaker with preinsertion resistor.

The above can be applied to determine the voltage on a breaker after opening
or the current after closing or after a short-circuit.

For a short-circuit, it is evident that a “fault” impedance Zsr (p) (Fig. 5.52) can modify
the current behavior J r (t) and reduce its values. For similar reasons, it can be useful
to make breakers in accordance with Figure 5.53, i.e., equipped with a pair of contacts
C1 and C2 and a “preinsertion resistor” R, so that manoeuvres can be performed more
gradually, and less cumbersome. When opening, the breaker C1 is operated before C2;
when closing, C2 is operated before C1. In both cases, the resistor R remains temporarily
in series in the circuit. Therefore it can smooth the voltage or current transients. The case
under examination is outside of the present treatment, because it does not imply a single
perturbation, but the effect of R is apparent from a qualitative point of view.

Steady-State Response
For phase variables, the steady-state response is constituted by a sinusoidal
steady-state of the positive sequence at frequency Ω , which can be derived based
on the new (constant) values assumed by Park’s vectors. Specifically, at the point
where the perturbation is applied:

• at opening (see Fig. 5.51 and Equation [5.7.6]): ur = e′
r = Z′

r (0)ır (0
−);

• at closing (see Fig. 5.52 and Equation [5.7.7]): J r = er/Z
′
r (0) =

vr(0−)/Z′
r (0);

where Z′
r (0) is the impedance evaluated at the frequency Ωr = Ω , of the type

Z′
r (0) = Z′(jΩ) (recall Equation [5.2.8]). The deduction of all the other vari-

ables at different points of the network is similarly obvious.
However, the above data imply that the characteristic roots defined by

Equation [5.7.6] or [5.7.7] (i.e., the poles of |Z′
r (s)| or of |1/Z′

r (s)|), respectively
in the two cases, have a negative real part, so that they contribute to the transient
by damped components which tend to zero. Such a condition is actually satisfied
because of resistances present in the network (or in the residual impedance:
preinsertion resistance, fault resistance, etc.).

For a three-phase short-circuit with zero fault impedance (see Fig. 5.52, with Zsr = 0)
J r = vr(0−)/Zr(0). If at t = 0− the voltage amplitude had its nominal value, i.e.,
vr(0−) = √

3V(F)nom, where V(F)nom is the nominal rms value of the phase voltages,
it would follow that |vr(0−)J ∗

r | = 3V 2
(F )nom/|Zr(0)|. This last quantity is the so-called
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“short-circuit power” of the node under consideration, referring to the (relatively
fast) purely electrical phenomena considered, with machines simply represented by
Equations [5.7.2] and [5.7.4]. For (longer term) steady-state response, similar definitions
can be adopted (even considering zero output impedances of the machines because of
voltage regulation etc.). It is possible to determine, with reference to practical cases
(predominantly inductive network), that:

• The addition of links, i.e., a more meshed network, causes an increase in the short-
circuit power at different nodes.

• If the short-circuit power at a given node is increased, short-circuits at the other
nodes have a smaller effect on the voltage at the node under examination (the node
becomes “stronger”). However, a fault at this node implies a larger short-circuit
current and greater effects on other node voltages.

As an elementary example, also used in the following:

• consider the system defined in Figure 5.54a, which corresponds (in terms of
Park’s vectors and homopolar components, respectively), to the equivalent
circuits in Figure 5.54b, assuming that the emfs ega , egb, egc are sinusoidal
and of positive sequence, with:

ega(t) = EgM cos(Ωt + α), etc. [5.7.8]

• as a perturbation, assume the opening or short-circuit at the indicated nodes.

As evident, the case under examination can correspond to a line terminated
with a reactive load or short-circuited (with parameters L = L1 + L2, C), and
supplied by a node of infinite short-circuit power (with emf egr ).

The perturbations then correspond, respectively, to the opening of the supply-
side breaker (with preinsertion resistances ρp) and to a line short-circuit (with
fault resistances ρs , ρst ). Furthermore, the emfs are wye-connected, with Znt1

the (scalar) operational impedance between neutral and earth. The (scalar) impe-
dances Zt12 and Zt23 define the earth circuit, according to Figure 5.54a. However,
these last three impedances, as well as ρst , are related only to the homopolar
components and thus do not intervene in the present analysis.

For the (three-phase) opening it follows, after minor developments:

ur = egr

1 + jΩL

ρp(1 −Ω2LC)

where the vector ur is the voltage across the breaker. For the (three-phase)
short-circuit:

J r = egr

ρsL

L2
+ jΩL1
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possible opening
of a breaker

possible 
  short-
 circuit

Figure 5.54. Elementary example of three-phase system: (a) circuit under exam-
ination; (b) equivalent circuits.

where the vector J r is the short-circuit current. (Here and in the following,
other network variables will not be evaluated.) More particularly, as evident, the
resistance ρp reduces the amplitude of ur (with respect to the case ρp = ∞).
Similarly, ρs reduces the amplitude of J r (with respect to the case ρs = 0).

Transient Response
The transient response includes, in addition to the steady-state response, the
purely transient (i.e., going to zero) components related to the characteristic
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roots of the system (it has been assumed that these roots have negative real
parts). By using the notation of Figures 5.51 and 5.52, the response ur(t) (to link
opening) or J r (t) (to link closing) can be obtained by inverse transformation of
Equation [5.7.6] or [5.7.7], respectively.

In Figure 5.54, the damping of the transient components is clearly the result of
(noninfinite) resistance ρp after opening and (nonzero) resistance ρs after short-
circuit. However, to simplify the analytical deduction of the transient responses,
it will be assumed here and in the following that ρp = ∞ and ρs = 0, which
imply purely imaginary characteristic roots. In practice, the above-mentioned
resistances (and those of lines etc.) can result in reduction of the amplitude of
the transient response and damping of the transient components.

For the (three-phase) opening with ρp = ∞, Equation [5.7.6] becomes:

(Lur)(s) = Zr(s)
ır (0−)
s

where Zr(s) (impedance seen from the breaker terminals) is, by adopting
Figure 5.54:

Zr(s) = (s + jΩ)L

1 + (s + jΩ)2LC

whereas ır (0−) = (1 −Ω2LC)egr/(jΩL); by inverse transformation of the ex-
pression for (Lur)(s) and setting Ω ′ � Ω − 1/

√
LC,Ω ′′ � Ω + 1/

√
LC:

ur(t) = egr

(
1 − 1

2Ω
(Ω ′′ε−jΩ ′t +Ω ′ε−jΩ ′′t )

)

where the first term, equal to egr , corresponds to the steady-state response pre-
viously derived for ρp → ∞.

For phase variables, by using the equations in Appendix 2 and recalling
Equation [5.7.8], we can derive:

ua(t) = EgM cos(Ωt + α)− EgM

(
cosα cos(νot) − νo

Ω
sinα sin(νot)

)

where:

νo � 1√
LC

and further similar expressions for ub(t) and uc(t).
In the expression of ua(t), the first term (equal to ega(t)), is the so-called

“recovery voltage,” which corresponds to the steady-state response (for ρp →
∞), at frequency Ω and with amplitude EgM .

The remaining term, which defines the voltage vCa on the condenser of the
phase a, is sinusoidal at the “resonance frequency” νo. Its amplitude depends on
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α, i.e., or on the instant at which the opening occurs (recall Equation [5.7.8]).
Indicating such amplitude by U ′

M , it is trivial to derive:

U ′
M = EgM

√
(cosα)2 +

(νo
Ω

sinα
)2

so that U ′
M is maximum at α = 90◦ (U ′

M = EgM νo/Ω) and minimum at α =
0◦ (U ′

M = EgM ), if νo > Ω (as usually occurs), and vice versa in the opposite
case (see also Figure 5.60b). The variations with time of the voltage vCa on the
condenser and current iLa on the inductor (both for the phase a) are indicated in
Figure 5.55, under the hypothesis νo > Ω and:

• for α = 0◦, i.e., for an opening at an instant of maximum voltage vCa(t);
• for α = 90◦, i.e., for an opening at an instant of maximum current iLa(t).

The maximum value instantaneously assumed by the voltage ua(t) (equal to
that assumed by ub(t) and uc(t)) also can be determined. If the frequency νo is
different enough from Ω , such a value approximately equals (EgM + U ′

M ), which
is intermediate between 2EgM and (1 + νo/Ω)EgM .

Figure 5.55. Variations with time of vCa and iLa following a three-phase open-
ing (see text): (a) opening at an instant of maximum voltage vCa(t)(α = 0◦

);
(b) opening at an instant of maximum current iLa(t)(α = 90◦).



5.7 PURELY ELECTRICAL PHENOMENA 469

For the (three-phase) short-circuit with ρs = 0, Equation [5.7.7] becomes:

(LJ r )(s) = 1

Zr(s)

vr(0−)
s

where now it is:

Zr(s) = (s + jΩ)
L1L2

L1 + L2

whereas vr(0−) = L2egr/(L1 + L2); by inverse transformation of the expression
for (LJ r )(s) it follows that:

J r (t) = egr

jΩL1
(1 − ε−jΩt )

where the term egr/(jΩL1) corresponds to the steady-state response previously
determined for ρs → 0.

For phase variables, it is possible to derive:

Ja(t) = EgM

ΩL1
(sin(Ωt + α)− sinα)

and similarly Jb(t), Jc(t).
In the expression of Ja(t), the term (EgM /(ΩL1)) sin(Ωt + α) corresponds

to the steady-state response (for ρs → 0), at frequency Ω and with amplitude
EgM /(ΩL1).

The remaining term is constant(7), and its absolute value J ′
M depends on α

(i.e., on the instant at which the short-circuit occurs), being zero for α = 0◦
and maximum for α = ±90◦

(J ′
M = EgM /(ΩL1)) (see Figures 5.61b and 5.62b).

Correspondingly, the maximum absolute value instantaneously assumed by Ja(t)
(and by Jb(t), Jc(t)) can vary between EgM /(ΩL1) and 2EgM /(ΩL1).

5.7.3. Response to Nonsymmetrical Perturbations

If the perturbation is nonsymmetrical, the system loses (for t > 0) its phys-
ical symmetry, and the analysis must also consider, in general, the homopo-
lar components.

On the other hand, any assigned perturbation can be translated into precise
conditions on phase variables and thus Park’s variables, based on the equations
in Appendix 2. For instance, the zero-impedance short-circuit between phases b
and c (isolated from earth) can be translated into the conditions Ja = Jb + Jc = 0,

(7) The constant term represents, for the phase a, the “unidirectional” component of the short-circuit
transient, similarly to that in Section 4.4.4 with reference to the synchronous machine. In practice,
such a component is damped because of circuit resistances.
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vb − vc = 0, from which it can be derived:


Jo = 0

J rεjθr + (J rεjθr )∗ = 0

vrε
jθr − (vrε

jθr )∗ = 0

where θr is linearly varying with time, with dθr/dt = Ωr = Ω . The first of these
conditions is a simplification (as it is possible not to consider the homopolar
components), whereas the two remaining ones can be used together with an
equation:

vr = er − Zr(p)J r

(Fig. 5.52a) to determine vr(t), J r (t) and consequently the behavior of different
phase variables.

However, the procedure indicated here is cumbersome, as is evident from
the previous example (which is a simplified one), because of the dependence of
θr on time. Therefore, it may be convenient to use other procedures, based for
instance on the definition of “symmetrical components” (vectors, or phasors) for
the determination of steady-state response, and on direct analysis (in terms of
phase variables) for the determination of transient response.

Steady-State Response
For phase variables, the steady-state response is constituted, under the usual
hypothesis of damped transient components, by a sinusoidal operation at
frequency Ω .

However, each three-phase set generally includes components of the three
sequences (positive, negative, and zero). Therefore, the generic three-phase set
can be posed in the following form:

wa = WM(0) cos(Ωt + α(0)) +WM(1) cos(Ωt + α(1))+WM(2) cos(Ωt + α(2))

wb = WM(0) cos(Ωt + α(0)) +WM(1) cos(Ωt + α(1) − 120◦
)

+WM(2) cos(Ωt + α(2) − 240◦
)

wc = WM(0) cos(Ωt + α(0)) +WM(1) cos(Ωt + α(1) − 240◦
)

+WM(2) cos(Ωt + α(2) − 120◦
)




[5.7.9]
If the following constant vectors are defined (which correspond to the “symmet-
rical components”; see Appendices 1 and 2):

w(0) �
√

3

2
WM(0)ε

jα(0)

w(1) �
√

3

2
WM(1)ε

jα(1)

w(2) �
√

3

2
WM(2)ε

jα(2)




[5.7.10]
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the previous equations can be rewritten as:

wa =
√

2

3
Re[(w(0) + w(1) +w(2))ε

jΩt ]

wb =
√

2

3
Re[(w(0) + w(1)ε

−j120◦ + w(2)ε
−j240◦

)εjΩt ]

wc =
√

2

3
Re[(w(0) + w(1)ε

−j240◦ +w(2)ε
−j120◦

)εjΩt ]




[5.7.11]

(see Equations [A2.9] and [A2.11]).
The procedure based on the Equations [5.7.10], for the determination of

the steady-state response, may be illustrated by considering the systems in
Figures 5.56a (breaker opening) and 5.57a (short-circuit).

In both cases, the rest of the system (including the earth circuit) can be repre-
sented by equivalent circuits as shown, for the three sequences, in Figures 5.56b
and 5.57b. More precisely:

• e(1) is the constant emf (vector) resulting from different emfs present in the
system, and it acts on the positive sequence circuit (because of the adopted
hypotheses, all the single emfs are of the positive sequence, so that in the
other two circuits there is no emf);

equivalent circuits of
the rest of the system

equivalent
 circuit of
      the
perturbation

rest of the
  system

earth

Figure 5.56. Opening of one or more phases: (a) system under examination;
(b) equivalent circuit for the determination of the steady-state response.
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equivalent circuits of
the rest of the system

equivalent
 circuit of
      the
perturbation

rest of the
  system

earth

Figure 5.57. Short-circuit on one or more phases: (a) system under examination;
(b) equivalent circuit for the determination of the steady-state response.

• Z(1), Z(2), Z(0) are the output impedances of the system, under operation at
frequency Ω , respectively for the positive, negative, and zero sequences.

It is easy to determine that, if er and Zr(p) are the emf and the operational
impedance relative to the Park’s vectors (see Figs. 5.51a and 5.52a, respectively,
for the opening and short-circuit), it follows that:

e(1) = er

Z(1) = Z(2) = Zr(0)

whereas, if Zo(p) is the (scalar) operational impedance relative to the homo-
polar components:

Z(0) = Zo(jΩ)

In Figures 5.56b and 5.57b, the same symbols e(1), Z(1) etc. are used for simplicity,
although the respective values are different in the two cases.

Moreover, the definitions of Z(1) and Z(2) and the equality Z(1) = Z(2), are strictly related
to the adoption of Equations [5.7.2] and [5.7.4] for the machines, as a consequence of the
hypotheses already illustrated.

For the actual behavior of the synchronous machine, see Section 4.4.3.
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Furthermore, by recalling Equations [5.7.11], each perturbation can be trans-
lated into an equivalent circuit in terms of symmetrical components, according
to the following examples. For brevity, it is assumed that:

Zp � Zp(jΩ), Zs � Zs(jΩ), Zst � Zst (jΩ)

where the scalar impedances Zp and Zs, Zst are defined in Figures 5.56a and
5.57a, respectively, and furthermore:

h � ε+j120◦ = ε−j240◦

For two-phase perturbations, a simplification is obtained by assuming the (pos-
sible) residual impedances on the phases to be equal, i.e., Zp after the opening
or Zs after the short-circuit.

• Single-phase opening (phase a):



ua = Zpia

ub = 0

uc = 0



u(0) + u(1) + u(2) = Zp(ı(0) + ı(1) + ı(2))

u(0) + h2u(1) + hu(2) = 0

u(0) + hu(1) + h2u(2) = 0

from which (Fig. 5.58a):

u(0) = u(1) = u(2) = Zp

3
(ı(0) + ı(1) + ı(2))

(a) single-phase
     opening

(b) two-phase
      opening

Figure 5.58. Determination of the steady-state response for the opening
(a) single-phase, (b) two-phase.
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• Two-phase opening (phases b, c):


ua = 0

ub = Zpib

uc = Zpic



u(0) + u(1) + u(2) = 0

u(0) + h2u(1) + hu(2) = Zp(ı(0) + h2ı(1) + hı(2))

u(0) + hu(1) + h2u(2) = Zp(ı(0) + hı(1) + h2ı(2))

from which (Fig. 5.58b):

u(0) + u(1) + u(2) = 0

ı(0) − u(0)

Zp

= ı(1) − u(1)

Zp

= ı(2) − u(2)

Zp

• Single-phase short-circuit (phase a):



va = (Zs + Zst )Ja

Jb = 0

Jc = 0



v(0) + v(1) + v(2) = (Zs + Zst )(J (0) + J (1) + J (2))

J (0) + h2J (1) + hJ (2) = 0

J (0) + hJ (1) + h2J (2) = 0

from which (Fig. 5.59a):

J (0) = J (1) = J (2) = 1

3(Zs + Zst )
(v(0) + v(1) + v(2))

(a) single-phase short-circuit

(b) two-phase short-circuit

Figure 5.59. Determination of the steady-state response for the short-circuit
(a) single-phase, (b) two-phase. For two-phase isolated short-circuit, it holds
Zst = ∞, J (0) = 0, so that the branch at the extreme right side can be eliminated.
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• Two-phase to earth short-circuit (phases b, c, and earth):




Ja = 0

vb = ZsJb + Zst (Jb + Jc)

vc = ZsJc + Zst (Jb + Jc)




J (0) + J (1) + J (2) = 0

v(0) + h2v(1) + hv(2) = Zs(J (0) + h2J (1) + hJ (2))

+Zst (2J (0) − J (1) − J (2))

v(0) + hv(1) + h2v(2) = Zs(J (0) + hJ (1) + h2J (2))

+Zst (2J (0) − J (1) − J (2))

from which (Fig. 5.59b):

J (0) + J (1) + J (2) = 0

v(0) − (Zs + 3Zst )J (0) = v(1) − ZsJ (1) = v(2) − ZsJ (2)

• Two-phase isolated short-circuit (phases b, c); it is equivalent to the pre-
vious case with Zst → ∞ (Ja = 0, Jb + Jc = 0, vb − vc = Zs(Jb − Jc)),
so that:

J (0) = J (1) + J (2) = 0

v(1) − ZsJ (1) = v(2) − ZsJ (2)

The above allows the determination for any assigned case of different symmet-
rical components, from which it is possible to derive the phase variables by
applying Equations [5.7.11]. For instance, for single-phase opening (Fig. 5.58a),
by assuming Zp = ∞ and accounting Z(1) = Z(2), it follows that:

u(0) = u(1) = u(2) = e(1)

2 + Z(1)

Z(0)

and because of the first part of Equations [5.7.11] we can conclude that the
amplitude of the sinusoid ua(t) is:

UaM =
√

2

3
·3
∣∣∣∣∣

e1

2 + Z(1)/Z(0)

∣∣∣∣∣
or equivalently, if e(1) corresponds (for each single phase) to an emf of amplitude
EM , so that |e(1)| = √

3/2EM :

UaM = 3EM∣∣∣∣∣2 + Z(1)

Z(0)

∣∣∣∣∣
and so on.
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Going back to the example of Figure 5.54, it is easily determined that the
quantities e(1), Z(1), Z(2), Z(0) assume the following values:

• for the breaker opening:

e(1) = egr

Z(1) = Z(2) = jΩL

1 −Ω2LC

Z(0) = −j
ΩC

+ 3(Znt1 + Zt12)

• for the short-circuit:

e(1) = L2egr

L1 + L2

Z(1) = Z(2) = jΩ
L1L2

L1 + L2

Z(0) = jΩL1 + 3(Znt1 + Zt12)

1 + 3(Znt1 + Zt12)jΩC
+ 3Zt23

where Znt1 � Znt1(jΩ), and so on.
Assuming that Zt23 = 0, and Znt1 + Zt12 = 0 or Znt1+ Zt12 = ∞ (more par-

ticularly, neutral connected to earth or isolated), and disregarding resistances ρp,
ρs , ρst , the results summarized in Figures 5.60a, 5.61a, and 5.62a can be obtained
for the different cases, where:

• Uo
M = voltage amplitude at breaker terminals, on the opened phase or on

each of the opened phases;

• J o
M = current amplitude, in the short-circuited phase or in each of the short-

circuited phases;

whereas EgM is the amplitude of the emfs ega , egb , egc (see Equation [5.7.8]).
For any given value of Ω2LC, it is possible to identify the most severe

perturbation, in terms of Uo
M or J o

M (which may not be the symmetrical one).
Moreover, the effect of the “status” of the neutral (connected to earth, or isolated)
is evident, for single-phase or two-phase opening, and for single-phase or two-
phase to earth short-circuit.

Transient Response
The determination of transient response is much more complicated. If results are
requested in short times, limiting analysis to the determination of the steady-state
response may be convenient, then applying proper incremental coefficients (on
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single-phase*

single-phase**

three-phase

two-phase**

two-phase*

three-phase/
single-phase**

single-phase*

two-phase**

two-phase*, frequency vo

two-phase*, frequency v2

Figure 5.60. Opening of the breaker in Figure 5.54a, on one or more phases,
with ρp = ∞: (a) amplitude of the steady-state response; (b) minimum and max-
imum relative amplitude of the transient-response components (see text).

∗Znt1 + Zt12 = 0 ∗∗Znt1 + Zt12 = ∞

the safety side) to estimate the maximum values assumed by variables during
the transient.

For phase variables, under the hypothesis of nonzero damping, the purely
transient components are related to the characteristic roots of the system, in its
new configuration for the three phases.

In Figure 5.54, by disregarding resistances ρp, ρs , ρst (and thus damping),
assuming Zt23 = 0, and recalling Equation [5.7.8], the following equations can
be obtained.
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single-phase**

two-phase to earth**
two-phase to earth*

three-phase

single-phase*
two-phase isolated

single-phase**

three-phase/two-phase isolated/two-phase to earth*

two-phase to earth**,
frequency v4

two-phase to earth**,
unidirectionalsingle-phase*

Figure 5.61. Short-circuit as in Figure 5.54a, on one or more phases, with ρs =
ρst = Zt23 = 0, L1 = L2/2: (a) amplitude of the steady-state response; (b) maxi-
mum relative amplitude of the transient-response components (see text).

∗Znt1 + Zt12 = 0 ∗∗Znt1 + Zt12 = ∞
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two-phase to earth**
single-phase**

three-phase

two-phase isolated two-phase to earth*

single-phase

single-phase**

three-phase/two-phase
isolated/two-phase to earth*

two-phase to earth**,
frequency v4 two-phase to earth**,

unidirectionalsingle-phase*

Figure 5.62. As in Figure 5.61, but with L1 = 2L2.

∗Znt1 + Zt12 = 0 ∗∗Znt1 + Zt12 = ∞

• Single-phase opening (phase a), with Znt1 + Zt12 = 0:

ua(t)

EgM
=

3

2
ν2

1 −Ω2

ν2
1 −Ω2

[
cos(Ωt + α) −

(
cosα cos(ν1t) − ν1

Ω
sinα sin(ν1t)

)]
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with a “resonance frequency” of:

ν1 �
√

2

3LC

• Single-phase opening (phase a), with Znt1 + Zt12 = ∞:

ua(t)

EgM
= 3

2

[
cos(Ωt + α)−

(
cosα cos(νot) − νo

Ω
sinα sin(νot)

)]

with a resonance frequency of:

νo � 1√
LC

• Two-phase opening (phases b, c), with Znt1 + Zt12 = 0:

ub(t)

EgM

uc(t)

EgM




= ν2
o −Ω2

2(ν2
2 −Ω2)

[
− cos(Ωt + α)+ cosα cos(ν2t) − ν2

Ω
sinα sin(ν2t)

]

±
√

3

2

[
sin(Ωt + α)− sinα cos(νot) − νo

Ω
cosα sin(νot)

]

with two resonance frequencies, νo (defined as above) and:

ν2 � 1√
3LC

• Two-phase opening (phases b, c), with Znt1 + Zt12 = ∞:

ub(t)

EgM

uc(t)

EgM




= 3

2

[
− cos(Ωt + α)+ cosα cos(νot) − Ω

νo
sinα sin(νot)

]

±
√

3

2

[
sin(Ωt + α)− sinα cos(νot) − Ω

νo
cosα sin(νot)

]

with the only resonance frequency νo.
• Single-phase short-circuit (phase a), with Znt1 + Zt12 = 0:

Ja(t)

EgM
= 3L2

ΩL1(L1 + 3L2)
sin(Ωt + α)

as in the steady-state response.
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• Single-phase short-circuit (phase a), with Znt1 + Zt12 = ∞:

Ja(t)

EgM
= 3Ων2

3L2C

(ν2
3 −Ω2)(L1 + L2)

[
− sin(Ωt + α)

+ sinα cos(ν3t) + ν3

Ω
cosα sin(ν3t)

]

with a resonance frequency of:

ν3 �
√

L1 + L2

(L1 + 3L2)L1C

• Two-phase to earth short-circuit (phases b, c, and earth), with
Znt1 + Zt12 = 0:

Jb(t)

EgM

Jc(t)

EgM




= 3

2

L2

Ω(2L1 + 3L2)L1
[sinα − sin(Ωt + α)]

±
√

3

2ΩL1
[cosα − cos(Ωt + α)]

with a “unidirectional” component.
• Two-phase to earth short-circuit (phases b, c, and earth), with
Znt1 + Zt12 = ∞:

Jb(t)

EgM

Jc(t)

EgM




= 3

2

ΩL2C

(2L1 + 3L2)L1C(ν
2
4 −Ω2)

·
[

sin(Ωt + α)− sinα cos(ν4t)

−ν4

Ω
cosα sin(ν4t)

]
±

√
3

2ΩL1
[cosα − cos(Ωt + α)]

with a unidirectional component, and a resonance frequency equal to:

ν4 �
√

2(L1 + L2)

(2L1 + 3L2)L1C

• Two-phase isolated short-circuit (phases b, c), for any Znt1 + Zt12:

Jb(t)

EgM
= − Jc(t)

EgM
=

√
3

2ΩL1
[cosα − cos(Ωt + α)]

with a unidirectional component.
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The analytical difficulties are evident, even for the simple example consid-
ered. However, the results obtained can be considered typical, as they imply the
presence of:

• unidirectional components;

• oscillatory components, not only at the forced frequency Ω , but also result-
ing from resonances between inductive and capacitive elements (if the line
were represented by a distributed parameter model, also propagation phe-
nomena as in Section 5.4 would appear).

The importance of the value of α (i.e., of the instant of application of the
perturbation) should be particularly underlined for its effect on the amplitudes
of the different sinusoidal components (at the indicated resonance frequencies)
or unidirectional ones, and the maximum instantaneous values assumed by the
different quantities.

Figures 5.60b, 5.61b, and 5.62b summarize previous results, where:

• U ′
M min = minimum amplitude (obtainable at a proper α) of the generic

component of the voltage ua(t) (single-phase opening), or both voltages
ub(t), uc(t) (two-phase opening), or all the three voltages ua(t), ub(t),
uc(t) (three-phase opening);

• U ′
M max = maximum amplitude etc., but related to one of the voltages ub(t)

and uc(t) in the case of two-phase opening;

• J ′
M max = similarly, with reference to the current Ja(t) (single-phase short-

circuit), or one of the currents Jb(t), Jc(t) (two-phase short-circuit), or all
the three currents Ja(t), Jb(t), Jc(t) (three-phase short-circuit);

whereas Uo
M and J o

M are the amplitudes of the (steady-state) components at fre-
quency Ω . The knowledge of the ratios U ′

M min/U
o
M , U ′

M max/U
o
M , J ′

M max/J
o
M can

give useful indications (particularly if the frequencies involved are rather differ-
ent) on the incremental coefficients to be applied, starting from the steady-state
response only.

Moreover, the analysis can be extended to other variables of particular inter-
est, such as the currents in the unopened phases, the voltages in the unfaulted
phases, and so on.

As a concluding remark, it is useful to indicate:

• The phenomena considered here are assumed to be fast, so that the simpli-
fications of the machines’ models may appear credible. Thus, the “steady-
state” responses described above hold in the short term, i.e., in accordance
to the mentioned simplifications.

• For longer times, it is necessary to consider the variations in amplitude of
rotor fluxes (recall the short-circuit transient of the synchronous machine
for the conditions described in Section 4.4.4), and speed variations. If the
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transient components considered here are slightly damped, overlapping of
different phenomena makes use of simulations practically essential.

• If instead such transient components are quickly damped, the remaining
phenomena (related to the variations in amplitude of rotor fluxes and speed)
can be analyzed by considering only the “steady-state” responses, as if the
electrical part of the system were in a sinusoidal operation (in general, at
the three sequences), slowly varying in amplitude and frequency.

In this last case (assuming that the three sequences are present):

• The behavior of the phase variables can be derived, starting from the cor-
responding symmetrical components.

• The analysis of the electromechanical phenomena can be simplified by
considering, for each machine, the torque resulting only from the posi-
tive sequence (recall Section 4.4.3). Therefore, it is possible to refer to
Park’s vectors corresponding only to the positive sequence, by considering
perturbations on the electrical part by equivalent impedances derived from
Figs. 5.58 and 5.59, according to Figures 5.63 and 5.64.

ANNOTATED REFERENCES

Among references of more general interest, the following ones are mentioned: 5, 6, 23,
25, 26, 42, 47, 50, 64.

Furthermore, regarding

• network elements (in general): 99;

• regulating transformers: 184;

• ac lines: 188, 193, 196, 306, 319;

• dc links: 24, 139, 304;

• loads: 112, 153, 164, 255, 295, 296, 297, 318, 328, 334, in addition to some notes
prepared by the author in view of the writing of 53;

• short-circuit currents: 29.



CHAPTER 6

VOLTAGE AND REACTIVE
POWER CONTROL

6.1. GENERALITIES

Based on Chapter 2, the close relationship between the voltage magnitudes
and reactive powers at steady-state is evident. The approximations defined in
Figure 2.7, for the case of the “dc model,” should be recalled. (A similar
interrelation holds between voltage phase-shifts and active powers, as shown
also in Figure 2.6.)

Within this concern it must be noted that, under the most usual operating
conditions, the network is predominantly inductive and thus(1):

• reactive powers absorbed by the network itself (e.g., lines, transformers,
terminals of dc links, etc.) must be considered, in addition to reactive powers
demanded by loads;

• the transportation of reactive powers from generators to loads would usu-
ally imply, in addition to the previously mentioned absorption, unaccept-
able voltage drops (in the same sense, i.e., from generators to loads) if
proper actions are not undertaken within the network as specified in the
following.

(1) The situation also can be inverted at least partially in some cases, e.g., during light load hours,
with reactive power generated by lines (which are relatively unloaded) and increasing voltages from
generators to loads. Furthermore, what has been discussed so far can be emphasized in the case
where long lines are present, e.g., constructed to exploit hydraulic energy sources that are far from
the rest of the system.

486
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On the other hand, reactive power injections that can be achieved by genera-
tors are generally not sufficient for:

• the matching of the total reactive power demand, because of the limits on
generators themselves (Fig. 2.9);

• the accomplishment of an acceptable voltage steady-state, because of the
concentration of generators in relatively few “sites” (consistent with tech-
nical, environmental constraints etc.).

It is then convenient to intervene also within the transmission and distribution
networks and near to loads, for instance by:

• injecting reactive power (usually positive, or possibly negative in those
cases mentioned in footnote(1)) using shunt condensers or inductors or, for
more general control functions, static or synchronous compensators;

• reducing the total absorbed reactive power using series condensers;
• adjusting voltage levels using tap-changing transformers.

The locations at which such remedies are installed can be generally chosen without partic-
ular constraints of the environmental type, etc. Therefore, the situation under examination
can be considered as a complementary one with respect to that concerning the active power
steady-state. This holds as far as both power generation and transportation are of concern,
because active power transportation implies relatively small losses and usually acceptable
phase-shifts (without prejudices for stability), so that the active power generation can be
effectively concentrated at few proper sites as previously mentioned.

The voltage “support” along a line, aside from that which is intrinsically due
to series inductances and shunt capacitances of the line itself:

• may make it possible to have acceptable voltage values at any location (also
matching the requirements of possible intermediate loads);

• also can be important in relation to the transfer limit of the active power
(see Section 6.4c).

It also must be remembered that, along a uniform and nondissipative line (see
Section 5.4):

• the voltage amplitude is constant (assuming of course that such a value is
achieved at the line terminals) if and only if the transmitted active power
is equal to the “characteristic” power P (o);

• in such conditions, the transmitted reactive power is zero at any line location
(whereas the phase-shift δ between terminal voltages is βa, where β is
the “phase constant” and a is the line length); thus, in practice, a good
voltage profile implies also a low value of transmitted reactive power at
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different locations, and thus low current and low losses at equal transmitted
active power.

Broadly it can be thought that, regarding the steady-state:

• the addition of shunt condensers or reactors or static compensators is equivalent to
a modification of the parameter c of the line (capacitance for unit of line length);

• the addition of series condensers is equivalent to a modification of the parameter l
(inductance for unit of line length);

so that, if such equivalencies were exact, a variation of P (o) and β would result.

In such conditions, the constant voltage profile also could be viewed as the result of an
“adjustment” of P (o) to the value P of active power to be transmitted (to which would
automatically correspond δ = βa).

However, the above cannot be generally extended to the transient operation (recall the
discussion in Section 5.2 regarding the dynamic behavior of condensers and inductors).
Furthermore, note that an excessive value of δ = βa can be unacceptable for stabil-
ity reasons.

Regarding the generic load, the addition of a shunt reactive element to absorb
a reactive power QR , and zero active power, obviously provides the capability
to adjust the load voltage and/or the overall required reactive power. As an
important additional effect, harmonic and/or flicker filtering can be obtained.

In the typical example of Figure 6.1 (in which Park’s transformation is applied
with a reference speed Ωr = ω, equal to the network frequency, and (R + jX)
defines the impedance of the line going to the load):

e = v + (R + jX)ı = v + (R + jX)
P − jQ

v∗

from which:
e

v
= 1 + (RP +XQ)+ j (XP − RQ)

v2

reactance
load

corrective
element

Figure 6.1. Addition of a shunt reactive element at a load node.
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Specifically:

• if the goal is v = e, it must be imposed that:

1 =
(

1 + RP +XQ

v2

)2

+
(
XP − RQ

v2

)2

from which Q(=Qc +QR) and thus QR , as functions of P and e(2);
• if, instead, the goal is Q = 0, i.e., total “power factor correction,” it is

necessary to set QR = −Qc, whereas v varies with P and e.

By posing uR � (RP +XQ)/v2, uX � (XP − RQ)/v2, usually:

uX � 1 + uR

so that:

e

v
=
√
(1 + uR)

2 + u2
X

∼= 1 + uR

e − v

v
∼= uR

Furthermore, if R � X and v ∼= e, it can be written that uR ∼= XQ/e2 � 1,
and thus:

v ∼= e − X

e
Q [6.1.1]

However, in practice, the minimum and maximum limits on QR and Qc also
should be considered. Therefore,

• to have v = e (from which the value of Q is derived) for any Qc, with:

QR = (Q−Qc) ∈ [Q−Qcmax,Q−Qcmin]

it is necessary and sufficient that:{
QRmin ≤ Q−Qcmax

QRmax ≥ Q−Qcmin

• if, instead, a voltage v �= e is accepted, it also can be accepted that QRmin >

Q−Qcmax and/or QRmax < Q−Qcmin.

(2) Note that the solution for Q is given, for any desired value of v, by:

Q = X(ve cos α − v2)− Rve sin α

R2 +X2

where the phase shift α � � e − � v depends on the active power P , according to:

P = Xve sinα + R(ve cosα − v2)

R2 +X2
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The addition of shunt reactive elements also may permit the “balancing” of load on the
three phases. As an example, let us assume that:

• the (composite) load is linear and can be represented by three delta-connected admit-
tances (in the case of a wye connection with isolated neutral, one can apply the
well-known wye-delta transformation);

• voltages va , vb, vc (at the delta terminals) are sinusoidal of the positive sequence
and at frequency ω.

By generically referring to Figure 6.2, it follows, in terms of symmetrical components (pha-
sors), and for brevity setting h � ẽ120◦ = e−̃240◦

, Ỹab � Yab(̃ω) etc. (see Appendix 1):

ṽa = 1√
3
ṽ(1), ṽb = 1√

3
h2ṽ(1), ṽc = 1√

3
hṽ(1)

ı̃ab = Ỹab(ṽa − ṽb), ı̃bc = Ỹbc(ṽb − ṽc), ı̃ca = Ỹca(ṽc − ṽa)

ı̃a = ı̃ab − ı̃ca , ı̃b = ı̃bc − ı̃ab, ı̃c = ı̃ca − ı̃bc

and finally: 


ı̃(0) = 1√
3
(ı̃a + ı̃b + ı̃c)

ı̃(1) = 1√
3
(ı̃a + hı̃b + h2 ı̃c)

ı̃(2) = 1√
3
(ı̃a + h2 ı̃b + hı̃c)

from which it follows:

ı̃(0) = 0

ı̃(1) = ṽ(1)(Ỹab + Ỹbc + Ỹca)

ı̃(2) = −h2ṽ(1)(Ỹab + hỸbc + h2Ỹca)


 [6.1.2]

Figure 6.2. Example of three-phase load (the symbol Ỹ represents admittance
in phasor terms).
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To balance the load on the three phases, it is necessary to set ı̃(2) = 0 (so that there
are only currents ia , ib, ic of the positive sequence) and thus, due to the last part of
Equations [6.1.2]:

0 = Ỹab + hỸbc + h2Ỹca [6.1.3]

The reactive power Q absorbed, which can be set to a desired value (e.g., Q = 0), is then:

Q = Im(ṽ(1)ı̃
∗
(1)) = −3V 2

e Im
(
ı̃(1)

ṽ(1)

)
= −3V 2

e Im(Ỹab + Ỹbc + Ỹca) [6.1.4]

where Ve is the rms value of va , vb, vc. In particular, the condition Q = 0 corresponds to:

0 = Im(Ỹab + Ỹbc + Ỹca) [6.1.4′]

On the other hand, by means of Equations [6.1.2] (with Ỹab = Gab + ̃Bab , etc.) it is
possible to derive:

Bab = 1

3
Im
(
ı̃(1) + ı̃(2)

ṽ(1)

)
− 1√

3
Re

(
ı̃(2)

ṽ(1)

)
+ 1√

3
(Gca −Gbc)

Bbc = 1

3
Im
(
ı̃(1) − 2ı̃(2)

ṽ(1)

)
+ 1√

3
(Gab −Gca)

Bca = 1

3
Im
(
ı̃(1) + ı̃(2)

ṽ(1)

)
+ 1√

3
Re

(
ı̃(2)

ṽ(1)

)
+ 1√

3
(Gbc −Gab)




[6.1.5]

from which, by imposing ı̃(2) = 0, and Q to the desired value, the following condi-
tions result:

Bab = −1

9

Q

V 2
e

+ 1√
3
(Gca −Gbc)

Bbc = −1

9

Q

V 2
e

+ 1√
3
(Gab −Gca)

Bca = −1

9

Q

V 2
e

+ 1√
3
(Gbc −Gab)




[6.1.6]

Assuming that such conditions are not already satisfied by the load admittances, it is
possible to achieve the desired values Bab , Bbc , Bca by adding the susceptances Bab(R),
Bbc(R), Bca(R) as indicated in Figure 6.3, with:

Bab(R) = Bab − Bab(L)

Bbc(R) = Bbc − Bbc(L)

Bca(R) = Bca − Bca(L)


 [6.1.7]

Therefore, by doing so, the positive sequence voltages va , vb, vc lead to currents ia , ib, ic
of only positive sequence. However, in general, possible voltages of the negative sequence
would not lead to currents of only negative sequence.

Under operation, the deduction of the required values Bab(R) etc. requires — based on
Equations [6.1.6] and [6.1.7] — the knowledge of load conductances (Gab etc.) and
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Figure 6.3. Balancing of load on the three phases (for the example of Fig. 6.2).

susceptances (Bab(L) etc.) which must be estimated from measurements of ṽa , ṽb, ṽc,
ı̃a(L), ı̃b(L), ı̃c(L) (Fig. 6.3).

Alternatively, by writing the load susceptances in a form similar to Equations [6.1.5], it
can be derived:




Bab(R) = −1

9

Q

V 2
e

− 1

3
Im
(
ı̃(L)(1) + ı̃(L)(2)

ṽ(1)

)
+ 1√

3
Re

(
ı̃(L)(2)

ṽ(1)

)

Bbc(R) = −1

9

Q

V 2
e

− 1

3
Im
(
ı̃(L)(1) − 2ı̃(L)(2)

ṽ(1)

)

Bca(R) = −1

9

Q

V 2
e

− 1

3
Im
(
ı̃(L)(1) + ı̃(L)(2)

ṽ(1)

)
− 1√

3
Re

(
ı̃(L)(2)

ṽ(1)

)

where: 


ı̃(L)(1) = 1√
3
(ı̃a(L) + hı̃b(L) + h2 ı̃c(L))

ı̃(L)(2) = 1√
3
(ı̃a(L) + h2 ı̃b(L) + hı̃c(L))

ṽ(1) = √
3 ṽa

so that the values Bab(R) etc. also can be derived more directly, by measurements of ṽa ,
ı̃a(L), ı̃b(L), ı̃c(L).

To obtain satisfactory working points for the different loading conditions, and
to control the set of voltages and reactive powers during transients, it is possible
to use(3):

(3) Some of these actions can be performed to avoid unstable situations following large perturbations
(see specifically Section 7.3).
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• discontinuous variations (by switching) of condenser capacitances and “reac-
tor” inductances, at least at the most important nodes of the network;

• continuous variations of the equivalent reactance (positive or negative) of
static compensators, and of the excitation voltage of synchronous compen-
sators and, more generally, of synchronous machines;

• quasi-continuous variations (i.e., switching, but through relatively small
steps) of the transformation ratio of tap-changing transformers.

With condensers and reactors, control may be achieved through suitable
“thresholds.” In the other cases, the control can be performed, exactly or almost
so, with continuity.

In the rest of this chapter, these last types of control (continuous or almost
so) — including synchronous machine excitation, tap-changing transformers, and
static compensators — will be managed by considering some simple (ideal) cases
in which they:

• appear separately (this will allow the examination of their respective char-
acteristics; in real cases, the control actions can instead interact with one
another to various degrees);

• do not interact with any electromechanical phenomenon (in real cases, these
interactions can be significant; see Sections 7.2.2, 7.2.3, and 8.5.2).

6.2. CONTROL OF SYNCHRONOUS MACHINE EXCITATION

6.2.1. The Synchronous Machine in Isolated Operation

To examine the characteristics of the v/Q control, by disregarding the inter-
actions with electromechanical phenomena, consider a synchronous machine in
isolated operation as shown in Figure 6.4. The interactions with electromechan-
ical phenomena will be considered later in Sections 7.2.2, 7.2.3, and 8.5.2.

In a schematic way, to obtain a more direct comparison between different sit-
uations, let us furthermore assume that the load is “purely” inductive or resistive
or capacitive. In practice:

• the case of a purely reactive load may, for example, correspond to the
operation on an “unloaded” line (i.e., not connected, at the end terminal, to
any load);

• the case of a purely active load may correspond to a limit condition in
(occasional) isolated operation, with the load located very close to the syn-
chronous generator.

For simplicity, it can be further assumed that the load is directly connected to
the generator terminals. If however, the connection is made through an inductive
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synchronous
machine

load

Figure 6.4. Synchronous machine in isolated operation on (a) inductive, (b)
resistive, (c) capacitive load.

element (e.g., the step-up transformer), it may be considered, without any formal
change, by simply adding its inductance to the machine’s inductances.

Finally, it will be assumed that the voltage to be regulated is the load voltage,
and thus the one downstream of this (possible) inductive element.

(a) Operation on Inductive Load (Fig. 6.4a)
Let us assume Park’s transformation with an angular reference (θr ) rotating at the
same electrical speed (Ω) as the machine, so that dθr/dt � Ωr = Ω , and further
assume that this speed remains constant.

By the notation already defined in Chapter 4, it then follows that:

(s + jΩ)ψ − Rı = v = (s + jΩ)Lı [6.2.1]

or equivalently:

sψd −Ωψq − Rid = vd = sLid −ΩLiq

Ωψd + sψq − Riq = vq = ΩLid + sLiq

}
[6.2.1′]

and further, disregarding saturation:

ψd = A(s)vf − Ld(s)id
ψq = −Lq(s)iq

}
[6.2.2]

where Ld(s) and Lq(s) are, for example, of the type given by Equations [4.1.26]
or of a higher order (recall Equation [4.3.5] and also, in “per unit”, [4.3.6] etc.)(4).

(4) The hypothesis that Ω = constant would imply an inertia coefficient M = ∞, as the electromag-
netic torque Ce is not zero because of both the active power dissipated in the armature resistance
R and that absorbed or delivered by the machine and load inductances (caused by changes in the
stored energy) during transients. However, the values of Ce can be disregarded.
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Figure 6.5. Voltage regulation by excitation control: broad block diagram.

For the transfer function G(s) � (∆v/∆vf )(s) reported in Figure 6.5, it should
be noted that:

• it is v2 = v2
d + v2

q , and thus ∆v = (vod∆vd + voq∆vq)/v
o, where vo is posi-

tive by definition, whereas vod and voq can assume either sign;

• from Equations [6.2.1′] and [6.2.2], it is possible to derive equations such as:




vd

vf
= Ω2LNd(s)

A(s)

Ψ (s)

vq

vf
= Ω2LNq(s)

A(s)

Ψ (s)

where Nd(s) and Nq(s) are proper functions, and:

Ψ (s) � (s2 +Ω2)(Ld(s)+ L)(Lq (s)+ L)

+ sR(Ld (s)+ Lq(s)+ 2L)+ R2 [6.2.3]

• it then follows, because A(0), Ψ (0) > 0, and assuming that vof > 0:

G(s) = F(s)√
F(0)

Ω2L
A(s)

Ψ (s)

where:
F(s) � Nd(0)Nd(s)+Nq(0)Nq(s)

(if, instead, we would assume vof < 0, G(s) would change its sign).

Similar conclusions formally hold for the following cases (b), (c) also.
As an example, Figure 6.6a shows the frequency response diagrams of G(̃ν),

assuming A(s) = A(0)/(1 + sT̂ ′
do), Ld(s) = (Ld + sT̂ ′

doL̂
′
d)/(1 + sT̂ ′

do), with
L̂′
d = 0.3Ld , T̂ ′

do = 2000/Ω , Lq(s) = Lq = 0.6Ld (salient pole machine), L =
Ld , and R = 2 · 10−3ΩLd . Such diagrams remain practically unchanged when
assuming R = 0 and/or disregarding the dynamic behavior of inductances.

In the absence of control (i.e., if the excitation voltage vf is constant), the
characteristic equation is given by Ψ (s) = 0 (recall Equation [6.2.3]).
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Figure 6.6. Operation on inductive load: frequency response: (a) of the transfer
function (∆v/∆vf )(s) = G(s); (b) of the overall transfer function Gv(s)G(s) of
the loop (see Fig. 6.5 and Equation [6.2.7]).

If the dynamic behavior of inductances is considered, but it is assumed that
R = 0, such an equation simply leads to:

0 = s2 +Ω2

0 = Ld(s)+ L

0 = Lq(s)+ L


 [6.2.4]

from which it is possible to derive:

• two purely imaginary characteristic roots (±̃Ω) that correspond to a rela-
tively high resonance frequency (Ω);

• other characteristic roots that are real negative and can be derived from
the last two parts of Equations [6.2.4]; specifically, by assuming Ld(s) =
(Ld + sT̂ ′

doL̂
′
d)/(1 + sT̂ ′

do), Lq(s) = Lq , such roots are reduced to a single
real negative root (−(Ld + L)/(L̂′

d + L)T̂ ′
do) at low frequency.

Furthermore it can be derived:

G(s) � ∆v

∆vf
(s) = ΩL

A(s)

Ld(s)+ L
[6.2.5]

the poles of which are only the solutions of the second of Equations [6.2.4], and
thus they are real and negative.
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Note that Equations [6.2.4], respectively, correspond to the dynamic behav-
iors of:

• inductances (of machine and load);
• rotor windings on the d axis;
• rotor windings on the q axis;

which therefore, for R = 0, are noninteracting.
In practice, the presence of the armature resistance R causes some interactions

which, however, are usually negligible because of the relatively small value of
R. The most important effect of R is modifying the two high-frequency roots, the
real part of which becomes negative(5). As a consequence, the transients related
to the dynamic behavior of inductances become damped.

Considering this, as well as the relative slowness of the phenomena related to
excitation control, in the following we will also assume R = 0 and disregard the
dynamic behavior of inductances.

Still in the absence of control, if the dynamic behavior of inductances is not
considered and R = 0 is assumed, then:

• the characteristic equation leads to the second and the third of Equa-
tions [6.2.4];

• the transfer function [6.2.5] applies again, which is not affected by the
dynamic behavior of rotor windings on the q axis, nor by that of inductances
(whereas it can be intended that ψq , vd , and iq are zero).

For R �= 0, Equations [6.2.1] and [6.2.1′] must be substituted by:

jΩψ − Rı = v = jΩLı [6.2.6]

−Ωψq − Rid = vd = −ΩLiq
Ωψd − Riq = vq = ΩLid

}
[6.2.6′]

so that, considering Equations [6.2.2], the following characteristic equation is
derived:

0 = Ω2(Ld (s)+ L)(Lq (s)+ L)+ R2 � φ(s)

whereas it holds that:

G(s) = F(s)√
F(0)

Ω2L
A(s)

φ(s)

(5) For the usual values of R, which are relatively small, such roots can be approximated by
∼ (α ± ̃Ω), intending:

α � −R

2
Re

(
1

Ld (̃Ω)+ L
+ 1

Lq(̃Ω)+ L

)
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with:
F(s) = Ω2(Lq(s)+ L)(Lq + L)+ R2

For Lq(s) = Lq , the characteristic equation is simply given by:

0 = Ld(s)+ L+ R2

Ω2(Lq + L)

whereas:

G(s) = ΩL

A(s)

√
1 +

(
R

Ω(Lq + L)

)2

Ld(s)+ L+ R2

Ω2(Lq + L)

and such expressions are similar to the second of Equations [6.2.4] and to [6.2.5], respec-
tively. For example, in Equation [6.2.4], it is sufficient to substitute L by L+ R2/

(Ω2(Lq + L)).

The criteria for the synthesis of the voltage regulation loop (Fig. 6.5) should,
as usual, account for (1) the static effect of disturbances, and (2) the response
speed and stability.

(1) Regarding the static effect of disturbances, it is insightful to consider
the voltage drop from no-load to on-load conditions. By assuming for
simplicity R = 0:
• in the absence of regulation it holds that:

v = G(0)vf = ΩL
A(0)

Ld + L
vf = L

Ld + L
v(o)

where v(o) is the no-load voltage (L = ∞), and therefore, in relative
terms:

a � v(o) − v

v(o)
= Ld

Ld + L

(e.g., a = 50% for L = Ld , a = 67% for L = Ld/2);
• in the presence of regulation and assuming µo � Gv(0)ΩA(0)(6), it

instead holds that:

v = Gv(0)G(0)

1 +Gv(0)G(0)
vf = µoL

Ld + L+ µoL
vf

v(o) = µo

1 + µo
vf

(6) Note that the static gain of the regulation loop (Fig. 6.5) is given by Gv(0)G(0), where G(0)
is equal to ΩA(0) at “no-load” operation (L = ∞); thus µo is, by definition, the static gain of the
loop at no-load operation.
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so that:

a = Ld

Ld + (1 + µo)L

For any desired a, one can then derive µo (and thus also Gv(0)), i.e.,

µo = Ld

aL
− Ld + L

L

(where the last term is usually negligible). For example, by assuming that
a = 0.5%, it follows that µo ∼= 200 for L = Ld , µo ∼= 400 for L = Ld/2.
As a result of the regulation, the value of a is reduced approximately
µoL/(Ld + L) times.

(2) Regarding the response speed and stability, the case considered above
does not imply any particular problem, with the simplifications adopted.
If for instance, it is assumed that R = 0, A(s) = A(0)/(1 + sT̂ ′

do), and
Ld(s) = (Ld + sT̂ ′

doL̂
′
d)/(1 + sT̂ ′

do), the response delay of G(s) is, in fact,
defined only by the time constant T � ((L̂′

d + L)/(Ld + L))T̂ ′
do which,

when L is not too small, is slightly smaller than T̂ ′
do . It is possible then, to

think of a transfer function simply of the proportional type, i.e., Gv(s) �
(∆vf /∆(vrif − v))(s) = constant = Gv(0), with a sufficiently high value
(at least as high as in (1)), and corresponding to a cutoff frequency:

νt ∼= Gv(0)G(0)

T
= µoL

T (Ld + L)
= µoL

T̂ ′
do(L̂

′
d + L)

This value is (slightly) smaller thanµo/T̂ ′
do , which, for example, is 50 sec−1

for T̂ ′
do = 7 sec and µo = 350 (recall footnote(4), Chapter 3).

However, this would not be practically acceptable for various reasons,
including:

• other delays disregarded here, that would cause instability;

• saturation (hitting the “ceiling”; see Section 6.2.2a) of the excitation
system during transients, even for relatively small disturbances (this
would make the response speed, evaluated with reference only to the
linear behavior, unrealistic);

• inconsistency with other situations, such as operation when connected
to the network (for which the interactions with the electromechanical
phenomena must be considered; see Section 7.2), and so on.

Therefore, it is convenient to accept a relatively small cutoff frequency
(e.g., 5 rad/sec, about 10 times lower than what is seen above), that cor-
responds to a “medium frequency” gain sufficiently smaller than µo.
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The above requirements may be satisfied, apart from further unavoidable
delays (e.g., time constants of some hundredth of a second, caused by the v

transducer in the feedback path, etc.), by a transfer function:

Gv(s) = 1

ΩA(0)
µo

1 + sT2

1 + sT1
[6.2.7]

In fact, by assuming T1 � T2, the low-pass effect of this function permits Gv(0)
to have the desired magnitude, and the cutoff frequency νt ∼= (µoT2/T1)L/

(T̂ ′
do(L̂

′
d + L)) to be not too large; see Figure 6.6b.

(b) Operation on Resistive Load (Fig. 6.4b)
Under the usual assumptions, the following equations now hold:

(s + jΩ)ψ − Rı = v = RLı [6.2.8]

sψd −Ωψq − Rid = vd = RLid
Ωψd + sψq − Riq = vq = RLiq

}
[6.2.8′]

In the absence of control (vf = constant) and assuming Ω = constant, the
characteristic equation is again of the type Ψ (s) = 0 (recall Equation [6.2.3])
with R replaced by (R + RL), and L = 0. Furthermore, it is:

G(s) � ∆v

∆vf
(s)

= F(s)√
F(0)

ΩRL

A(s)

(s2 +Ω2)LdLq + s(R + RL)(Ld + Lq)+ (R + RL)2

where:
F(s) � (s2 +Ω2)Lq(s)Lq + s(R + RL)Lq + (R + RL)

2

For s = ̃ ν, the continuous line diagrams of Figure 6.7a are obtained, by assum-
ing A(s) = A(0)/(1 + sT̂ ′

do), Ld(s) = (Ld + sT̂ ′
doL̂

′
d)/(1 + sT̂ ′

do), L̂
′
d = 0.3Ld ,

T̂ ′
do = 2000/Ω , Lq(s) = Lq = 0.6Ld , and RL = ΩLd , R = 0.

Disregarding, for reasons similar to those given above, the dynamic behavior
of inductances, it follows that:

−Ωψq − Rid = vd = RLid
Ωψd − Riq = vq = RLiq

}
[6.2.9]

and the characteristic equation becomes, without control:

0 = Ω2Ld(s)Lq (s)+ (R + RL)
2

whereas:

G(s) = F(s)√
F(0)

ΩRL

A(s)

Ω2Ld(s)Lq(s)+ (R + RL)
2

with F(s) = Ω2Lq(s)Lq + (R + RL)
2.
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Figure 6.7. Operation on resistive load: (a) frequency response of the transfer
function (∆v/∆vf )(s) = G(s); (b) block diagram (including speed variations).

For Lq(s) = Lq the characteristic equation is simply given by:

0 = Ld(s)+ (R + RL)
2

Ω2Lq

whereas:

G(s) = RL

√
1 +

(
R + RL

ΩLq

)2
A(s)

Ld(s)+ (R + RL)
2

Ω2Lq
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and such expressions are formally similar to the second of Equations [6.2.4] (with the
inductance L substituted by (R + RL)

2/(Ω2Lq)) and to Equation [6.2.5] (with L substi-
tuted by RL

√
1 + ((R + RL)/(ΩLq))2/Ω for the numerator and, again, by (R + RL)

2/

(Ω2Lq) for the denominator. For R = 0 and RL in the order of ΩLq , such values are,
respectively, approximately

√
2Lq and Lq).

For a better approximation, it is possible to also account for the speed varia-
tions Ω caused by the variations in the electromagnetic torque (and in the driving
torque, due to the effect of the speed governor).

To this purpose, using the same notation (and approximations) seen in Chap-
ter 3, it is possible to write an equation:

∆Ω = − ∆Pe

sM +Gf (s)

where, disregarding R:

∆Pe = ∆

(
v2

RL

)
= 2vo

RL

∆v

Furthermore, by linearizing Equations [6.2.9] (for R = 0) and with some
development, it can be derived:

∆v = G(s)∆vf +G′(s)∆Ω

(see Figure 6.7b), where:

G′(s) � RL

RL

vo

Ωo
+ vodv

o
q

vo
(Lq(s)− Ld(s))

Ωo2Ld(s)Lq (s)+ R2
L

= b
Ωo2Lq(Lq + Lq(s)− Ld(s))+ R2

L

Ωo2Ld(s)Lq (s)+ R2
L

having set, for brevity:

b � vo/Ωo

1 + (ΩoLq/RL)2

By eliminating ∆Ω and ∆Pe, it can be finally derived:

∆v = G(s)

1 + 2vo

RL

G′(s)
sM +Gf (s)

∆vf

which however, in practice, differs significantly from ∆v = G(s)∆vf only in a
range of relatively low frequencies (see the qualitative example in Figure 6.7a),
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in which the gain of the regulation loop can be made large enough (recall
Equation [6.2.7]) to noticeably reduce the speed variation effects on voltage.

In any case, for the same reasons previously given, the suitability of a Gv(s)

similar to Equation [6.2.7] is confirmed.

Regarding the variations of ∆v/v at steady-state without control, if we assume, for sim-
plicity, R = 0 and Ld = Lq , then:

• in the case of a purely inductive load, we found that v = ΩL(A(0)/(Ld + L))vf ,
and therefore:

∆v/v

∆L/L
= 1

1 + L/Ld

• instead, in the present case (purely resistive load), it holds that:

v = RL

A(0)

Ld

√
1 +

(
RL

ΩLd

)2
vf

and thus:
∆v/v

∆RL/RL

= 1

1 + (RL/ΩLd)2

which is larger or smaller than the similar ratio for the previous case, according to
whether R2

L ≶ Ω2LLd .

(c) Operation on Capacitive Load (Fig. 6.4c)
Unlike the previous cases, the dynamic behavior of the load capacitance now
must be considered. By assuming again that Ωr = Ω = constant, it follows that:

(s + jΩ)ψ − Rı = v = 1

(s + jΩ)C
ı [6.2.10]

or equivalently:

(s2 −Ω2)ψd − 2sΩψq − sRid +ΩRiq = svd −Ωvq = 1

C
id

2sΩψd + (s2 −Ω2)ψq −ΩRid − sRiq = Ωvd + svq = 1

C
iq




[6.2.10′]

in addition to Equations [6.2.2]. With the hypothesis Ω = constant, recall foot-
note(4) referring to the case of inductive load.

Based on what has been observed in previous cases, one could be inclined to
disregard the dynamic behavior of machine inductances and of load capacitance



504 CHAPTER 6 VOLTAGE AND REACTIVE POWER CONTROL

(shortly, the “LC dynamics”). However, as we will see, this is not always an
acceptable approximation, especially for small values of 1/(ΩC)(7).

If the LC dynamics are not considered, the explicit terms in s in the previous
equations simply must be disregarded, which is equivalent to substitution of the
reactance ΩL by −1/(ΩC) in Equations [6.2.6] and [6.2.6′]. By also considering
Equations [6.2.2] the following characteristic equation then holds, in the absence
of control (vf = constant):

0 =
(
ΩLd(s)− 1

ΩC

)(
ΩLq(s)− 1

ΩC

)
+ R2 � φ(s) [6.2.11]

and it is:

G(s) � ∆v

∆vf
(s) = ± F(s)√

F(0)

1

C

A(s)

φ(s)

according to whether vof /φ(0) ≷ 0, with;

F(s) �
(
ΩLq(s)− 1

ΩC

)(
ΩLq − 1

ΩC

)
+ R2

If R is disregarded, Equation [6.2.11] simply leads to:

0 = Ω2Ld(s)C − 1
0 = Ω2Lq(s)C − 1

}
[6.2.12]

without any interaction between the dynamic behavior of rotor windings on the
d axis and that of rotor windings on the q axis. It further results that

√
F(0) =

|ΩLq − 1/(ΩC)|, and we can derive:

G(s) = ±Ω A(s)

1 −Ω2Ld(s)C

according to whether vof /(1 −Ω2LdC) ≷ 0. Therefore, it simply holds:

G(s) = Ω
A(s)

1 −Ω2Ld(s)C

by assuming that vof has the same sign as (1 −Ω2LdC).

(7) In the following analysis, relatively large values of C also will be considered, which correspond
to small load impedances of little practical interest. This will be done not only for reasons of formal
completeness, but also to illustrate the effects of the LC dynamics for capacitance values comparable
with those adopted in the “series” line compensation (see Section 7.2.4).
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Note that, in terms of transfer functions:




id

vf
(s) = −Ω2C

A(s)

1 −Ω2Ld(s)C

iq

vf
(s) = 0




vd

vf
(s) = 0

vq

vf
(s) = Ω

A(s)

1 −Ω2Ld(s)C

Based on the above assumptions, it then follows that (vq/vf )(s) = G(s), which means
that ∆vq = +∆v, and at steady-state voq = vo > 0(8).

Assuming that A(s) = A(0)/(1 + sT̂ ′
do), Ld(s) = (Ld + sT̂ ′

doL̂
′
d)/(1 + sT̂ ′

do),
Lq(s) = Lq , the characteristic equation in the absence of control is reduced to:

0 = 1 −Ω2LdC + sT̂ ′
do(1 −Ω2L̂′

dC)

and it is:

G(s) = Ω
A(0)

1 −Ω2LdC + sT̂ ′
do(1 −Ω2L̂′

dC)

with a real pole, which is either positive or negative according to whether 1/(ΩC)
is internal or external to the interval (ΩL̂′

d,ΩLd); refer to the Nyquist diagrams
in Figure 6.8 for the numerical example with L̂′

d = 0.3Ld , T̂ ′
do = 2000/Ω , Lq =

0.6Ld . Therefore, without control, the (asymptotic) stability condition can be
written as:

1

ΩC
/∈ [ΩL̂′

d,ΩLd ]

More generally, but still for R = 0, L̂′
d can be substituted by Ld(∞).

However, if the LC dynamics also are considered, the stability condition may be more
restrictive (according to condition [6.2.15], it must hold 1/(ΩC) > ΩLd ).

In any case, the possible instability constitutes the well-known phenomenon called “self-
excitation,” which also involves the magnetic characteristic of the machine, according to
Figure 6.9 (the notations of which are the same as those in Fig. 4.10). More precisely, if
1/(ΩC) is within ΩL̂′

d and ΩLd , and more in general if 1/(ΩC) < ΩLd , the working
point A is unstable, and the system reaches point A′ (or A′′) (with relatively large values
of current, flux, and voltage), in which:

dψo
sd

d(−iod )
<

1

Ω2C
− Ll

(8) Therefore, differently from what was reported in the footnote(6) of Chapter 4, Section 4.4.1,
it is here assumed that voq > 0 (instead of uoq � voq +ΩLqi

o
d > 0), so that it results in vof < 0

for 1/(ΩC) < ΩLd , or equivalently for Qo/vo2 = −ΩC < −1/(ΩLd) (instead of Qo/vo2 ∈
(−1/(ΩLq),−1/(ΩLd))).
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Figure 6.8. Operation on capacitive load: frequency response of the transfer
function (∆v/∆vf )(s)/(ΩA(0)) = G(s)/(ΩA(0)), with R = 0.

so that 1/(ΩC) is larger than the equivalent reactance given by:

(ΩLd)eq � Ω

(
dψo

sd

d(−iod )
+ Ll

)

The self-excitation phenomenon may be complicated by the presence of hysteresis in
the magnetic characteristic. However, it must be underlined that, to explain the self-
excitation behavior, the consideration of hysteresis (as usually done) is both insufficient
(unless a dynamic model is also defined) and unnecessary (according to the discussion
above).

For R �= 0, and again assuming Ld(s) = (Ld + sT̂ ′
doL̂

′
d)/(1 + sT̂ ′

do), Lq(s) =
Lq , the characteristic Equation [6.2.11] can be written as:

0 =
[
Ω2(Ld + sT̂ ′

doL̂
′
d)− 1 + sT̂ ′

do

C

](
Ω2Lq − 1

C

)
+ R2Ω2
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Figure 6.9. Self-excitation behavior, for 1/(ΩC) < ΩLd , i.e., for 1/(Ω2C)−
Ll < Ld − Ll , with (see also Fig. 4.10):

ψo
Sd =



(Ld − Ll)

(
iof

τf
− iod − ioSd

)
(characteristic (a))

ψo
d + Lli

o
d = −

(
1

Ω2C
− Ll

)
iod (straight-line (b))

.

from which:

s = −

ΩLd − 1

ΩC
+ R2

ΩLq − 1

ΩC(
ΩL̂′

d − 1

ΩC

)
T̂ ′

do

Therefore, a condition R > Rmin can be derived for the (asymptotic) stability,
where Rmin depends on 1/(ΩC) according to Figure 6.10.

Regarding the effect of the voltage regulation, by assuming for simplicity
Gv(s) = constant = µ/(ΩA(0)) > 0 (and R = 0), and indicating by P(+) the
number of poles of G(s) having positive real part, the following stability condi-
tions can be derived, in terms of µ:

• case 1:
1

ΩC
> ΩLd (P(+) = 0) any µ

• case 2:
1

ΩC
∈ (ΩL̂′

d ,ΩLd) (P(+) = 1) µ > Ω2LdC − 1

• case 3:
1

ΩC
< ΩL̂′

d (P(+) = 0) µ < Ω2LdC − 1
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stability zone

Figure 6.10. Operation on capacitive load: minimum value of the armature resis-
tance R, for stability (without considering the LC dynamics).

according to Figure 6.11a (recall also Fig. 6.8 and the Nyquist criterion). There-
fore, the regulation can also provide a stabilizing effect (case 2) or a destabilizing
one (case 3).

By the Nyquist criterion, it is easy to extend the analysis to the case for which
Gv(s) is not constant. For instance, if Gv(s) is given by Equation [6.2.7] (with
the usual values of T1, T2), it is possible to again find the previous conditions by
assuming µ = µo.

However, the interactions with the LC dynamics may be important. To deter-
mine if this is the case, at least qualitatively (without making the analysis too
burdensome), it may be sufficient to again assume that R = 0. If the LC dynamics
are considered, the following characteristic equation is obtained in the absence
of control:

0 = (s2 +Ω2)2Ld(s)Lq (s)C
2 + (s2 −Ω2)(Ld (s)+ Lq(s))C + 1 � Ψ ′(s)

[6.2.13]
and it is:

G(s) = Ω
A(s)(1 − (s2 +Ω2)Lq(s)C)

Ψ ′(s)

Furthermore, by assuming for simplicity A(s) = A(0)/(1 + sT̂ ′
do), Ld(s) =

(Ld + sT̂ ′
doL̂

′
d)/(1 + sT̂ ′

do), Lq(s) = Lq , Equation [6.2.13] can be written:

0 = a5s
5 + a4s

4 + a3s
3 + a2s

2 + a1s + a0 � Ψ ′′(s) [6.2.14]
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case 3 case 2 case 1

case 3 case 2′′ case 2′ case 1

stability zone

Figure 6.11. Operation on capacitive load, with R = 0 and Gv(s) = constant =
µ/(ΩA(0)): admissible values of µ, for stability: (a) not considering the LC
dynamics; (b) considering the LC dynamics.

where:

a5 = T̂ ′
doL̂

′
dLqC

2, a4 = LdLqC
2, a3 = T̂ ′

do(L̂
′
d + Lq + 2Ω2L̂′

dLqC)C

a2 = (Ld + Lq + 2Ω2LdLqC)C, a1 = T̂ ′
do(1 −Ω2L̂′

dC)(1 −Ω2LqC)

a0 = (1 −Ω2LdC)(1 −Ω2LqC)
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whereas:

G(s) = Ω
A(0)(1 − (s2 +Ω2)LqC)

Ψ ′′(s)

By applying, for instance, the Routh-Hurwitz criterion to Equation [6.2.14],
the following (asymptotic) stability conditions can be derived:

1

ΩC
> ΩLq,

1

ΩC
> ΩLd

or equivalently (since Lq ≤ Ld ) the only condition:

1

ΩC
> ΩLd [6.2.15]

Note that:

• for 1/(ΩC) = ΩL̂′
d and for 1/(ΩC) = ΩLd , the coefficients a1 and a0, respec-

tively, become zero;
• for 1/(ΩC) = ΩLq , both a1 and a0 become zero.

Furthermore, the number of poles of G(s) having positive real part is:

P(+) =




0 for
1

ΩC
> ΩLd (case 1)

1 for
1

ΩC
∈ (ΩLq,ΩLd) (case 2′)

2 for
1

ΩC
∈ (ΩL̂′

d ,ΩLq) (case 2′′)

and for
1

ΩC
< ΩL̂′

d (case 3)

so that case 2 previously defined (1/(ΩC) ∈ (ΩL̂′
d ,ΩLd)) now corresponds to

the two (very distinct) cases 2′ and 2′′.
To evaluate the effect of the voltage regulation, let us first assume Gv(s) =

constant = µ/(ΩA(0)) > 0. The Nyquist diagrams of the function G(̃ν) for the
different cases 1, 2′, 2′′, 3 are similar to those of Figure 6.8, for values of ν which
are not too high.

Therefore, without considering further details for such diagrams, one may be
tempted to conclude, based on Nyquist criterion, that the LC dynamics do not
modify the stability conditions in cases 1 and 2′, and that there is no value µ > 0
which can stabilize the (closed-loop) system in cases 2′′ and 3.

However, by carefully examining the different situations (also recalling the
Routh-Hurwitz criterion) and by writing:

µ∗ � (Ld − L̂′
d)

√
(Lq − L̂′

d)
2 + 8L̂′

dLq(L̂
′
d + Lq)Ω2C + L̂′

d − Lq

2L̂′
d(L̂

′
d + Lq)
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the following (asymptotic) stability conditions can be deduced:

• case 1: µ < µ∗

• case 2′: µ ∈ (Ω2LdC − 1, µ∗)
• case 2′′: no value µ > 0
• case 3: µ ∈ (µ∗,Ω2LdC − 1)

which are summarized in Figure 6.11b. Therefore, in cases 1 and 2′ there is also
the upper limitation µ < µ∗, and in case 3 there is the possibility of stabilizing
the system by a proper choice of µ.

The above conditions are indeed confirmed by the Nyquist criterion, if the
actual high-frequency behavior of G(̃ν) is considered. This can be seen, from a
qualitative point of view (that is, not to scale), from the diagrams of Figure 6.12.

For 1/(ΩC) decreasing from ΩLd to 0, the function G(s) presents, at first, a positive
real pole (case 2′), then two positive real poles, and finally a pair of complex conjugate
poles with a positive real part.

However, the hypothesis that Gv(s) = constant may not appear to be reason-
able, since the conditions derived above correspond to the behavior of G(s) in
frequency ranges that are very different from one another. In fact, in Figure 6.12,
the point 1/(1 −Ω2LdC) corresponds to ν = 0, whereas the point −1/µ∗ corres-
ponds to ν = ν∗, where:

ν∗2 �
L̂′
d + Lq + 2Ω2L̂′

dLqC −
√
(Lq − L̂′

d)
2 + 8L̂′

dLq(L̂
′
d + Lq)Ω2C

2L̂′
dLqC

which is relatively large (in the cases of Fig. 6.8, with 1/(Ω2LdC) = 2; 0.8; 0.1,
it results in ν∗/Ω ∼= 1.11; 0.31; 0.5, respectively).

If Gv(s) is of the type given in Equation [6.2.7], instead of the above-reported
conditions, it is possible to obtain the following ones:

• case 1: µoT2/T1 < µ∗

• case 2′: µo > Ω2LdC − 1, µoT2/T1 < µ∗

• case 2′′: still no solutions
• case 3: µoT2/T1 > µ∗, µo < Ω2LdC − 1

and these conditions appear (with µ = µo, and T2 < T1):

• less restrictive in cases 1 and 2′, which incidentally are the only meaningful
ones for the practical situations of isolated operation, as they do not imply
excessive currents;

• more restrictive in case 3.
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Figure 6.12. Effect of the LC dynamics on the diagram of G(̃ν)/(ΩA(0))
(see Fig. 6.8) at high frequencies (qualitative behaviors, not to scale): (a) case 1:
1/(ΩC) > ΩLd ; (b) case 2′: 1/(ΩC) ∈ (ΩLq,ΩLd); (c) case 2′′: 1/(ΩC) ∈
(ΩL̂′

d ,ΩLq); (d) case 3: 1/(ΩC) < ΩL̂′
d .
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Moreover, such effects can be similarly enhanced because of further delays in
Gv(s), not considered in Equation [6.2.7].

The relatively small value of µ∗ (note that certainly µ∗ < (Ld − L̂′
d)/L̂

′
d )

is the result of the presence of a poorly damped resonance in G(s), which is
responsible for increases in magnitude (relatively large, as shown in Fig. 6.12) at
the point −1/µ∗. In practice, such a resonance may instead be damped because
of the effects of resistances (machine armature and network resistances), and it
may happen that, in previous conditions, µ∗ should be substituted by a much
higher value.

Moreover, for a greater realism, functions Ld(s) and Lq(s) different (espe-
cially at high frequencies) from the ones previously considered also should be
considered, as well as the nonlinearities caused by the magnetic characteristic
of the machine etc. The hypothesis itself of purely capacitive load should be
reviewed. However, the analysis developed here is still useful, at least from a
qualitative perspective.

6.2.2. Typical Control Schemes

(a) Primary Control

(a1) Machine Voltage Regulation
As seen in Section 6.2.1, a transfer function Gv(s) � (∆vf /∆(vrif − v))(s) of
the type given in Equation [6.2.7] (neglecting small delays), i.e.,

Gv(s) = 1

ΩA(0)
µo

1 + sT2

1 + sT1
[6.2.16]

is acceptable in operation for inductive or resistive load and, with some cau-
tion, for capacitive load. A possible integral action, with Gv(0) = ∞, can be
accomplished by assuming (at unchanged µo/T1) µo, T1 → ∞.

The consequent control scheme is partially conditioned by the “excitation
system,” which may be basically of the following types (Fig. 6.13):

• “rotating” excitation:
• by “dc exciter” (Fig. 6.13a),
• by “(synchronous) ac exciter” and rotating diodes (Fig. 6.13b, where the

exciter is itself excited through the stator, so that slip rings and brushes
are completely avoided);

• “static” excitation:
• by “thyristor exciter,” with an “independent” or “dependent” supply

(Fig. 6.13c).

The typical control schemes are correspondingly illustrated in Figure 6.14
(without considering delay time constants of some hundredths of a second, such
as in feedback transducers and amplifier).
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dc exciter (rotating commutator,
slip rings, and brushes)

synchronous machine

(synchronous)
ac exciter

rotating
diodes

synchronous machine

independent
supply

dependent supply

thyristor (static)
exciter

(slip rings
and brushes)

synchronous machine

Figure 6.13. Excitation systems: (a) rotating excitation, by “dc exciter”; (b) as
above, by “(synchronous) ac exciter” and rotating diodes; (c) static excitation,
by “thyristor exciter.”

More precisely, by rotating excitation:

• the excitation system may be represented, apart from magnetic saturation,
by a transfer function Ke/(1 + sTe) (where Te is typically 0.5–1 sec), as
indicated in Figures 6.14a,b;

• the control system may be of the type shown in Figure 6.14a, with “transient
feedback,” or of the type shown in Figure 6.14b.

In the case of Figure 6.14a:

• with a dc exciter, there is an amplifier with a gain KA, and a transient
feedback having a transfer function H(s) = KtsTd/(1 + sTd), where the
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transient feedback

Figure 6.14. Excitation control: block diagrams for the case of rotating excitation
(a) with and (b) without transient feedback; (c) for the case of static excitation.
The input signals indicated by a dashed-dotted line may be representative of
those caused by over- and underexcitation limiters, and of further possible ones.
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product KAKeKt is large enough to obtain:

Gv(s) = KAKe

1 + sTd

(1 + sTe)(1 + sTd)+ sKAKeKtTd

= KAKe

1 + sTd

(1 + sT ′
1)(1 + sT ′′

1 )

with T ′
1

∼= KAKeKtTd and T ′′
1

∼= Te/(KAKeKt), i.e., neglecting T ′′
1 (which

can be actually 0.07 sec or even smaller), similar to Equation [6.2.16], with:



Gv(0) = 1

ΩA(0)
µo = KAKe

T2 = Td

T1 = T ′
1 � T2

• with an ac exciter and rotating diodes, the feedback must be performed (to
avoid sliding contacts), from the voltage vR at the output of the amplifier
(and not from vf ); to obtain a result similar to the previous one, it is
sufficient to accomplish a feedback transfer function H(s)Ke/(1 + sTe).

In the case of Figure 6.14b, the control system instead acts only on the forward
chain, by a transfer function (electronically achieved):

GA(s) = KA

(1 + sT2)(1 + sTe)

(1 + sT1)(1 + sT ′)
= Gv(s)

1 + sTe

Ke(1 + sT ′)

where again KA = Gv(0)/Ke, and the time constant T ′ can be made negligible.
Finally, by static excitation (Fig. 6.14c):

• the excitation system may be represented, apart from a small response delay
approximately of a cycle (i.e., 0.02 sec for a 50-Hz power supply), by a
simple gain Ke proportional to the supply voltage (and thus to the machine
voltage v, in the case of “dependent” supply);

• the control system may be similar to that in Figure 6.14b, with Te = T ′ = 0
and thus:

GA(s) = KA

1 + sT2

1 + sT1
= Gv(s)

1

Ke

• because of the high response speed of the excitation system, it may be
convenient to add a feedback from the field current if , to accelerate the
response of if itself and obtain a faster regulation.

According to Figure 6.14, also the limits on vR and vf must be considered
for large variations. The limits on vf are the results of:

• magnetic saturation in the case of rotating excitation;
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• the thyristor bridge characteristics in the case of static excitation (if the
bridge is “half-controlled” it must be intended vf min = 0).

The values vf max and vf min constitute the so-called “ceiling” voltages, respec-
tively positive and negative (or zero). Typical values are:

vf max
∼= (2–2.5)Vf (n), vf min

∼= −(1.5–2.5)Vf (n)

(or vf min = 0, in the case just discussed), where Vf (n) is the field voltage required
at nominal conditions(9). Large values of vf max or of |vf min| may be suitable in
the cases of a short-circuit close to the machine or of a rejection from parallel
operation, respectively.

One should also remember the over- and underexcitation “limiters” that are
threshold devices intervening on the control system to keep (although not in short
time intervals) the reactive power Q within a proper interval [Qmin,Qmax] (see
Section 2.2.1 and Fig. 2.9).

Finally, the control system can be requested to accept further input signals,
particularly for the “compound” and/or secondary control (discussed below),
or to stabilize the electromechanical oscillations (“additional” signals; see Sec-
tions 7.2.2 and 8.5.2).

(a2) Voltage Regulation at a Downstream Node with Possible ‘‘Compound’’
For greater generality, assume (Fig. 6.15a) that:

• the machine is connected to the rest of the system by a purely inductive
element (i.e., step-up transformer and part of a line);

• the amplitude v′ of the voltage downstream of this element must be regu-
lated.

Disregarding the dynamic behavior of inductances and indicating by X the
reactance of the considered element (evaluated at the frequency Ωr = Ωo, equal
to the electrical speed of the machine at steady-state), it is possible to write;

Q

v
∼= v − v′

X
[6.2.17]

(see Fig. 2.7 and, by similar approximation, Equation [6.1.1]), from which:

v′ ∼= v −X
Q

v

(9) Indicating by V ∗
f (see Section 4.1.2) the value of vf that corresponds to v = vnom at no-load

operation, with Ω = Ωnom and without saturation, Vf (n) can be typically (1.5–2) V ∗
f for hydrounits

and (2–3)V ∗
f for thermal units.
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rest of 
the 

system

reactance
synchronous

machine

X

Figure 6.15. Voltage regulation at a downstream node by a single machine:
(a) system under examination; (b) block diagram.

Figure 6.16. Regulation static characteristic for the system in Figure 6.15 (with
Gv(0) → ∞).

To regulate v′ to the value v′
rif it is sufficient, with the stated approximations,

to substitute vrif by v′
rif and v by v −XQ/v (see Fig. 6.15b, with A = X). In

fact, by assuming µo (and thus Gv(0)) to be very large, we obtain v′ ∼= v′
rif at

steady-state, independently of the supplied reactive current Q/v (see Fig. 6.16).
Similarly to what was said for the speed regulation of a single unit (see

Section 3.1.2), it can be stated that the static characteristic (v′,Q/v) corresponds,
at the conditions considered, to a zero-“droop” operation.
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Generally, if v is substituted by v −AQ/v, at steady-state it is possible to
obtain v − AQ/v ∼= v′

rif, v
′ ∼= v′

rif + (A−X)Q/v. This corresponds to an oper-
ation at nonzero (positive or negative) droop. Usually, the system seen by the
machine has an inductive behavior, with ∂(Q/v)/∂v ∈ (0, 1/X), so that the term
−AQ/v in the feedback path causes a positive feedback (obviously if A > 0),
opposite to the negative feedback which starts from the voltage v (Fig. 6.15b). For
this reason, it is usually convenient to assume a value A < X, as if the aim were to
regulate the voltage at an intermediate point of the interposed inductive element.

In the case of more machines connected to the node at voltage v′ (Fig. 6.17a),
it would not make sense to regulate v′ by assuming a zero droop for all the
machines (and neither for two of them), since:

• at equal v′
rif i’s, the sharing of Qi’s would remain undetermined;

• at different v′
rif i’s, some machines would operate at Qi min and others at

Qi max, whereas a single machine would operate at an intermediate Qi value.

On the other hand, if only one machine was regulated at zero droop, this alone
would be required to respond to (within its own limits) the reactive power vari-
ations demanded when passing from one steady-state to another.

Therefore, it is necessary to set nonzero droops for all regulators, i.e., Ai �= Xi ,
as in Figure 6.17b.

Assuming, with usual approximations:

Q′

v′
∼=
∑
i

Qi

vi

∼=
∑
i

vi − v′

Xi

and again assuming that Gvi(0)’s are very large, for brevity using the notation
Bi � 1/(Xi − Ai), B �

∑
i Bi , it then follows at steady-state(10):

v′ ∼= 1

B

(∑
i

Biv
′
rif i − Q′

v′

)

Qk

vk

∼= Bk

B


Q′

v′ +
∑
i �=k

Bi(v
′
rif k − v′

rif i )




vk ∼= v′
rif k + AkBk

B

(
Q′

v′ −
∑
i

Biv
′
rif i

)

(10) In particular, if the v′
rif i ’s are all the same (� v′

rif), at steady-state:

v′ ∼= v′
rif − 1

B

Q′

v′ ,
Qk

vk
∼= Bk

B

Q′

v′

with vk ∼= (1 − AkBk)v
′
rif + AkBk

B

Q′

v′ .
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Figure 6.17. Voltage regulation at a downstream node by more machines:
(a) system under examination; (b) regulation static characteristics and sharing
of reactive currents (or equivalently powers).

By doing so:

• it is possible to determine the steady-state sharing, between the different
machines, of the reactive currents Qk/vk for any total demanded current
Q′/v′, or equivalently of the reactive powers Qk (the sharing may be done in
such a way as to make uniform the reactive power margins of the machines;
see particularly Sections 2.2.1 and 2.2.6);

• the value v′ nevertheless varies with Q′, even if it is assumed Gvi(0) → ∞.

(b) Secondary Control
The secondary control (if any) is slower than the primary one and acts on the
set points of the machine voltage regulators (or of some of them) to achieve a
satisfactory voltage and reactive power steady-state in the whole network.
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In this regard, the network may be assimilated to one or more “areas,” in each
of which:

• the nodes are “electrically” close one another (high sensitivity of the voltage
at each node, with respect to voltages of other nodes);

• there is at least one machine of sufficient power (to make it possible to
effectively control the voltage values);

• the mean voltage level is strictly conditioned by the voltage at a given node
(sufficiently “strong”; see also Section 5.7.2), called “pilot node.”

Furthermore, in the case of more areas, it is assumed that:

• the nodes of different areas are electrically far from one another.

In the case of a single area, the general diagram of Figure 6.18a can be applied,
for which the “secondary” regulator, possibly realized through the computer of
the central dispatching office (Fig. 2.43) with, for instance, a sampling period
∆t = 5–10 sec:

• regulates the voltage vp at the pilot node (telemetered or obtained through
“state estimation”; see Section 2.5), with the set point vp rif determined at
the reactive dispatching stage:

• carries out the desired dispatching of theQi’s between the different machines
(in particular, by making uniform the respective reactive power margins).

The regulation of the voltage vp and the control of the reactive powers imply
actions of the integral type, so that at steady-state it holds vp = vp rif and Qi =
Qdi , where Qdi is the desired value of Qi .

With more areas that interact slightly, such a scheme could be repeated for
each area. Generally, it is instead convenient that each set of notably interacting
areas be controlled by the same secondary regulator (having as many inputs and
outputs as the number of involved areas), as shown in Figure 6.18b, where the
first set includes n1 areas, and so on.

As far as the synthesis of the secondary control loops is concerned, considering
the difficulties in the availability of an (updated) knowledge of parameters etc.,
it is generally convenient to resort to simple criteria, similar to those used for
the f/P control. For example:

• the control of reactive powers is made sufficiently slower than the primary
control (perhaps 10 times slower), so that, as a first approximation, the
response delays of the latter can be disregarded;

• similarly, the voltage regulation at the pilot node (or nodes) is made
slower (perhaps again 10 times) of the reactive power control, so that, as
a first approximation, the response delays of the latter control also can be
disregarded.
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secondary
regulator

dispatcher

Qi's control
loop

primary
control loop

power
system

 p's regulation
loop

power 
system

dispatcherssecondary regulators

Figure 6.18. Block diagram of the secondary v/Q control: (a) case of a single
area; (b) case of more areas.

6.3. CONTROL OF TAP-CHANGERS

Consider the system in Figure 6.19, which includes:

• an infinite power network (the frequency and voltage of which can be
considered as “inputs” of the system; see also Section 7.1);

• a connection line, defined by the reactance X evaluated at the network
frequency (because of the relative slowness of the control, the dynamics of
inductances and possible capacitances can be disregarded);
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line transformer load

regulator

Figure 6.19. Control of an on-load tap-changing transformer: system under
examination.

• a transformer equipped with an on-load tap-changer (with variable ratio
m), represented by an ideal transformer and a constant reactance Xt on the
secondary side (see Fig. 5.7a, assuming that the number of coils varies at
the primary side).

• a load (as seen by the secondary side of the transformer) of the linear
“static” type, represented by the impedance RL + jXL.

By applying Park’s transformation with Ωr equal to the network frequency
(and, for simplicity reasons, not repeating the index “r” in the Park’s vectors), it
follows that: 



vL = e
m(RL + jXL)

m2RL + j (X +m2X′
L)

v = e
m2(RL + jX′

L)

m2RL + j (X +m2X′
L)

and furthermore:

P − jQe

e∗ = ı = e

m2RL + j (X +m2X′
L)

where:
X′
L � Xt +XL

By writing:

Ze �
√
m4R2

L + (X +m2X′
L)

2
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which is the magnitude of the impedance as seen from the network, it is then
possible to derive: 



vL =
em

√
R2
L +X2

L

Ze

v =
em2

√
R2
L +X′2

L

Ze

P = e2m2RL

Z2
e

Qe = e2(X +m2X′
L)

Z2
e

(note also that v = mvL

√
(R2

L +X′2
L )/(R

2
L +X2

L) and P = v2
LRL/(R

2
L +X2

L)).
The transformation ratio may be adequately varied by an on-load switching

to regulate the voltage magnitude vL to the desired value vL rif. In this concern,
vL (as well as P ) exhibits, for varying m, a maximum at m = m∗, with:

m∗2 � X√
R2
L +X′2

L

and, more precisely, it results in (see also Fig. 6.20)

v2
Lmax = e2a

RL

2X

where for brevity, the following notation has been used:

a � (1 + b2)(
√

1 + b′2 − b′), b � XL

RL

, b′ � X′
L

RL

= b + Xt

RL

Furthermore, for each desired value of vL, obviously smaller than vLmax, there
are two possible solutions for m (points 1 and 2 in Fig. 6.20). It is easy to deter-
mine that the solution point 2 (for a larger m) corresponds to a relatively large
voltage v and a relatively small current i at the primary side of the transformer,
whereas the opposite occurs with the other solution.

By assuming for simplicity that XL = 0 and disregarding Xt , the vector diagram of
Figure 6.21 can be derived, by which the two solutions in m for vL < vLmax are evi-
dent. For the mentioned conditions, the values m∗, vLmax and Pmax correspond to a 45◦

phase-shift between vectors e and v.

Under normal operation, it is convenient to regulate the voltage vL at the solu-
tion point (2) with m > m∗, which implies a smaller line current and consequently
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1 2

Figure 6.20. Dependence of the voltage vL on the transformation ratio m, in the
case of a linear static load (see Fig. 6.19).

1

2

Figure 6.21. Vector diagram for XL = Xt = 0.

a smaller voltage drop (i.e., an acceptable v), and smaller losses because of the
unavoidable resistances. Around this solution, however, ∂vL/∂m < 0 (Fig. 6.20),
so that it must be assumed:

m

vL rif − vL
(s) = −Gv(s)
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Figure 6.22. Block diagram of the regulation loop.

as indicated in Figure 6.22, where the transfer function Gv(s) must be chosen
by the usual criteria(11).

For each assigned operating point, the synthesis of Gv(s) does not imply
any particular problems, at least for the simplifying conditions considered here
(infinite power network, “static” load etc.). In particular, if the Gv(s) includes an
integral effect, it is possible to obtain vL = vL rif at steady-state. If it is simply
assumed that:

Gv(s) = Kv

s
[6.3.1]

the cutoff frequency of the regulation loop is νt = −Kv∂vL/∂m
(12), and the

closed-loop response delay is represented by the time constant 1/νt (in practical
cases, νt can be, for instance, approximately 0.07 rad/sec, corresponding to a
time constant of 15 sec).

If Equation [6.3.1] is adopted, the effect of the regulator is moving the generic
point (m, vL) in the sense indicated by the arrows in Figure 6.20.

However, some possible drawbacks must be identified:

(1) For decreasing values of RL (caused by load insertion) or for increas-
ing X (e.g., because of a line opening of two lines initially in a par-
allel configuration), the characteristic (vL,m) is lowered as indicated in
Figure 6.23a, and the same occurs (without that m∗ increases) for decreas-
ing e. In such cases:

• before the intervention of the regulator, voltages vL and v decrease:

• the regulator forces m to decrease so as to take vL back to its desired
value (Fig. 6.23a), but in doing so it causes a further reduction of the
impedance as seen by the primary side of the transformer, and then of v;

(11) For simplicity, minimum and maximum limits on m are not considered (for instance, m/mnom =
0.9–1.1), as well as the discontinuities in the variations of m (e.g., an elementary variation ∆m of
0.5% of mnom).
(12) For simplicity here and in the following, the superscript, “o” relative to values computed at the
operating point, will not be indicated.
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2 2 2

2′
1′ 2′

characteristic before the perturbation
characteristic after the perturbation

Figure 6.23. Behavior of the controlled system following perturbations (see text).

(similar conclusions hold for variations of the opposite sign). Therefore,
the regulation of vL makes the “support” of the voltage worse at the pri-
mary side of the transformer.

(2) If, after some relatively significant perturbation, the initial values are m <

m′ and vL < vL rif (Fig. 6.23b), the regulator forces m, as well as vL and
v, to decrease further (voltage collapse caused by regulation instability at
point 1′; note that, if initially m ∈ (m′, m∗), such an instability would not
cause the collapse, but it simply would lead the operating point to 2′).
Remedies may include stopping the regulation (by blocking the value of
m) or changing the sign of the regulator gain so as to reach the point 1′,
even if it is not desired in normal situations.

(3) The value vLmax can decrease for several reasons, particularly because of a
reduction of e or RL, or for an increment of X. For a reduction of vLmax (or
even for an incorrect setting of vL rif) it may happen that vLmax < vL rif,
in which case the regulator continues forcing m to decrease (according
to Fig. 6.23c), thus causing a voltage instability (see also Section 1.5).
To avoid the voltage collapse, it is necessary to perform actions such as
a timely load-shedding, reduction of vL rif, or alternatively to inhibit the
regulation (in this case there is no more use in changing the sign of the
regulator gain).

(4) A possible variation ∆e causes variations ∆P and ∆Qe which, in the
absence of regulation, would have the same sign as ∆e. Because of the
regulation effects, it instead results in, for small variations:

Gpe(s) � L∆P
L∆e

= ∂P

∂e
+ ∂P

∂m

Gv(s)
∂vL

∂e

1 −Gv(s)
∂vL

∂m

Gqe(s) � L∆Qe

L∆e
= ∂Qe

∂e
+ ∂Qe

∂m

Gv(s)
∂vL

∂e

1 −Gv(s)
∂vL

∂m
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Assuming for simplicity that Equation [6.3.1] holds, the above transfer
functions have a pole (−νt , real and negative) and a zero (respectively
−νtGpe(0)/Gpe(∞), −νtGqe(0)/Gqe(∞)). It finally results in, around a
generic operating point with m > m∗:

Gpe(0) =
(
∆P

∆e

)
∆vL=0

= 0, Gpe(∞) =
(
∆P

∆e

)
∆m=0

= ∂P

∂e
> 0

Gqe(0) =
(
∆Qe

∆e

)
∆vL=0

< 0, Gqe(∞) =
(
∆Qe

∆e

)
∆m=0

= ∂Qe

∂e
> 0

so that Gpe(s) has a zero static gain (and a zero at the origin), whereas
Gqe(s) has a negative static gain (and a positive real zero). This last
circumstance, for actual cases with a noninfinite power network, can be a
drawback for the network voltage regulation.

(5) In relatively realistic terms, if the limits on the reactive power (Qe) that
the network can supply are reached, they may be considered by imposing
∆Qe = 0 instead of ∆e = 0 (and assuming that the variations ∆e are
generated within the network itself, so as to maintain constant Qe; recall
the operation of the over- and underexcitation limiters of synchronous
machines). Under such conditions, we must consider:

(
∆vL

∆m

)
∆Qe=0

= ∂vL

∂m
−

∂vL

∂e

∂Qe

∂m
∂Qe

∂e

instead of ∂vL/∂m, and since:

(
∆vL

∆m

)
∆Qe=0

=
eX

√
R2
L +X2

L

(X +m2X′
L)Ze

it can be concluded that the regulation becomes unstable, unless X +
m2X′

L < 0, i.e., Qe < 0 (underexcitation limit, with X′
L < 0, XL < −Xt ,

m2 > X/(−X′
L), vL rif = vL < (e/RL)

√
(−X′

L/X)(R
2
L +X2

L)).

Note that: (
∆vL

∆m

)
∆Qe=0

= ∂vL

∂m

Gqe(0)

Gqe(∞)
[6.3.2]

so that the zero of the function Gqe(s) is −νtGqe(0)/Gqe(∞) = Kv(∆vL/∆m)∆Qe=0.

The reported results are confirmed, as a particular case, by the following treatment, which
is extended to nonlinear static loads.
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More generally, in the case of a nonlinear static load (with P and QL known
functions of vL), it is convenient to separate the equations of line and transformer,
and the equations of load.

To this aim, it should be observed that, by putting:

X′ � X +m2Xt [6.3.3]

it results:
P − jQe

e∗ = ı = e −mvL

jX′ = P − jQL

mv∗
L

from which the following equations for line and transformer can be obtained:

X′(P 2 +Q2
e)+ e2(QL −Qe) = 0 [6.3.4]

X′(Qe +QL)− e2 +m2v2
L = 0 [6.3.5]

Moreover, the following equations may be generically assumed for the load:

P = P(vL)

QL = QL(vL)

}
[6.3.6]

From Equation [6.3.5], it particularly follows that:

Qe = e2 −m2v2
L

X′ −QL [6.3.7]

so that, substituting into Equation [6.3.4] and considering [6.3.3], the following
equation can be derived:

0 = (X +m2Xt)
2(P 2 +Q2

L)+ 2(X +m2Xt)m
2v2

LQL +m2v2
L(m

2v2
L − e2)

[6.3.8]
which is of the second degree in m2 (for given e, vL). It is possible to determine
that the two solutions in m2 are real and positive if and only if:

e4v2
L − 4X

[
P 2(vL)(Xte

2 +Xv2
L)+ e2QL(vL)(v

2
L +XtQL(vL))

] ≥ 0 [6.3.9]

This condition, for any assigned e, defines the admissible values of vL and
thus of vL rif. For a qualitative example, refer to Figure 6.24, in which it is
assumed QL = 0 and P proportional to (vL)

ap , with ap = 0, 1, 2. Of the two
possible solutions in m2, it appears more convenient to use the larger one, which
implies a smaller value for the line current. In fact, for any (admissible) value
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Figure 6.24. Dependence of the voltage vL on the transformer ratio m (qualita-
tive outlines), in the case of a purely active static load, with: (a) P = P o(ap = 0);
(b) P = γLvL(ap = 1); (c) P = v2

L/RL(ap = 2: see Fig. 6.20). The bolded line
sections are those useful for normal operation, i.e., for operation at ∂vL/∂m < 0
and, for the same vL, at smaller i.

of vL, the value of the load current is given, so that i is inversely propor-
tional to m(13).

For small deviations and having set:



ap � dP/dvL

P/vL

aq � dQL/dvL
QL/vL

(recall apv and aqv in Equations [5.6.1]), it specifically follows:

(13) The treatment would be simplified if X′ were not dependent on m, or equivalently if the number
of coils varied at the secondary side of the transformer. In such a case, a constant reactance should be
considered at the primary side (Fig. 5.7b), which it would result in X′ = X + constant = constant.
In practice, the approximation of X′ = constant can become acceptable only if, within the variation
range of m, m2Xt � X.

In particular, under this approximation:

• Equation [6.3.4] no longer contains m and permits — for any assigned e and by expressing
QL as a function of P — the determination of a curve in the plane (P,Qe), which defines
the network load conditions for varying P , or equivalently for varying vL (and vL rif) (if for
instance QL were proportional to P , and thus the load power factor were constant, such a
curve would be a circle).

• Equation [6.3.5] then allows the determination, for any assigned situation, of:

m2 = e2 −X′(Qe +QL)

v2
L
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(
∆vL

∆m

)
∆e=0

= ∂vL

∂m

= mv3
L(2XQe − e2)

apX′2P 2 + aqX′(m2v2
LQe −X′P 2)+m2v2

L(e
2 − 2X′Qe)

[6.3.10]

(
∆Qe

∆e

)
∆vL=0

= 2Xe

X′
Qe −QL

2XQe − e2
[6.3.11]

(
∆vL

∆m

)
∆Qe=0

= mXv3
L

X′
Qe −QL

apX′P 2 + aq

(
m2v2

L

(
Qe − QL

2

)
−X′P 2

)
−m2v2

L(Qe −QL)

[6.3.12]
where it is intended that the different quantities are evaluated at the operat-
ing point.

The value of Qe is obtainable from e, vL, m2, based on Equation [6.3.7]. Note that:

Qe = X′P
2 +Q2

L

m2v2
L

+QL

and thus Qe > QL. On the other hand, the difference (Qe −QL) is the (positive) reactive
power absorbed by the line and the transformer.

Similar to the discussion above, related to the linear load, and again assuming
(Fig. 6.22) a transfer function Gv(s) given by [6.3.1]:

• Equation [6.3.10] allows the assessment of the stability under normal opera-
tion (for which e is intended as an “input” of the system), and it is necessary
that (∆vL/∆m)∆e=0 < 0.

• Equation [6.3.11] defines the static gain (usually negative) of the function
Gqe(s), whereas Equation [6.3.12] allows the determination of its zero,
which is equal to Kv(∆vL/∆m)∆Qe=0, and is usually positive (the value
Gqe(∞) can be then deduced from Equation [6.3.2]); such knowledge may
be of some importance, as already indicated, for network voltage regulation.

• Finally, Equation [6.3.12] itself permits the assessment of the stability
in the possible operation at constant Qe, where it is necessary that
(∆vL/∆m)∆Qe=0 < 0.

Equations [6.3.10] and [6.3.12] depend on the values of ap and aq , i.e., on
the relationships by which P and QL depend on vL. This does not happen for
Equation [6.3.11] since it refers to the condition ∆vL = 0.

Some simplifications can be obtained when the load power factor is constant,
and therefore QL/P = constant. In such a case ap = aq , so that, in addition to
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Equation [6.3.11], it holds:

(
∆vL

∆m

)
∆e=0

= vL

m

2XQe − e2

(ap − 2)X′Qe + e2
[6.3.10′]

(
∆vL

∆m

)
∆Qe=0

= XvL

mX′
Qe −QL

ap

(
Qe − QL

2

)
+QL −Qe

[6.3.12′]

If QL ≥ 0, as is usually the case, it follows (by Equation [6.3.4], with P > 0)
that Qe ∈ (0, e2/X′), and furthermore Qe > QL. It is then easy to verify that:

• the condition (∆vL/∆m)∆e=0 < 0 (stability under normal operation) also
can be turned, for ap ≥ 1, into:

Qe <
e2

2X

• the condition (∆vL/∆m)∆Qe=0 < 0 (stability under the operation at con-
stant Qe) is always satisfied if ap ≤ 0, and not satisfied if ap ≥ 1, whereas
it becomes:

Qe >
2 − ap

2(1 − ap)
QL

if ap ∈ (0, 1).

Finally, more drastic simplifications can be obtained if the load is purely active,
i.e., for a unity power factor of the load. In this case, QL = aqQL = 0, and it is
possible to derive:

(
∆vL

∆m

)
∆e=0

= vL

m

2XQe − e2

(ap − 2)X′Qe + e2
[6.3.10′ rep.]

(
∆Qe

∆e

)
∆vL=0

= 2Xe

X′
Qe

2XQe − e2
[6.3.11′]

(
∆vL

∆m

)
∆Qe=0

= XvL

mX′
1

ap − 1
[6.3.12′′]

Regarding the stability assessment under normal operation, it can be observed
based on Equation [6.3.10′] that, for QL = 0:

Qe = X′P 2

m2v2
L

(with X′ � X +m2Xt ), where m2 is the larger of the two solutions of:

0 = (X +m2Xt)
2P 2 +m2v2

L(m
2v2

L − e2)
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and where it must be:

P ≤ e2

2X

√
1 + Xte

2

Xv2
L

� Pmax

(recall Equations [6.3.8] and [6.3.9]). By considering the above, the condition
(∆vL/∆m)∆e=0 < 0 can be usefully expressed in terms of XP/e2 and ap, for
any assigned value of the ratio Xte

2/(Xv2
L), as indicated in Figure 6.25a.

Figure 6.25. Stability zones in the plane (P, ap), for QL = 0: (a) under normal
operation (having set α � Xte

2/(Xv2
L), β �

√
1 − 4(1 + α)(XP/e2)2 ∈ [0, 1],

the stability condition can be written as ap > (α − 2β/(1 − β))/(1 + α));
(b) under operation at constant Qe, refer to the text (the stability condition
is ap < 1).
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The stability assessment in the operation at constant Qe is instead immediate.
Equation [6.3.12′′] is extremely simple, and based on this equation, it is possible
to conclude that such operation is stable or unstable according to ap ≶ 1, as
indicated in Figure 6.25b.

6.4. CONTROL OF STATIC COMPENSATORS

(a) Generalities
Static compensators can be viewed as variable shunt-connected susceptances.
Less-recent solutions are based on “saturated (nonlinear) reactors,” with series
and parallel condensers, as shown in Figure 6.26a (there are different types of
devices, rated at various, relatively small power levels). The magnetic character-
istic of the reactors is schematically shown in Figure 6.26b, with:

• a large reactance for small currents;

• a small residual (under saturation) reactance;

where ψr and ir are, respectively, the magnetic flux in the generic reactor, and
the current entering into it.

If the current ir is sinusoidal and with an amplitude that is not too small,
the flux ψr is similar to a square wave, and the fundamental component of the
voltage vr = dψr/dt is almost constant in amplitude (Fig. 6.26c).

If it is assumed that the voltage harmonics are sufficiently filtered, so that their
presence can be disregarded, it is possible to deduce, in the absence of condensers,
a characteristic (v′, i) of the type (1) indicated in Figure 6.26d. In this case, v′
and i are proportional, with the same proportionality factor, to the amplitude
of the fundamental component of vr and to the amplitude of ir , respectively.
However, in the following we will assume i ≷ 0, based on whether the current
is inductive or capacitive; the absorbed reactive power Q′ is then proportional to
the product v′i.

The aim of the series condensers (see Cs in Fig. 6.26a) is to compensate for
the residual reactances of reactors, to further reduce the slope of the character-
istic (v′, i) under saturation. Refer to the characteristic (2) in Figure 6.26d, in
which v′ accounts for the contribution of the series condensers, whereas it still
holds that i > 0.

Because of the effect of the parallel condensers (see Cp in Fig. 6.26a), capac-
itive operation becomes possible (with i < 0, which corresponds to an absorbed
reactive power Q′ < 0). Refer to the characteristic (3) in Figure 6.26d, in which
i accounts for the (capacitive) current absorbed by the parallel condensers.

A similar characteristic (v, i) (where i ≷ 0 depending on whether the overall
current is inductive or capacitive) can be obtained by compensating the reactance
of the (possible) transformer with a condenser, as shown as Ct in Figure 6.26a.

In this way it is possible to automatically achieve (however, without the typical
flexibility of control systems) the operation at constant v within a given interval
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Figure 6.26. Static compensation by saturated reactors: (a) schematic represen-
tation; (b) magnetic characteristic of the reactors; (c) time behaviors of flux and
voltage on the generic reactor, under the hypothesis of sinusoidal current; (d) vol-
tage-current characteristic ((1) without condensers, (2) with series condensers,
(3) with series and parallel condensers).

of admissible values for Q′. Such an interval may be modified by realizing Cp
by several parallel condensers and by varying, through switching, such a set.
Also considering the characteristics of the rest of the system, the response delay
is generally small, e.g., a cycle (i.e., 0.02 sec at 50 Hz).

However:

• harmonics actually must be filtered (their effect may be further amplified by possible
LC resonances, at frequencies close to those of the harmonics themselves), for
instance, by adding proper LC filters in parallel to Cp (Fig. 6.26a);
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• the simultaneous presence of inductive and capacitive elements may cause, indepen-
dently of the presence of harmonics, undesirable LC resonance phenomena, similar
to those seen in Sections 5.7.2 and 6.2.1c, so that it is convenient to add proper damp-
ing circuits (including resistive elements) in parallel to Cs , etc. (see again Fig. 6.26a).

The most recent solutions are based on “controlled (linear) reactors” (thy-
ristor-controlled reactors), with parallel condensers such as in Figure 6.27a(14).

linear 
reactors filters

capacitance

Figure 6.27. Static compensation by controlled reactors: (a) schematic represen-
tation; (b) time behavior of the current in a generic reactor, for a given firing
angle α and under the hypothesis of sinusoidal voltage; (c) voltage-current char-
acteristics, for different values of the firing angle α and in the absence of
condensers; (d) equivalent susceptance of the reactor, as function of the firing
angle; (e) regulation characteristic (1) without and (2) with parallel condensers.

(14) It is assumed, for simplicity, that each phase has a reactor in series with two thyristors. Actually,
there are circuit solutions different from this one, which are specifically designed to reduce harmonic
generation.
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The time behavior of the (inductive) current ir in a reactor, for an assigned
“firing angle” α of its thyristors and with a sinusoidal voltage vr at frequency ω,
is schematically indicated in Figure 6.27b.

If it is assumed that the current harmonics are sufficiently filtered so that their
presence can be disregarded, it is possible to determine — for different values of
α, and not considering parallel condensers — (v′, i) characteristics as indicated by
continuous lines in Figure 6.27c. In these characteristics, v′ and i are proportional
to the amplitude of vr and the amplitude of the fundamental component of ir ,
respectively (the absorbed reactive power Q′ is then proportional to the product
v′i). More precisely, if Xr is the reactor reactance, by applying the Fourier
analysis, it is possible to derive:

i

v′ = π − 2α − sin 2α

πXr

� −(Br)eq > 0 [6.4.1]

where (Br)eq may be viewed as the equivalent (negative) susceptance of the
reactor (Fig. 6.27d).

As already said for saturated reactors, it is convenient that harmonics are
adequately filtered (see filters indicated in Fig. 6.27a.)

The typical goal of control is to vary α so as to regulate v at its desired value
vrif, with a steady-state zero error (regulator with an integral action) or sufficiently
small error; see Fig. 6.28. If the transformer is not considered (v = v′), it is
possible to realize a characteristic like the one represented by a dashed line in
Figure 6.27c, i.e., the characteristic (1) in Figure 6.27e, where the slope ∆v/∆i
in the intermediate zone is zero if the regulator has an integral action(15).

regulator

thyristor 
firing 

command 
system

Figure 6.28. Static compensator control: block diagram.

(15) The control of reactors also can be used, alternatively, to regulate the power factor at a load
node, or it can be included in the secondary v/Q control, etc.
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The parallel condensers (see Cp in Fig. 6.27a) also allow capacitive operation,
i.e., at Q′ < 0 or equivalently i < 0 (see characteristic (2) in Fig. 6.27e), within
a given range of admissible values for Q′. This range can be variable according
to the reactive power demands for each specific situation, by modifying the
condenser set through switching, possibly performed by other thyristors.

If it is posed that Bc � ωCp , the (equivalent) overall susceptance is equal to:

B = Bc + (Br)eq [6.4.2]

(smaller than Bc), where (Br)eq is given by Equation [6.4.1] and thus depends
on the thyristor firing angle α according to a nonlinear relationship (Fig. 6.27d).
To compensate this nonlinearity between α and (Br)eq, it is possible to realize
the inverse nonlinearity between (Br)des and α, as indicated in Figure 6.28.

The presence of the transformer can suggest the addition of a reactive current
feedback (see the signal Q′/v′ in Figs. 6.27a and 6.28) to regulate v instead of
v′, similarly to what was seen in Section 6.2.2(a2)(16).

The response delay of the controlled reactors may be considered as a pure delay
in the range from 1/6 to 1/2 cycle, and therefore it can be generally considered
negligible. The cutoff frequency of the control loop, then, depends also on the
characteristics of the rest of the system, as shown in the following examples.

The control of reactors also can be useful in improving the damping of elec-
tromechanical oscillations (by “additional” signals, having functions similar to
those described in Sections 7.2.2 and 8.5.2), or in avoiding the loss of synchro-
nism following large perturbations (see Section 7.3).

(b) Voltage Regulation at a Load Node
Through approximations similar to those in Section 6.3, consider the system in
Figure 6.29, which includes(17):

• an infinite power network;

• a connection line defined by the reactance X (evaluated at the network
frequency);

• a controlled reactor static compensator represented by a variable susceptance
B (recall Equations [6.4.1] and [6.4.2]);

• a load of the linear “static” type represented by the impedance RL + jXL

(in general, this means the equivalent load, as “seen” by the node to which
the compensator is connected).

(16) There is also a “controlled transformer” version, without reactors, for which the reactance Xr

is constituted by the leakage reactance of the transformer itself (with this reactance intentionally
designed to be large), whereas the capacitors are directly connected to the node at voltage v.
(17) The present case is a generalization of Example 1 reported in Section 1.5, and it is, for many
aspects, similar to the case in Section 6.3.
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Figure 6.29. Voltage regulation at a load node by a static compensator: system
under examination.

By applying Park’s transformation with Ωr equal to the network frequency
(disregarding for simplicity the index “r” in the Park’s vectors), by the notation
of the figure it follows:



v = e

RL + jXL

RL(1 −XB)+ j (X +XL −XXLB)

P − jQe

e∗ = ı = e
(1 −XLB)+ jRLB

RL(1 −XB)+ j (X +XL −XXLB)

from which: 


v =
e

√
R2
L +X2

L

D

P = e2RL

D2

Qe = e2A

D2

having used for brevity:



D �

√
R2
L(1 −XB)2 + (X +XL −XXLB)

2

A � X +XL − B(R2
L +X2

L + 2XXL)+ B2X(R2
L +X2

L)

Specifically, P = v2RL/(R
2
L +X2

L).
The susceptance B can be properly varied, by the reactor control, to regulate

the voltage v at the desired value vrif (Fig. 6.28). For varying B, v (as well as
P ) exhibits a maximum value at B = B∗, with:

B∗ � R2
L +X2

L +XXL

(R2
L +X2

L)X
= 1

X
+ XL

R2
L +X2

L
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1 2

Figure 6.30. Dependence of the voltage v on the susceptance B, in the case of
a linear static load (see Fig. 6.29).

which corresponds to (Fig. 6.30):

vmax = e
R2
L +X2

L

RLX

Furthermore, for each desired value of v (smaller than vmax) there are two
possible solutions in B (points 1 and 2 in Fig. 6.30). In practical cases, with
v ∼= e, the solution (1) at a smaller B appears preferable, as it results in a smaller
current i(18).

Around this solution ∂v/∂B > 0 (Fig. 6.30), so that the regulation loop may be
as shown in Figure 6.31, where the transfer function Gv(s) must be chosen based
on the usual criteria. It is assumed that the nonlinearity between α and (Br)eq

(Fig. 6.28) is adequately compensated. The minimum and maximum limits on B
are not considered for simplicity.

For each assigned operating point, the synthesis of Gv(s) does not imply
any particular problems, at least for the simplifying conditions considered here
(infinite power network, “static” load, etc.). In particular, by an integral effect in
Gv(s), it is possible to obtain at steady-state v = vrif. If it is simply assumed that:

Gv(s) = Kv

s
[6.4.3]

(18) To determine this, it is sufficient to note that at v = e the reactive power (Xi2) absorbed by the
line is supplied equally by the two terminals, so that it holds:

Qe = Xi2

2
= Be2 −QL(e)

where QL(e) � e2XL/(R
2
L +X2

L) is preassigned; therefore, i2 is smaller for the solution at smaller
B. The assumption v = e implies the condition e < vmax, i.e., RLX < R2

L +X2
L, which is usually

satisfied.
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Figure 6.31. Block diagram of the regulation loop.

the cutoff frequency of the regulation loop is νt = Kv∂v/∂B
(19), and the closed-

loop response delay is represented by the time constant 1/νt .

If the cutoff frequency is relatively high, the analysis should consider the dynamic behavior
of the various inductive and capacitive elements.

Furthermore, if Equation [6.4.3] is adopted, the effect of the regulator is to
move the generic point (B, v) in the sense indicated by the arrows in Figure 6.30.

However, some drawbacks should be indicated, in a partial analogy to
Section 6.3.

(1) If, after some relatively significant perturbation, the initial values are B >

B ′′ and v < vrif (Fig. 6.32a), the regulator causes B to increase further,
causing a voltage collapse. This is caused by the instability of regulation at

1′
1

12′

characteristic before the perturbation

characteristic after the perturbation

Figure 6.32. Behavior of the controlled system following perturbations (see text).

(19) For simplicity, the indication of the superscript, “o” relative to values computed at the operating
point, will be omitted here and in the following.
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point 2′. (On the other hand, if initially B ∈ (B∗, B ′′), such an instability
would simply move the operating point to 1′.) Remedies may include stop-
ping the regulation (by blocking the value of B) or even changing the sign
of the regulator gain so as to reach the point 2′, even if it is not desired in
normal situations.

(2) The value vmax can diminish for different reasons, particularly because of a
reduction in e, or in RL (e.g., caused by a load connection), or an increase
in X (e.g., caused by opening of a line out of two lines, initially in a parallel
configuration). For a reduction of vmax, or even for an erroneous setting of
vrif, it may happen that vmax < vrif, in which case the regulator continues
increasing B according to Figure 6.32b, thus causing a voltage instability
(recall Section 1.5). To avoid the voltage collapse, it is necessary to realize
within a short time, a load-shedding or a reduction of vrif, or alternatively
to inhibit the regulation (in this case, there is no use in changing the sign
of the regulator gain).

(3) A variation ∆e causes variations ∆P and ∆Qe which, in the absence of
regulation, would have the same sign as ∆e. Because of the effects of
regulation, it instead results in, for small variations:

Gpe(s) � L∆P
L∆e

= ∂P

∂e
− ∂P

∂B

Gv(s)
∂v

∂e

1 +Gv(s)
∂v

∂B

Gqe(s) � L∆Qe

L∆e
= ∂Qe

∂e
− ∂Qe

∂B

Gv(s)
∂v

∂e

1 +Gv(s)
∂v

∂B

Assuming, for simplicity, that Equation [6.4.3] holds, the above-mentioned
transfer functions have a pole (−νt , real and negative) and a zero (respec-
tively: −νtGpe(0)/Gpe(∞),−νtGqe(0)/Gqe(∞)). Around a generic oper-
ating point with B < B∗, it finally results in:

Gpe(0) =
(
∆P

∆e

)
∆v=0

= 0, Gpe(∞) =
(
∆P

∆e

)
∆B=0

= ∂P

∂e
> 0

so that Gpe(s) has a zero static gain (and a zero at the origin). More-
over, the values:

Gqe(0) =
(
∆Qe

∆e

)
∆v=0

=
e

dA

dB

D
dD

dB

Gqe(∞) =
(
∆Qe

∆e

)
∆B=0

= ∂Qe

∂B
= 2eA

D2
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(as well as the zero of Gqe(s)) can assume both signs, depending on the
operating point. In practice, with a noninfinite power network, this can cause
problems in network voltage regulation.

(4) In relatively realistic terms, reaching the limits on the reactive power (Qe)
that can be supplied by the network may be considered by imposing ∆Qe =
0 instead of ∆e = 0 (recall Section 6.3). In such conditions, it must be
imposed, for the stability, that (∆v/∆B)∆Qe=0 > 0 instead of ∂v/∂B > 0,
and since:

(
∆v

∆B

)
∆Qe=0

= −
e

√
R2
L +X2

L

dA

dB
2AD

it can be concluded that the regulation remains stable if and only if, at the
given operating point, it is (dA/dB)/A > 0.

The analysis of the cases, with respect to the sign of the above-mentioned quantities, will
be included as a particular case in the next treatment, extended to nonlinear static loads.

Note that: (
∆v

∆B

)
∆Qe=0

= ∂v

∂B

Gqe(0)

Gqe(∞)
[6.4.4]

so that the zero of Gqe(s) is also −Kv(∆v/∆B)∆Qe=0.

Generally, in the case of a nonlinear static load (with P and QL known
functions of v), it is convenient to separate the equations of line and compensator,
and the equations of load.

In this context:

P − jQe

e∗ = ı = e − v

jX
= jBv + P − jQL

v∗

from which, for the line and the compensator:

X(P 2 +Q2
e)+ e2(QL −Qe − Bv2) = 0 [6.4.5]

X(Qe +QL)− e2 + (1 −XB)v2 = 0 [6.4.6]

whereas for the load, it may be generically written that:

P = P(v)

QL = QL(v)

}
[6.4.7]

From Equation [6.4.6], it can be specifically derived:

Qe = e2 − (1 −XB)v2

X
−QL [6.4.8]
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so that, by substituting into Equation [6.4.5], the following results:

0 = X2(P 2 +Q2
L)+ v2[2X(1 −XB)QL + (1 −XB)2v2 − e2] [6.4.9]

which is of the second degree in B (for given e, v), with two real solutions if
and only if:

P ≤ ev

X
� Pmax [6.4.10]

(Pmax is the “transmissibility limit” of the active power; see Section 1.5). Of the
two possible solutions in B, it is convenient to choose, for the reasons already
stated, the one with the smaller value, which is:

B = 1

X
+ QL −√

P 2
max − P 2

v2

For small variations, having set:



ap � dP/dv

P/v

aq � dQL/dv

QL/v

(recall apv, aqv in Equation [5.6.1]) and furthermore, for brevity:

p′ �
√
P 2

max − P 2

the following can be obtained:

(
∆v

∆B

)
∆e=0

= ∂v

∂B
= v3p′

apP 2 + aqQLp′ + p′2 − P 2 − 2QLp′ [6.4.11]

(
∆Qe

∆e

)
∆v=0

= e

X

2p′ − v2

X

p′ [6.4.12]

(
∆v

∆B

)
∆Qe=0

=
v3

(
p′ − v2

2X

)

apP 2 + aqQL

(
p′ − v2

2X

)
+ v2

X
(QL − p′)+ p′2 − P 2 − 2QLp′

[6.4.13]
where it is intended that the quantities are evaluated at the operating point.

In analogy to the case of a linear load and again adopting Equation [6.4.3]:

• Equation [6.4.11] allows the assessment of the stability under normal oper-
ation, and it must be that (∆v/∆B)∆e=0 > 0.



6.4 CONTROL OF STATIC COMPENSATORS 545

• Equation [6.4.12] defines the static gain of the function Gqe(s), whereas
Equation [6.4.13] allows the evaluation of its zero (the value Gqe(∞) can be
then derived from Equation [6.4.4]), and such information may be important
for network voltage regulation.

• Finally, Equation [6.4.13] itself allows the assessment of the stability for
operation at constant Qe, where it must be that (∆v/∆B)∆Qe=0 > 0.

If the load is purely active (i.e., with a unity power factor), QL = aqQL = 0,
and it can be more simply derived:

(
∆v

∆B

)
∆e=0

= v3p′

apP 2 + p′2 − P 2
[6.4.11′]

(
∆Qe

∆e

)
∆v=0

= e

X

2p′ − v2

X

p′ [6.4.12 rep.]

(
∆v

∆B

)
∆Qe=0

=
v3

(
p′ − v2

2X

)

apP 2 − v2

X
P ′ + p′2 − P 2

[6.4.13′]

where, as already said, p′ �
√
P 2

max − P 2 �
√
(ev/X)2 − P 2. In particular, the

stability condition under normal operation, or under that at constant Qe, can be
usefully expressed in terms of XP/e2 and ap, for any assigned value of the ratio
v/e. Refer, for v/e = 1, to Figure 6.33, which permits a direct comparison with
the already treated case in which the load voltage is regulated by an on-load
tap-changing transformer (recall Fig. 6.25).

(c) Voltage Regulation at One or Several Nodes of a Line
Now consider the system in Figure 6.34, which includes;

• two infinite power networks operating at the same frequency ω and having
voltages eA and eB of equal magnitude;

• a connection line defined by the reactance Xtot � X1 +X2 evaluated at the
network frequency(20);

• a controlled reactor static compensator represented (as in the previous exam-
ple) by a variable susceptance B.

(20) The effect of line capacitances can be considered, for each section of the line, by two shunt
capacitors at the terminal nodes of the section itself. The capacitors at the infinite power nodes can
be disregarded, whereas the susceptance of the other two capacitors can be included in that of the
compensator.
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stability zone

Figure 6.33. Stability zones in the plane (P, ap), for QL = 0 and (at the
operating point) v = e: (a) under normal operation (the stability condition
is ap > 2 − (ev/(XP ))2); (b) under the operation at constant Qe, see text
(having set α � e/v, β �

√
1 − α2(XP/e2)2 ∈ [0, 1], the stability condition is

ap ≶ 1 + β(1 − αβ)/(α(1 − β2)) according to whether β ≶ 1/(2α)).

By applying Park’s transformation with Ωr = ω (and again disregarding, for
simplicity, the index “r” in the Park’s vectors), by the notation of the figure,
it follows:

v = X2eA +X1eB

X1 +X2 −X1X2B
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regulator

Figure 6.34. Voltage regulation at an intermediate node of a line by a static
compensator: system under examination.

from which, as a result of the assumption eA = eB � e and setting δ � � eA −
� eB :

v =
e

√
X2

1 +X2
2 + 2X1X2 cos δ

|X1 +X2 −X1X2B| [6.4.14]

whereas the active power P transmitted by the system (in the sense indicated in
the figure) is:

P = e2 sin δ

X1 +X2 −X1X2B
[6.4.15]

Based on Equation [6.4.14], the dependence of v on B is as indicated in
Figure 6.35, with v = ∞ (in the ideal case, without any resistance, considered
here) for B = B∗, where:

B∗ � 1

X1
+ 1

X2

In Equation [6.4.14], the numerator becomes zero if and only if X1 = X2 and
cos δ = −1. The diagram of Figure 6.35 refers to a generic situation in which
such conditions do not hold.

By the reactor control, the susceptance B can be changed so as to regulate the
voltage v at the desired value vrif (“voltage support” along the line). On the other
hand, for each value of v there are two possible solutions in B (points 1 and 2
in Fig. 6.35), of which the solution 1, at a smaller B, is usually the preferred
one, as it implies a smaller current in the compensator and in the two sections
of the line.

Around this solution, it holds that ∂v/∂B > 0 (Fig. 6.35), so that the reg-
ulation loop can be as in Figure 6.36, which is similar to that of Figure 6.31.
Also, the synthesis of Gv(s) does not imply, for each assigned operating point,
particular problems with the adopted simplifications. In particular, by an integral



548 CHAPTER 6 VOLTAGE AND REACTIVE POWER CONTROL

1 2

1 2

Figure 6.35. Dependence of the voltage v on the susceptance B (see Fig. 6.34).

Figure 6.36. Block diagram of the regulation loop.

effect in Gv(s) it is possible to obtain v = vrif at steady-state. If it is simply
assumed that:

Gv(s) = Kv

s
[6.4.16]

the cutoff frequency of the regulation loop is νt = Kv∂v/∂B, whereas the closed-
loop response delay is represented by the time constant 1/νt . If the cutoff
frequency is relatively high, the analysis should also consider the dynamic behav-
ior of the inductive and capacitive elements.

Furthermore, if Equation [6.4.16] is adopted, the effect of the regulator is to
move the generic point (B, v) in the sense indicated by the arrows in Figure 6.35.
Therefore, if for some reasons it were true that B > B∗, the regulator would cause
(unless proper countermeasures were taken):

• the voltage collapse, for B > (B)2;
• the reaching of point 1, but at the cost of unacceptable overvoltages, for
B ∈ (B∗, (B)2).



6.4 CONTROL OF STATIC COMPENSATORS 549

In practical cases, with noninfinite power networks, it also may be useful to evaluate
the transfer functions that relate the variations ∆P , ∆QA, ∆QB to variations ∆eA, ∆eB ,
∆δ. In particular, from Equations [6.4.14] and [6.4.15] it is possible to derive the transfer
function:

K(s) � L∆P
L∆δ

= ∂P

∂δ
− ∂P

∂B

Gv(s)
∂v

∂δ

1 +Gv(s)
∂v

∂B

[6.4.17]

the behavior of which can be considered important for keeping synchronism between the
two networks, as specified in the following.

The regulation under examination limits voltage variations during transients,
thereby allowing a better operation of the line (without regulation, the overvolt-
ages might find some limitation only because of the “corona effect,” caused by
themselves) and a better supply to possible loads located along the line. How-
ever, it is easy to determine that the regulation also can increase the transmittable
active power, according to the following.

Assuming, as it looks obvious, vrif = e, based on the previous equations the
equilibrium points 1 and 2 are, respectively, defined by:

(Bo)1,2 = B∗ ∓
√
X2

1 +X2
2 + 2X1X2 cos δo

X1X2

and:

(P o)1,2 = ± e2 sin δo√
X2

1 +X2
2 + 2X1X2 cos δo

Therefore, the active power P o has at the stable solution point 1, the same
sign as sin δo and depends on δo as indicated by the bold line in Figure 6.37a,
whereas (P o)2 = −(P o)1.

If the regulation were blocked, with B = constant, because of Equation [6.4.15] there
would be a single characteristic (P o, δo), as indicated by the thinner line in Figure 6.37a,
having a slope:

K(∞) =
(
∆P

∆δ

)
B=constant

≷ 0 according to whether δo ≶ 90◦

The operation at constant B automatically occurs if B reaches its minimum or maximum
limit. If for instance, the maximum limit is reached at a power P smaller than the value
PM indicated in the figure, the characteristic must be modified in an obvious way.

For B = 0, i.e., without compensator, it would be:

P o = e2 sin δo

X1 +X2

as indicated by the dashed line in Figure 6.37a.
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1

1

1

1

2

Figure 6.37. Dependence of the transmitted active power (P o) on the phase-shift
(δo) between the voltage vectors at the line terminals, in steady-state conditions:
possible solutions, with a compensator (see text; figure (b) corresponds to the
case X1 = X2).

With the regulation such that vo = vrif = e, the slope of the characteristic
is instead:

K(0) =
(
∆P

∆δ

)
v=e

≷ 0 according to whether δo ≶ δM

where δM is defined by:

cos δM � −Xmin

Xmax
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where Xmin and Xmax are respectively the smaller and the larger of the two
reactances X1, X2.

Correspondingly, the maximum active power PM which can be transmitted in
a stable way is increased from e2/(X1 +X2) (without compensator) to e2/(X1 +
X2 −X1X2B) (with B = constant), or, in the presence of regulation, to:

PM = e2

√√√√√√1 −
(
Xmin

Xmax

)2

X2
max −X2

min

= e2

Xmax

Assuming, for simplicity, that Equation [6.4.16] holds and that vrif = e, it can be further
deduced, around the generic stable operating point 1, that:

K(s) = K(0)+ sT K(∞)

1 + sT

where T � 1/νt , and K(0) and K(∞) (equal to the slope of the characteristic (P o, δo),
respectively, at v = vrif = e and at B = constant = (Bo)1) can be of either sign, as already
seen, depending on the value of δo. Furthermore, it results that K(0) > K(∞) except
for δo = 0.

Assuming as a first approximation that the phases of eA, eB are associated to two non-
infinite inertia coefficients MA and MB , so that it can be written (see also Sections 1.6
and 3.3.1):

d2∆δ

dt2
= −

(
1

MA

+ 1

MB

)
∆P [6.4.18]

the following characteristic equation is derived:

0 = s2MAB +K(s)

where MAB � MAMB/(MA +MB), i.e.,

0 = s3TMAB + s2MAB + sT K(∞)+K(0)

For stability, the following conditions must then hold:

K(∞) > K(0) > 0 [6.4.19]

the former of which is never satisfied. Therefore, under the adopted hypotheses, the
operation is unstable (the two networks lose their synchronism).

However, it is possible to reach different conclusions by substituting Equation [6.4.18]
by a model with better approximations (see also Section 7.2.3.).
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If X1 = X2 = Xtot/2, the result is more simply (with B∗ = 4/Xtot):

(Bo)1,2 = B∗ ∓
4

√
1 + cos δo

2
Xtot

= 4

Xtot

(
1 ∓

∣∣∣∣cos
δo

2

∣∣∣∣
)

(P o)1,2 = ± e2 sin δo

Xtot

√
1 + cos δo

2

= ± e2

Xtot

sin δo∣∣∣∣cos
δo

2

∣∣∣∣
(i.e., (P o)1 = ±2(e2/Xtot) sin(δo/2) according to whether cos(δo/2) ≷ 0, whereas
(P o)2 = −(P o)1), and the diagrams are changed to those in Figure 6.37b, with:

PM = 2
e2

Xtot

At this point, however, some explanations should be given to avoid commonly
made and dangerous misunderstandings.

(1) For X1 = X2 one might spontaneously write, referring to each section of
the line, P o = e2sin(δo/2)/(Xtot/2), and thus P o

max = 2e2/Xtot. Instead, it
is necessary to consider the existence of the opposite solution. Recall that
the operating points 1 (stable) and 2 (unstable) pertain partially to one
solution and partially to the other.

(2) For X1 = X2, the stability limit is at δo = 180◦ (so that PM = 2e2/Xtot =
P o

max), where ∂P o/∂δo = 0. This last condition has all the appearance of
a condition for maintaining synchronism between the two networks, but
actually it is a purely casual coincidence. Actually:

• Under the hypothesis that the two networks are infinite power networks,
the problem of maintaining synchronism does not exist, and the stability
to be considered is only that of the regulation (if, for instance, it were
assumed that Kv < 0, the stability and the instability conditions, which
are based on the sign of ∂v/∂B, would reciprocally change).

• The problem of maintaining synchronism might arise only if the hypoth-
esis of infinite power networks were removed. But in such a case, the
whole function K(s) should be considered, as seen above.

• The above-mentioned coincidence is clearly missing for X1 �= X2 (recall
the bold-line characteristic in Figure 6.37a corresponding to a stable
operation, for which ∂P o/∂δo can be negative), and as illustrated below,
for the case of two or more compensators.

In the case of n compensators (with n > 1), the analysis implies greater diffi-
culties. Useful insight, at least from the qualitative point of view, may be obtained
by more simply assuming that:
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• the line is “uniform” at the operating point, i.e.,

X1 = X2 = · · · = X(n+1) � Xtot

n+ 1
� X

Bo
1 = Bo

2 = · · · = Bo
n � Bo


 [6.4.20]

where Bo
k is the value of the generic susceptance Bk at the operating point

(see Fig. 6.38);

• all the n regulators have set-points equal to each other (and to eA = eB � e)
and equal transfer functions, i.e.,

vrif 1 = vrif 2 = · · · = vrif n � vrif = e

Gv1(s) = Gv2(s) = · · · = Gvn(s) � Gv(s)

}
[6.4.21]

(where Gvk(s) � L∆Bk/L(∆vrif k −∆vk): see Fig. 6.39).

Figure 6.38. Voltage regulation along a line by more than one static compen-
sator: system under examination.

electrical 
system

Figure 6.39. Overall block diagram of the regulations.
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Figure 6.40. Diagram of voltage vectors at the considered steady-state (see text).

At the operating point, it results that (by assuming regulators with integral
effect):

vo1 = vo2 = · · · = von � vo = vrif = e

and the subsequent phase-shifts between voltages are equal one another, i.e., with
α0 � � eA, αk � � vk(k = 1, . . . , n), α(n+1) � � eB = α0 − δ:

(α0 − α1)
o = (α1 − α2)

o = · · · = (αn − α(n+1))
o = δo

n+ 1

as indicated in Figure 6.40.

By generalizing what has already been seen for a single compensator, with X1 = X2, one
might be tempted:

• to simply write, referring to each section of the line, that:

P o = vo2

X
sin

δo

n+ 1
= (n+ 1)e2

Xtot
sin

δo

n+ 1
[6.4.22]

which has a maximum value of:

P o
max = (n+ 1)

e2

Xtot

at δo = (n+ 1)90◦, apart from multiples of 360◦ (see the thin-line characteristics in
Figure 6.41);

• to assume that the maximum power which can be transmitted in a stable way (PM ),
is given by P o

max (as it happens in the case of a single compensator) and thus can
be incremented at will by simply increasing the number of compensators.

The situation is actually very different, both because of the existence of other solutions
(P o, δo) and because of the limitations on PM as a result of stability, as indicated in the
following analysis.
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Figure 6.41. Dependence of the transmitted active power (P o) on the phase-shift
(δo) between the voltage vectors at the line terminals, in steady-state conditions:
some solutions, with one or more compensators (see text; the bold-line charac-
teristics are those of practical interest).

Regarding the value Bo of the susceptance, there are (n+ 1) possible solutions,
which, by considering any possible |δo| (even larger than 180◦), can be expressed
in the form:

(Bo)r = 2

X
(1 − cos γr) (r = 0, 1, . . . , n) [6.4.23]

where:

γr � δo − r360◦

n+ 1
[6.4.24]

according to Figure 6.42. Among such (n+ 1) solutions, the one with the smallest
value (indicated by the bold line in the figure), is usually the preferable solution,
as it implies smaller currents in the compensators and in the different sections of
the line.

Correspondingly, there are (n+ 1) solutions also in P o (for any given δo),
defined by:

(P o)r = e2 sin γr
X

(r = 0, 1, . . . , n− 1) [6.4.25]
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Figure 6.42. Dependence of the susceptance (Bo) on the phase-shift (δo) between
the voltage vectors at the line terminals, in steady-state conditions: possible solu-
tions, with one or more compensators (see text; the bold-line characteristics are
those of practical interest).

Note that [6.4.22] is only the particular solution (P o)0, corresponding to r = 0, γr = γ0 =
δo/(n+ 1).

Furthermore, for n → ∞, sin(δo/(n+ 1)) → δo/(n+ 1), and thus:

(P o)0 → e2δo

Xtot

whereas the total susceptance is:

Btot = (n+ 1)(Bo)0 → n+ 1

X
γ 2
o = δo2

Xtot

In such conditions, indicating the line length by a, it also can be stated that the “phase
constant” (see Section 5.4.2 and the second of Equations [5.4.15′]) is, at steady-state:
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β =
√
XtotBtot

a
= δo

a

so that βa = δo, whereas the “characteristic power” of the line is automatically equal to
the transmitted active power, whichever its value (recall Equation [5.4.27] and Fig. 5.25).
However, such conclusions hold only at steady-state, and may be of practical interest only
if the operation is stable.

Moreover, for any operating conditions, it can be written:

vk =
(
v(k−1) − XQ(k−1)

v(k−1)

)
cos(α(k−1) − αk)+ XP

v(k−1)
sin(α(k−1) − αk)

0 =
(
v(k−1) − XQ(k−1)

v(k−1)

)
sin(α(k−1) − αk)− XP

v(k−1)
cos(α(k−1) − αk)

Qk = vk

v(k−1)
[Q(k−1) cos(α(k−1) − αk)− P sin(α(k−1) − αk)] + Bkv

2
k




[6.4.26]
(k = 1, . . . , n, with v0 = eA, Q0 = QA), and furthermore:

eB =
(
vn − XQn

vn

)
cos(αn − α(n+1))+ XP

vn
sin(αn − α(n+1)) [6.4.27]

with α(n+1) = α0 − δ.
Consider now the behavior for small variations around the former of the

solutions given by [6.4.23], which corresponds to r = 0, i.e.,

Bo = (Bo)0 = 2

X
(1 − cos γ0)

where:

γ0 = δo

n+ 1
[6.4.28]

By linearizing the Equations [6.4.26] and [6.4.27] and considering that:

∆Bk = Gv(s)(∆vrif k −∆vk)

it is possible to derive ∆eB and ∆δ starting from ∆eA, ∆P , ∆QA, ∆vrif 1, . . . ,

∆vrif n, according to equations:

∆eB = ∂eB

∂P
∆P + ∂eB

∂QA

∆QA + · · ·

∆δ = ∂δ

∂P
∆P + ∂δ

∂QA

∆QA + · · ·




[6.4.29]

where the dotted terms depend on ∆eA, ∆vrif 1, . . . ,∆vrif n.
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Since ∆eA, ∆eB , ∆δ, ∆vrif 1, . . . ,∆vrif n are assumed as “inputs” of the sys-
tem, the characteristic equation can be derived by setting to zero the determinant
of the coefficients (functions of s) of ∆P and ∆QA in these equations, i.e.,

0 = ∂eB

∂P

∂δ

∂QA

− ∂eB

∂QA

∂δ

∂P

If it is formally posed that:

cos(2σ) � cos(2γ0)+ XeGv(s)

2
cos γ0 [6.4.30]

it can be derived:

∂eB

∂P
= e

∂δ

∂QA

= X sin γ0

e

(
sin((n+ 1)σ )

sin σ

)2

∂eB

∂QA

= −X cos γ0

e

sin(2(n+ 1)σ )

sin(2σ)

∂δ

∂P
= X

e2 cos γ0

[
(n+ 1)

(
1 −

(
sin γ0

sin σ

)2
)

+
(

sin γ0

sin σ

)2 sin(2(n+ 1)σ )

2 tan σ

]




[6.4.31]
and the characteristic equation can be translated into:

0 = sin((n+ 1)σ )

sin(2σ)
[6.4.32]

cos(2γ0) = cos(2σ)− F

1 − F
[6.4.33]

having assumed, for brevity:

F � tan((n+ 1)σ )

(n+ 1) tan σ

It is easy to determine that, in Equations [6.4.32] and [6.4.33], the dependence
on σ is actually a dependence on cos(2σ). More precisely:

• from Equation [6.4.32], it follows that:

σ = h
180◦

n+ 1
, h = 1, . . . , hmax

(where hmax = (n− 1)/2 if n is odd, and hmax = n/2 if n is even), from
which the following hmax real solutions (that we will call “type 1” solu-
tions) result:

cos(2σ)h = cos
(
h

360◦

n+ 1

)
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(for n = 1 there is no solution; for n = 2 there is the solution cos(2σ) =
−1/2; for n = 3 there is the solution cos(2σ) = 0; for n = 4 instead there
are the solutions cos 72◦ and cos 144◦; for n = 5 there are the solutions 1/2
and −1/2; and so on);

• Equation [6.4.33] gives then, for any assigned γ0, other (n− hmax) real
solutions in cos(2σ) (“type 2” solutions),

with a total of n solutions (see Fig. 6.43).
If Equation [6.4.30] is considered, it can be concluded that the characteristic

roots of the system are deducible from the equations:

0 = 1 + Xe

2

cos γ0

cos(2γ0)− cos(2σ)i
Gv(s) [6.4.34]

(i = 1, . . . , n), where cos(2σ)1, . . . , cos(2σ)n are the solutions (of the types 1
and 2) defined above.

By assuming, for instance, that Equation [6.4.16] holds, i.e., assuming a Gv(s)

of the purely integral type with a positive gain Kv, the following stability con-
ditions can be derived:

cos γ0

cos(2γ0)− cos(2σ)i
> 0 ∀i = 1, . . . , n

0

Figure 6.43. “Type 1” and “type 2” solutions, for the deduction of the charac-
teristic roots of the system in Figure 6.38 (with n controlled compensators).
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which define the admissible ranges of values for γ0 and thus for δo = (n+ 1)γ0.
More precisely, the sign of (cos(2γ0)− cos(2σ)i) must remain unchanged for all
i = 1, . . . , n, and it must be the same sign of cos γ0.

By assuming γ0 ∈ (−180◦
,+180◦], the above value ranges are defined as

follows (see also Fig. 6.43):

• for n = 1: |γ0| < 90◦ and thus |δo| < 180◦

• for n = 2: |γ0|
{
< 60◦
ε(90◦

, 120◦
)

and thus |δ0|
{
< 180◦
ε(270◦

, 360◦
)

• for n = 3: |γ0| < 45◦ and thus |δo| < 180◦

• for n = 4: |γ0|
{
< 36◦
ε(90◦

, 108◦
)

and thus |δ0|
{
< 180◦
ε(450◦

, 540◦
)

• for n = 5: |γ0| < 30◦ and thus |δo| < 180◦

and so on. Note that, for n > 1, the limitation |δo| < 180◦ is the result of the
“type 1” solution corresponding to h = 1.

Up to now, reference has been made only to the solution (Bo)0, i.e., to the
former of the solutions given by [6.4.23]. However, the treatment presented
can be repeated with reference to the other solutions (Bo)1, . . . , (B

o)n, pro-
vided δo is increased by the quantities 360◦

, . . . , n 360◦, respectively (recall
Equation [6.4.24] and Fig. 6.42).

Therefore, based on previous results, it can be finally determined that for
practical purposes, and with δo > 0:

• the meaningful solution corresponds to (Bo)0 for δo < 180◦, to (Bo)1 for
δo ∈ (180◦

, 540◦
), and so on, i.e., in any case, to the smaller susceptance

(Fig. 6.42);

• correspondingly, the characteristic (P o, δo), for the reported values of n,
results in the solution represented by the bold line in Figure 6.41;

• the maximum active power that can be transmitted in a stable way is given
(see Equation [6.4.25]) by:

PM =
e2 sin

180◦

n+ 1
X

= (n+ 1)e2

Xtot
sin

180◦

n+ 1

and it is then within 2e2/Xtot (for n = 1) and πe2/Xtot (for n → ∞), with
a small increment for increasing n.

Actually, if if for instance n = 2, the solution (Bo)0 is possible also for δo ∈
(270◦

, 360◦
). But, for this range of values, the solution (Bo)1 is smaller and thus

appears preferable. Similar considerations apply for n = 4 and δo ∈ (450◦
, 540◦

),
and so on.
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Based on Equation [6.4.34], the previous considerations can be extended to the case of
functions Gv(s) of a more general type, for instance:

Gv(s) = Kv

1 + sT ′

s(1 + sT )

i.e., regulators of the proportional-integral type, with a delay defined by a time constant
T ≥ 0.

Moreover, regarding the dependence of ∆P on ∆δ, which in practical cases may be of
interest in maintaining synchronism between the two networks, it can be derived from
Equations [6.4.29] that:

K(s) � L∆P
L∆δ

=
∂eB

∂QA

∂eB

∂QA

∂δ

∂P
− ∂eB

∂P

∂δ

∂QA

and then, because of Equations [6.4.31] (with reference to the solution Bo = (Bo)0):

K(s) = e2 cos γ0

Xtot

1 − cos(2σ)

(1 − F) cos(2γ0)+ F − cos(2σ)

This equation also shows that the poles of K(s) are constituted only by the characteristic
roots that correspond to the “type 2” solutions (see Equation [6.4.33]). Then, if signals
sensitive to the active power P were added as inputs to the regulators, the characteristic
roots that correspond to the type 1 solutions would remain unchanged. Therefore, nothing
would change with respect to the limitation |δo| < 180◦ and the maximum transmittable
power PM .

Such a conclusion can be reached by considering also the other solutions (Bo)1, . . . , (B
o)n,

similarly to what was shown above.

ANNOTATED REFERENCES

Among the works of more various or general interest, it can be made reference to: 25,
37, 42, 45, 47, 71, 74, 79, 130, 188, 193, 196, 217, 224, 225, 229, 232, 239, 244, 245,
259, 275, 280, 286, 288, 292, 293, 294, 306, 319, 326, 331.

More specifically, for what concerns the excitation control of the synchronous ma-
chines: 9, 51, 68, 72, 77, 81, 88, 114, 115, 125, 126 (for terminological aspects), 146, 212.

Moreover, for what concerns

• the control of tap-changers: 194, 322;

• the control of static compensators: 63, 228, 242, 274, 325;

further than some notes (particularly regarding the stability conditions) prepared by the
author in view of the writing of 53.



CHAPTER 7

THE SYNCHRONOUS MACHINE
CONNECTED TO AN INFINITE BUS

7.1. PRELIMINARIES

For a better understanding of different dynamic phenomena, it is useful to con-
sider the case of a single synchronous machine connected to an infinite power
network (infinite bus). On the other hand, such a schematization can be consid-
ered acceptable in several cases, when one or more machines relatively “close”
to one another (e.g., machines of the same power plant, that may be suitably
thought of as a single equivalent machine) are connected to a node of a much
larger power.

For a greater generality, reference can be made to Figure 7.1, which includes:

• a synchronous machine with its excitation control and its turbine valve
control;

• a transformer;
• a line;
• an infinite power network (at constant frequency equal to the “synchronous”

speed Ωs);
• an intermediate load, possibly voltage-controlled by an on-load tap-changing

transformer or a static compensator.

The vectors indicated in the figure are obtained by applying the Park’s trans-
formation with the “machine” angular reference θr = θ (Ωr = Ω), with θ the
electrical angular position (andΩ = dθ/dt the speed) of the rotor of the machine.

The choice θr = θ allows the machine equations to remain in their original
form (Chapter 4). Nevertheless, if it is necessary to account for the dynam-
ics of inductive and capacitive elements, with a dynamic order higher than 1

562
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supply
system turbine

synchronous
machine

transformer
line

infinite power
    network
(frequency Ws)

    speed
 regulator
 and valve
positioning
  system

intermediate
      load

voltage regulator
  and excitation
        system

Figure 7.1. A synchronous machine connected to an infinite power network:
system under examination.

(Appendix 2), it is convenient to apply the Park’s transformation with a “network”
angular reference, equal to the electrical angular position θs of a fictitious rotor
rotating at the (constant) synchronous speed Ωs = dθs/dt .

In the former case, the symbol of the Park’s vectors will have no index,
whereas in the latter case it will have the index s. The generic vector y (with
the machine reference) is related to the vector ys (with the network reference)
through yεjθ = ysεjθs .

With regard to the definition of “infinite power” network :

• the first assumption may be ERs = constant, for instance:

ERs = jER

with ER constant, as if it were the emf of an ideal machine, with constant excitation,
zero output impedances, and electrical angular position θs , and thus rotating at a
constant electrical speed Ωs (infinite inertia);

• more generally, it may be assumed that ERs is:

ERs = jERεjαe [7.1.1]

where ER and αe can vary, but independently of what happens on the machine link,
so they can be considered “inputs” of the system.

As to this last consideration, if we assume that:

• the upward system can be approximated by a circuit as in Figure 7.2, with a constant
“internal” emf Eos (having a magnitude Eo), a load, and a set of delta-connected
constant impedances (evaluated at the network frequency Ωs);

• the effects of IRs on ERs are negligible;

we can deduce:
ERs

∼= Eos − ZI os
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connection to
the machine

Figure 7.2. Schematic interpretation of the “infinite power network” (see text).

with:

Z � Z1Z3

Z1 + Z2 + Z3

I os = Po − jQo
E

∗
os

from which, following a load variation:

∆ERs
∼= −Z∆I os = −Z∆Po − j∆Qo

E
∗
os

If Z1, Z2, Z3 are purely imaginary, Z is imaginary as well, so that it is possible to set
Z = jX; by further assuming X → 0, it can be derived:

E
o

Rs
∼= Eos

∆ERs

E
o

Rs

∼= −Xj∆Po +∆Qo
E2
o

and thus, being ∆ERs/E
o

Rs = ∆ER/EoR + j∆αe:
∆ER

EoR

∼= −X∆Qo
E2
o

∆αe ∼= −X∆Po
E2
o

Therefore, with the adopted schematizations:

• a variation ∆ER/EoR (relative variation in magnitude) can be interpreted in terms of
a variation in the reactive power delivered by the internal emf (and referred to the
power E2

o/X that is infinite), following a reactive load perturbation;
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Figure 7.3. Block diagram of the system in Figure 7.1.

• a variation ∆αe (phase variation) can be interpreted in terms of a variation in the
active power delivered by the internal emf (again referred to the power E2

o/X),
following an active load perturbation.

Such schematizations allow nonzero-phase variations, despite the assumption of infi-
nite inertia (Mo = ∞).

The system in Figure 7.1 can be represented by the block diagram of Figure 7.3
(see also Figure 4.5) by particularly intending:

δ � θ − θs [7.1.2]

and thus dδ/dt = Ω −Ωs (it then follows v = vsε−jδ , ıs = ıεjδ , etc.); for small
variations, the block diagram of Figure 7.4a can be further deduced.

To analyze the electromechanical phenomena (relative motion between the
machine and the infinite bus), it is useful to write out the transfer functions:

Dm(s) � −L(∆CmΩm nom)

L(∆Ω)
[7.1.3]

Ke(s) � L(∆CeΩm nom)

L(∆δ)
[7.1.4]

(Fig. 7.4b), which respectively account for:

• driving torque variations caused by speed variations, through the turbine
valve control (the torque variations related to the natural characteristics of
the unit and the mechanical losses usually can be disregarded or possibly
considered into Dm(s); then, by using the notation of Chapter 3, it can be
assumed thatDm(s) = Gf (s) or, more generally,Dm(s) = Gf (s)+Gg(s));

• electromagnetic torque variations caused by phase-shift variations (∆δ) and
speed variations (∆Ω = d∆δ/dt), according to the characteristics of:



566 CHAPTER 7 THE SYNCHRONOUS MACHINE CONNECTED TO AN INFINITE BUS

speed regulation
         loop

mechanical
 part of the 
     unit

“electromechanical”
           loop

   electromagnetic part of the 
machine, transformer, line, load

voltage regulation
           loop

mechanical
 part of the
     unit

Figure 7.4. Linearized system: (a) block diagram; (b) definition of the functions
Dm(s) and Ke(s).

• the electromagnetic part of the machine;

• the excitation control;

• transformer, line, and intermediate load (with possible control).

Finally, for the mechanical part of the machine, the inertia of the unit must
be considered, as well as torsional phenomena (see Section 4.3.4). If these last
phenomena may be disregarded, it simply follows:

∆Ω = 1

sM
(∆Cm −∆Ce) Ωm nom [7.1.5]

with M the inertia coefficient defined in Section 3.1.1.
In the following, we will assume as “basic case” (to which other situations

are referred) the one for which:
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• the transformer and line can be simply considered — at the machine side of
the transformer — as inductances Lt , Ll in series between the machine and
the infinite bus (disregarding the line capacitances);

• there is no intermediate load.

Furthermore, for simplicity, we will assume Ωs = Ωnom, and disregard:

• the armature resistance;
• the magnetic saturation.

For the basic case, we may then assume:

• the diagram of Figure 7.5a with Le � Lt + Ll , eR � ER/mo (mo is the
transformation ratio of the transformer in Figure 7.1);

• the vector diagram of Figure 7.5b with reference to the steady-state (with
αoe = 0);

With notations used in Chapter 4, the following equations hold:

• for the mechanical part of the machine, disregarding the torsional phenom-
ena (otherwise, see Section 4.3.4) and mechanical losses:

Cm − Ce = M

Ωm nom

dΩ

dt
[7.1.6]

further:

Ω −Ωs = Ω −Ωnom = dδ

dt
[7.1.7]

• for the rest of the system, by applying the Park’s transformation with the
“machine” angular reference:

vd = dψd
dt

−Ωψq

vq = Ωψd + dψq
dt




[7.1.8]

where:
ψd = A(s)vf − Ld(s) id
ψq = −Lq(s) iq

}
[7.1.9]

and moreover:

eR sin(δ − αe) = vd − Le
(

did
dt

−Ωiq
)

eR cos(δ − αe) = vq − Le
(
Ωid + diq

dt

)



[7.1.10]

Ce = Ωnom

Ωm nom
(ψdiq − ψqid) [7.1.11]
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Figure 7.5. “Basic case”: (a) system under examination; (b) vector diagram at
steady-state (with αoe = 0).

whereas Cm and vf , respectively, depend on the turbine valve control and
on the excitation control.

7.2. SMALL PERTURBATION BEHAVIOR

7.2.1. ‘‘Basic Case’’ in the Absence of Control

By linearizing Equations [7.1.6] to [7.1.11] around a generic operating point
(indicated by the superscript “o”), the block diagram of Figure 7.6 can be derived
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Figure 7.6. Block diagram of the linearized system (“basic case”).

for which (in the absence of control) ∆Cm = 0, ∆vf = 0 (apart from the small
torque variations caused by the “natural” characteristics of the unit etc., and
the variations in vf caused by voltage variations in the case of exciter with
dependent supply).

In particular, it results:
Dm(s) = 0

By eliminating ∆vd , ∆vq , ∆ψd , ∆ψq , ∆id , ∆iq it follows:

Ke(s) = QoR + eo2R

Ωnom

(
sin2 δo

Ld(s)+ Le + cos2 δo

Lq(s)+ Le

)
[7.2.1]

according to what is specified in Figure 7.6, where:

QoR = eoRq i
o
d − eoRd i

o
q

(with eoRd = eoR sin δo, eoRq = eoR cos δo) is the reactive power absorbed by the
network (Fig. 7.5).

Equation [7.2.1] shows the effect of the operating point on Ke(s), in terms of QoR , eoR , δo.
As an alternative, the angle δo also can be expressed as a function of P o, QoR , eoR :

tan δo = P o

QoR + eo2R

Ωnom(Lq + Le)
[7.2.2]

(with Lq = Lq(0): see also Fig. 7.5b).
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In more synthetic terms, having set for brevity:

q � QoR

eoRi
o

ldt(s) � Ωnom(Ld (s)+ Le) io
eoR

lqt(s) � Ωnom(Lq(s)+ Le) io
eoR

xqt � lqt(0) = Ωnom(Lq + Le) io
eoR

(with io the current at the operating point, and P o2 +Qo2R = (e2
Ri
o)2), it can be written:

Ke(s)

eoRi
o

= q + 1

ldt (s)
+ cos2 δo

(
1

lqt (s)
− 1

ldt (s)

)

where:

cos2 δo =

(
q + 1

xqt

)2

1 + 2q

xqt
+ 1

x2
qt

depends on q according to Figure 7.7, for different values of xqt . The effects of q (or
even of the “power factor” at the infinite bus) can be simply evaluated, once ldt (s) and
lqt (s) are known.

Moreover, the present results can be expressed in terms of P o,Qo, vo, by considering that:

QoR = Qo −ΩnomLei
o2

eo2R = vo2 + (ΩnomLei
o)2 − 2ΩnomLeQ

o

}
[7.2.3]

Figure 7.7. Dependence of cos2 δo on q, for different values of xqt .
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where:

io2 = P o2 +Qo2
vo2

[7.2.4]

Note that Equation [7.2.1] can be also obtained:

• by disregarding the dynamic behavior of the inductive elements (which are
present in the machine, transformer, and line);

• by approximating Ω by Ωnom in Equations [7.1.8] and [7.1.10] (and simi-
larly by replacing Pm with CmΩm nom, and Pe by CeΩm nom).

This is equivalent to replacing Equations [7.1.6], [7.1.8], [7.1.10], and [7.1.11]
by the following simpler equations:

Pm − Pe = M dΩ

dt
[7.2.5]

vd = −Ωnomψq

vq = Ωnomψd

}
[7.2.6]

eR sin(δ − αe) = vd +ΩnomLeiq

eR cos(δ − αe) = vq −ΩnomLeid

}
[7.2.7]

Pe = Ωnom(ψdiq − ψqid) = vdid + vqiq = P [7.2.8]

which correspond to the simplifications illustrated in Chapters 3 and 4.
Such approximations can, therefore, be adopted, as they have effect neither on

the transfer function Ke(s), nor, consequently, on the total transfer function of
the electromechanical loop (Ke(s)/(s2M) in Fig. 7.6).

The considered approximations also have no influence on the transfer function
L(∆CeΩm nom)/L(∆vf ). The only impact they have is to replace the matrix G(s)

(indicated in Figure 7.6) by G(0), with consequences on the response to variations ∆eR ,
∆αe. In particular, the effects of ∆αe turn out to be considered equivalent to those of
variation ∆δ = −∆αe, so that it is sufficient to consider the variation (∆δ −∆αe) (see
also Fig. 7.13).

Nevertheless these conclusions are related to the hypothesis that the armature resistance
is zero. Otherwise, or generally in the presence of resistances in the electrical system,
the dynamics of the inductive elements can somewhat affect Ke(s), but only at relatively
high frequencies (with a good approximation level: a damped resonance at the frequency
Ωnom, and an antiresonance at frequency ∼ Ωnom), and therefore with negligible effects on
the “electromechanical” oscillation, the frequency of which (as it will be seen) is usually
much lower than Ωnom.

Similarly, the behavior of the line capacitances also may be approximated by representing
the line with simple inductive (series) and capacitive (shunt) reactances. By applying the
Thevenin theorem to the set line-network, an equivalent scheme like in Figure 7.5a can
again be found. However, some cautions may be necessary if the line is very long, with
some resonance frequencies relatively low (refer to Fig. 5.27).
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Furthermore, the dynamics of the inductive and capacitive elements deserve particular
attention in the case of a series-compensated line, according to Section 7.2.4.

If the presence of additional rotor circuits is not considered, in Equations [7.1.9]
it results (see Section 4.1.3):




A(s) = A(0)

1 + sT̂ ′
do

Ld(s) = Ld + sT̂ ′
doL̂

′
d

1 + sT̂ ′
do

Lq(s) = Lq
with A(0) = Lmd/Rf . Through Equation [7.2.1] it follows:

Ke(s) = K1 + sT K ′
1

1 + sT [7.2.9]

with:

K1 � QoR + eo2R
(

sin2 δo

Xd +Xe + cos2 δo

Xq +Xe

)

K ′
1 � QoR + eo2R

(
sin2 δo

X̂′
d +Xe

+ cos2 δo

Xq +Xe

)

T � (X̂′
d +Xe)T̂ ′

do

Xd +Xe




[7.2.9′]

where Xd � ΩnomLd , etc.
In particular:

• It can be determined that at the operating point, K1 and K ′
1 are equal to

the slope of the characteristics (P oe , δo), respectively, for constant iof and
constant ψof (Fig. 7.8), corresponding to the equations:

Pe = Xmd if eR

Xd +Xe sin δ + (Xd −Xq)e2
R

2XdXq
sin 2δ

Pe = Xmdψf eR

(X̂′
d +Xe)Lf

sin δ − (Xq − X̂′
d)e

2
R

2X̂′
dXq

sin 2δ




[7.2.10]

which are valid (for the adopted model, and for αe = 0) at any operat-
ing condition.

Both characteristics (P oe , δo) are static in the usual sense. However, only the character-
istic for constant iof is actually called “static,” whereas that for constant ψof is called
“transient.”
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constant

constant

round rotor
salient pole
rotor

Figure 7.8. Dependence of P oe on δo for: (a) iof constant; (b) ψof constant.

• The time constant T is defined similarly to the time constant T̂ ′
d (“short-

circuit transient” time constant; see Section 4.1.4) of the machine, but with
reference to the network node instead of the machine node.

For the system under examination, the characteristic equation is:

0 = 1 + Ke(s)

s2M
[7.2.11]

i.e., because of Equation [7.2.9]:

0 = s3MT + s2M + sT K ′
1 +K1 [7.2.11′]
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from which the following (asymptotic) stability conditions can be derived:

T > 0

K1 > 0

K ′
1 > K1


 [7.2.12]

Usually, such conditions are all met, and:

• the total transfer function of the electromechanical loop Ke(s)/(s2M) is
represented by Bode diagrams as indicated in Figure 7.9;

• in the closed-loop operation, the system exhibits:

Figure 7.9. Frequency response of the total transfer function of the electrome-
chanical loop (in the absence of control) for: (a) xe = 0.1; (b) xe = 0.7; and
furthermore assuming that, for the bold line diagrams:

Ωnom = 314 rad/sec xd = xq = 2
vo = vnom x̂ ′

d = 0.2
P o = Pnom = 0.8Anom T̂ ′

do = 7 sec

Qo = 0.6Anom Ta = ΩnomM

Pnom
= 8 sec

where xd , xq , x̂ ′
d , xe are the reactances in “machine” pu, i.e., referred to v2

nom/Anom,
and Ta is the start-up time.
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• a real characteristic root: the higher the gain of the loop, the closer is the
root to −K1/(K

′
1T );

• a pair of complex conjugate characteristic roots, which correspond to the
(“electromechanical”) oscillation between the machine and the infinite
bus, with a resonance frequency:

νo ∼= νt ∼=
√
K ′

1

M
� 1

T

(νt is the cutoff frequency of the loop), and with a (positive) damping
factor ζ that increases with the “phase margin” � Ke(̃νt ) and that also
may be approximated by (see Equation [7.2.15]):

ζ ∼= 1

2
tan � Ke(̃νo)

As it will be seen, the characteristic equation remains similar for cases different from
the basic one considered here, and its solutions (i.e., the characteristic roots) are usually
constituted by a real root and a pair of complex conjugate roots.

Furthermore:

• if K1 < 0: the real root would be positive (instability of the aperiodic type, caused
by insufficient synchronizing actions);

• if K1 > 0, but K ′
1 < K1: the pair of complex conjugate roots would have a positive

real part (instability of the oscillatory type, corresponding to a negative damping of
the electromechanical oscillation).

By referring to Equations [7.2.9′], it is clear that in the present case:

• the first of conditions [7.2.12] is surely satisfied;

• it results:

K ′
1 −K1 = (eoR sin δo)2

Xd − X̂′
d

(X̂′
d +Xe)(Xd +Xe)

where Xd > X̂′
d ; thus, the third of conditions [7.2.12] is also satisfied (except for

sin δo = 0, i.e., P o = P oe = 0);

so that the complex conjugate roots have negative real part (or zero when P o = 0), and
the instability can only be of the aperiodical type, for K1 < 0. (It is possible to draw the
same conclusion when accounting for the additional rotor circuits.)

Therefore, the stability conditions are reduced only to K1 > 0, i.e., δo < δom, by assuming
that δom is the value of δo corresponding, for constant iof , to maximum P oe . It results
δom = 90◦ for the round rotor and δom < 90◦ for the salient pole rotor (see Fig. 7.8a).
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If we define:

Q′ � Qo + vo2

Xq

Q′′ � vo2

Xe
−Qo




[7.2.13]

and moreover δo � δoi + δoe , where δoi and δoe , respectively, represent the “internal” and
the “external” phase-shifts (Fig. 7.5b), we may write, in terms of P o, Qo, vo:

tan δoi = P o

Q′

and consequently, with obvious sign convention for the field circuit:

sin δoi = P o√
P o2 +Q′2 , cos δoi = Q′√

P o2 +Q′2


eoR = Xe

vo

√
P o2 +Q′′2

sin δoe = P o√
P o2 +Q′′2 , cos δoe = Q′′√

P o2 +Q′′2

from which:

tan δoe = P o

Q′′

according to Figure 7.10a.

By proper developments and referring to Equations [7.2.3] and [7.2.4], the first part of
Equations [7.2.9′] also can be rewritten as:

K1 = XqXe

(Xq +Xe)vo2 (Q
′Q′′ − P o2)− (Xd −Xq)(Xq +Xe)vo2

(Xd +Xe)X2
q

P o2

P o2 +Q′2 [7.2.14]

whereas for K ′
1, a similar expression holds with X̂′

d instead of Xd .

Therefore, the condition K1 > 0 can be translated, in the plane ((P/v2)o, (Q/v2)o), into
a stability zone as indicated in Figures 7.10b,c, which is symmetrical with the abscissa
axis. This zone decreases as Xe increases.

In the case of round rotor (Xd = Xq), the stability limit K1 = 0 corresponds to:

P o2 = Q′Q′′ =
(
Qo + vo2

Xq

)(
vo2

Xe
−Qo

)

which represents the equation of a circle as in Figure 7.10b (whereas the stability zone is
constituted by the points internal to the circle). Furthermore:

• for Xe = 0: the limit curve degenerates into a vertical line, and the stability condition
becomes (Q/v2)o > −1/Xq ;

• for large Xe (e.g., 0.5 or larger in “machine” pu), the limit curve may cross the one
corresponding to the capability limits (Figure 2.9), thus implying a further reduction
(obviously not desired) of the zone in which the machine can be operated.
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stability zone

case with

Figure 7.10. Representation in the plane ((P/v2)o, (Q/v2)o): (a) deduction of
the “internal” (δoi ) and “external” (δoe ) phase-shifts; (b) stability zone in the
absence of control for the round rotor; (c) stability zone in the absence of control
for the salient pole rotor.



578 CHAPTER 7 THE SYNCHRONOUS MACHINE CONNECTED TO AN INFINITE BUS

effect of the additional
rotor circuits

Figure 7.11. Frequency and damping of the electromechanical oscillation for the
same numerical example as in Figure 7.9 (without additional rotor circuits: bold
line diagrams).

Usually the electromechanical oscillation, lightly damped, has a frequency νo
within 5–10 rad/sec (approximately 1–2 Hz) or more, as indicated in Figure 7.11
(see footnote(4) in Chapter 3). It therefore indicates, as already assumed, lit-
tle interaction with the much faster dynamics of the inductive elements (even
in the presence of resistances) and (although with some caution) with the tor-
sional phenomena.

With (a ± ̃ b) denoting the complex conjugate roots that correspond to
νo = √

a2 + b2, ζ = −a/νo, because of Equation [7.2.11] it is possible to write,
in general:

0 = 1 + (Ke(a + ̃ b))
(a + ̃ b)2M

from which: 

b2 − a2 = Re(Ke(a + ̃ b))

M

−2ab = Im(Ke(a + ̃ b))
M

If the damping of the electromechanical oscillation is small, it then follows:

0 < −a � b ∼= νo
and thus:

νo ∼=
√

Re(Ke(̃νo))

M

(usually, νo ∼= νt ∼= √
K ′

1/M , Re(Ke(̃νo)) ∼= K ′
1), whereas:

ζ ∼= 1

2
tan � Ke(̃νo) ∼= Im(Ke(̃νo))

2ν2
oM

[7.2.15]
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Figure 7.12. Block diagram of the linearized system with definition of Keq

and De(s).

In the present conditions, the damping characteristics also can be shown by
considering the block diagram of Figure 7.12, with:



Keq � ν2

oM

De(s) � Ke(s)−Keq

s

Substituting Equation [7.2.15] by:

ζ ∼= Im(̃ νoDe(̃νo))

2ν2
oM

= Re(De(̃νo))

2νoM
[7.2.15′]

the function De(s) also can be replaced, as far as only the electromechanical
oscillation is concerned, by the constant gain:

Deq � 2ζνoM ∼= Re(De(̃νo)) [7.2.16]

Noting that usually νo ∼= √
K ′

1/M � 1/T , the following equations can be finally
derived: 


Keq

∼= K ′
1

De(s) ∼= −(K ′
1 −K1)

s(1 + sT )
from which, because of Equations [7.2.15′] and [7.2.16] (see Fig. 7.11):

ζ ∼= 1

2νoM

K ′
1 −K1

ν2
oT

∼= 1

2νoT

K ′
1 −K1

K ′
1

Deq
∼= M

T

K ′
1 −K1

K ′
1




[7.2.17]

As shown in Figures 7.9 and 7.11, a decrease of Xe implies an increasing of the frequency
νo. However, particularly for small Xe, and for νo at least in the order of 8–10 rad/sec, the
effect of additional rotor circuits — and specifically of the so-called “dampers” — should
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be considered. Such effect can be qualitatively translated into the dashed characteristics
in Figure 7.9, which correspond (particularly for small Xe) to a significant increase of the
phase margin and thus of the damping factor (see also Fig. 7.11).

Finally, the damping contribution of the additional rotor circuits becomes essential at
P o = 0 — as it occurs for a synchronous compensator — because, without them, the damp-
ing would be zero (at P o = 0, it holds K ′

1 = K1), and it would remain so, even when
considering the excitation control (see Section 7.2.2).

7.2.2. ‘‘Basic Case’’ in the Presence of Control

Based on previous considerations (Section 7.2.1), let us disregard, for simplicity:

• the torsional phenomena and the inductive element dynamics (thus accepting
the approximations of Equations [7.2.5],. . ., [7.2.8]);

• the effects of additional rotor circuits.

For small variations, it is possible to derive the block diagram of Figure 7.13a,
where:

• the time constant T is still defined by the third of Equations [7.2.9′];
• the gains K1, K ′

1 (defined by the first two of Equations [7.2.9′], or equiva-
lently by Equation [7.2.14] and the similar one) and K2, K ′

2, K3, K4, H1,
H ′

1, H2, H ′
2 depend on the operating point;

• the transfer functions Gf (s) and Gv(s), respectively, consider the turbine
valve control (for speed regulation) and the excitation control (for voltage
regulation), according to Sections 3.1, 3.2, and 6.2.

With reference to Figure 7.4b (and to Equations [7.1.3] and [7.1.4]), it can be
assumed Dm(s) = Gf (s), whereas Ke(s) depends also on Gv(s). Generally, it
also could be assumed, as already specified, Dm(s) = Gf (s)+Gg(s), and fur-
thermore account could be taken, in Ke(s), of the possible variations of vf
directly depending on ∆v, in the case of exciter with dependent supply.

In terms of P o, Qo, vo, the dependence of the gain K1 on the operating point is defined
by Equation [7.2.14], and it further results:

K2 = XqXe

(Xq +Xe)vo P
o + (Xd −Xq)Xevo

(Xd +Xe)Xq
P oQ′

P o2 +Q′2

K3 = Xmd

Rf

(Xq +Xe)vod
(Xd +Xe)Xq

K4 = Xmd

Rf

Xev
o
q

(Xd +Xe)vo

H1 = P o
(

1 + Xd −Xq
(Xd +Xe)Xq

(
Xq +Xe
Xq

vo2Q′

P o2 +Q′2 −Xe
))

H2 = XdXe

Xd +Xe
(
Q′′

vo
− (Xd −Xq)vo

XdXq

P o2

P o2 +Q′2

)




[7.2.18]
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speed regulation
         loop

“electromechanical”
           loop

voltage regulation
          loop

Figure 7.13. Linearized system in the presence of control (without additional
rotor circuits): (a) block diagram (∆w is the sum of other possible signals,
acting on the voltage regulator); (b) detailed representation including the state
variable ∆ψf .
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(whereas the expressions of K ′
1, K ′

2, H ′
1, H ′

2 can be obtained from those of K1, K2, H1, H2,
by simply substituting X̂′

d for Xd ), where Q′ and Q′′ are defined by Equations [7.2.13],
and furthermore: 



vod = vo sin δoi = voP o√
P o2 +Q′2

voq = vo cos δoi = voQ′√
P o2 +Q′2

where δoi is the internal phase-shift defined in Figure 7.5b.

If P o, eoR , vo are assigned (instead of P o, Qo, vo), in Equations [7.2.14] and [7.2.18] we
must consider that: 


Q′′2 =

(
eoRv

o

Xe

)2

− P o2

Q′ = vo2
(

1

Xe
+ 1

Xq

)
−Q′′

whereas:

Qo = Q′ − vo2

Xq
= vo2

Xe
−Q′′

Specifically:

• for assigned Qo and vo — or even for assigned eoR and vo — the gains K1, K ′
1 and

K4 are “even” functions of P o (i.e., they only depend on |P o|), whereas K2, K ′
2 and

K3 are “odd” functions of P o (i.e., they simply change their sign if P o does so);

• for assigned eoR and vo, the gains K1, K ′
1 and K4 are usually positive (apart from

K1 < 0 or even K ′
1 < 0, for large P o), as well as (for P o > 0) K2 and K3, whereas

K ′
2 becomes positive only for sufficiently large P o (see Figure 7.14);

• instead, for P o = 0 (e.g., in the case of a synchronous compensator):

K2 = K ′
2 = K3 = 0

so that, in the absence of additional rotor circuits, the electromechanical loop is
decoupled with respect to the voltage regulation loop, whereas, as already indicated:

K ′
1 = K1

(furthermore, H1 = H ′
1 = 0).

Finally, with the adopted model:

s∆ψf = ∆vf − Rf∆if [7.2.19]

and ∆if , ∆Pe, and ∆v are linear combinations of (∆δ −∆αe), ∆ψf and ∆eR/eoR .
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Figure 7.14. Dependence of the parameters K1, K ′
1, K2, etc. on P o, assum-

ing eoR = 0.8vnom, vo = vnom and furthermore (in “machine” pu) xd = xq = 2,
x̂ ′
d = 0.2, xe = 0.7, whereas V ∗

f = Rf vnom/Xmd . The diagrams for P o < 0 can
be immediately derived. In fact, if P o changes only its sign, K1, K ′

1, and K4

(which are “even” functions of P o) do not vary, whereas K2, K ′
2, and K3 (which

are “odd” functions of P o) simply change their sign.

By generically setting:

Rf∆if = a1(∆δ −∆αe)+ a2∆ψf + a3
∆eR

eoR

∆Pe = b1(∆δ −∆αe)+ b3∆ψf + c1
∆eR

eoR

∆v = b2(∆δ −∆αe)+ b4∆ψf + c2
∆eR

eoR




[7.2.20]

and eliminating Rf∆if , it can be derived:

∆ψf =
∆vf − a1(∆δ −∆αe)− a3

∆eR

eoR

s + a2

as shown in the block diagram of Figure 7.13b.
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Eliminating ∆ψf , it is possible to derive the transfer functions that relate ∆Pe and ∆v
to (∆δ −∆αe), ∆vf , ∆eR/eoR (Fig. 7.13a), with:

T = 1

a2

K1 = b1 − a1b3T , K ′
1 = b1, H1 = c1 − a3b3T , H ′

1 = c1

−K2 = b2 − a1b4T , −K ′
2 = b2, H2 = c2 − a3b4T , H ′

2 = c2

K3 = b3T

K4 = b4T




[7.2.21]

so that it results:
K ′

1 −K1

K2 −K ′
2

= H ′
1 −H1

H ′
2 −H2

= K3

K4
[7.2.22]

(a) Effects of Speed Regulation
For the electromechanical loop, the effect of speed regulation is to substitute the
transfer function 1/(sM) with 1/(Dm(s)+ sM) (see Fig. 7.13).

As in Sections 3.1 and 3.2, such an effect is appreciable particularly at low
frequencies (not much higher than the cutoff frequency of the regulation loop,
e.g., 0.3 rad/sec). Thus, the speed regulation usually has a small effect on the
electromechanical oscillation, and:

• the frequency νo of the electromechanical oscillation remains practically
unchanged;

• the corresponding damping factor ζ undergoes a small variation.

For the damping variation, by examining Figures 7.12 and 7.13 it is clear
that Dm(s) = Gf (s) has effects similar to those of De(s); by referring to
Equation [7.2.16] it is then possible to write:

∆Deq � 2∆ζνoM ∼= Re(Gf (̃νo))

from which:

∆ζ ∼= Re(Gf (̃νo))

2νoM

Actually, the damping contribution of the speed regulation also can be neg-
ative — and not negligible, for relatively low νo — especially with hydroelectric
units at full load (see Figure 7.15). Moreover, the effects of a possible “back-
lash” in the regulator and/or the valve-positioning system can be regarded, at first
approximation, as an additional phase delay (increasing up to 90◦, for diminishing
oscillation amplitude) in Gf (̃ν), with consequences on ∆Deq and ∆ζ .

(b) Effects of Voltage Regulation
For the electromechanical loop, the voltage regulation modifies the functionKe(s)
(as well as De(s)).
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hydro unit
at full load

at no-load

thermal unit

Figure 7.15. Damping contribution of the speed regulation (as a function of
oscillation frequency), assuming:

Gf (s) = Pnom

Ωnombp

(1 + 3.5s)

(1 + 10s)(1 + 0.3s)
g(s)

with:

g(s) =




1 for a hydrounit at no load

1 − 1.28 tanh(0.785s)

1 + 0.64 tanh(0.785s)
for a hydrounit at full load

1

1 + 0.3s
for a thermal unit

Based on the diagram in Figure 7.13a, it can be easily derived:

Ke(s) = K1 + sT K ′
1

1 + sT +∆Ke(s) [7.2.23]

with:

∆Ke(s) � K3

K4
Fv(s)

K2 + sT K ′
2

1 + sT [7.2.24]

where:

Fv(s) � Gv(s)K4

1 + sT +Gv(s)K4
[7.2.25]
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is the transfer function which relates (at closed loop) ∆v to ∆vrif, without
considering the interactions with the electromechanical loop (as if K3 = 0, or
K2 = K ′

2 = 0, or ∆δ = 0).
By developing and referring to Equations [7.2.22], it also can be deduced:

Ke(s) = K1 +Gv(s)(K1K4 +K2K3)+ sT K ′
1

1 +Gv(s)K4 + sT [7.2.26]

and therefore, as can be directly determined from Figure 7.13a, the static gain:

Ke(0) = K1 + Gv(0)K2K3

1 +Gv(0)K4

also can significantly increase because of the regulation, whereas the gainK(∞) =
K ′

1 remains unchanged.
Quite often, the increase in Ke(0) is accepted in a favorable way without

any reserve, as — according to the new static characteristic (P oe , δo), for vrif

constant and Gv(s) = Gv(0)— it allows operation at larger values of phase-
shift and active power, without aperiodic instability (see Fig. 7.16, where P oe is
maximum for δo = δ′om > 90◦)(1).

However, such a conclusion is often illusory, as it does not consider the
further stability conditions, more strictly related to the dynamic effects of regu-
lation. To account for such effects, the function Gv(s) can be substituted, with
usually acceptable approximation, by a proper gain Kv that estimates its behav-
ior (for s = ̃ ν) around the electromechanical oscillation frequency. Referring to
Equation [6.2.7], and considering usual values of the time constants T1 and T2,
it can be assumed Kv = Gv(0)T2/T1.

Correspondingly, considering that usually KvK4 � 1, Equation [7.2.25] can
be rewritten as:

Fv(s) ∼= KvK4

(1 +KvK4)

(
1 + s

νov

) ∼= 1

1 + s

νov

[7.2.25′]

where:

νov
∼= 1 +KvK4

T
∼= KvK4

T

The frequency ν◦
ν (� 1/T ) constitutes the cutoff frequency of the regulation

loop, evaluated by ignoring the interactions with the electromechanical loop.

(1) For Gv(0) = ∞, i.e., vo = vrif = constant, the maximum of Poe corresponds to a 90◦ lead of vo

on eoR , and thus it holds that Poemax = vrif e
o
R/Xe . Furthermore, for Xd = Xq :

tan δ′om = −Xd +Xe
Xd

vrif

eoR
,

iof

I∗
f

= Xd +Xe
Xe sin δ′om
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Figure 7.16. Dependence of P oe on δo for constant vo (Gv(0) = ∞, bold
line characteristic) and for constant iof (dashed line characteristics), assuming
eoR = 0.8vnom, vo = vrif = vnom, xd = xq = 2, xe = 0.7 (see Fig. 7.14), whereas
I ∗
f = vnom/Xmd .

In practice, ν◦
ν can be approximately 1–5 rad/sec, slightly lower than the νt

defined in Section 6.2.1a, because of the factor voq/v
o < 1 in K4 (see the third

of Equations [7.2.18]) and possibly the smaller value of the external reactance.
Furthermore, from Equation [7.2.26] the following expression can be derived:

Ke(s) ∼= K̂1 + sT̂ K̂ ′
1

1 + sT̂ [7.2.26′]

which is similar to [7.2.9], with:

K̂1 � K1 + KvK2K3

1 +KvK4

T̂ � T

1 +KvK4

∼= 1

νov




[7.2.27]

whereas K̂ ′
1 = K ′

1. Note that, forKvK4 → ∞, it results K̂1 → K1 +K2K3/K4 =
K ′

1 +K ′
2K3/K4.

From Equation [7.2.26′] the following stability conditions can be derived,
which are similar to conditions [7.2.12]:

T̂ > 0

K̂1 > 0

K ′
1 = K̂ ′

1 > K̂1


 [7.2.28]
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Of the three above conditions:

• the first two are usually satisfied;

• the third, associated with the damping of electromechanical oscillation, may
instead not be satisfied if the increase in K̂1 is excessive.

Considering Equations [7.2.22] and [7.2.27], the above conditions also can be trans-
lated into:

1 +KvK4 > 0

K1 +Kv(K1K4 +K2K3) > 0

K ′
1 −K1 −KvK ′

2K3 > 0


 [7.2.28′]

Correspondingly, a stability zone (in the plane (Kv , P o), for given eoR , vo) like that
indicated in Figure 7.17 can be derived. In particular, any positive value can be accepted
for Kv only for sufficiently small values of |P o|, for which K ′

2K3 < 0.

stability zone

Figure 7.17. Stability zone in the plane (Kv, P o) for the numerical example in
Figure 7.14 and for Kv > 0.
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Therefore, the voltage regulation — although improving the situation for what
concerns the aperiodical-type instability — can significantly reduce the damping
of electromechanical oscillation, or even cause (if K̂1 > K

′
1) negative damping,

i.e., oscillatory-type instability.

Conversely, the electromechanical phenomenon can cause voltage regulation instability.
For this regulation it is possible, for small variations, to refer to a block diagram like
that shown in Figure 6.5, where (with the adopted model) the transfer function G(s) �
L(∆v)/L(∆vf ) now includes:

• three poles, given by the solutions of Equation [7.2.11′] (characteristic roots in the
absence of control);

• two imaginary conjugate zeros, corresponding to an undamped antiresonance, at the

frequency ν = √
(K1 +K2K3/K4)/M ∼=

√
K̂1/M;

and by imposing the regulation stability, conditions [7.2.28] can be derived.

If it is assumed that the resulting damping is small, it is possible to apply an
approximation similar to Equation [7.2.15] and derive:

ζ̂ ∼= Im(Ke(̃ ν̂o))

2ν̂2
oM

where ν̂o and ζ̂ are the electromechanical oscillation frequency and damping
factor, in the presence of regulation.

From Equation [7.2.26′], it follows that:

ζ̂ ∼= T̂

2ν̂oM(1 + ν̂2
o T̂

2)
(K ′

1 − K̂1) [7.2.29]

Because of Equations [7.2.22] and the first of Equations [7.2.27], we also have:

ζ̂ ∼= T̂

2ν̂oM(1 + ν̂2
o T̂

2)

K3

K4

(
K2

1 +KvK4
−K ′

2

)
[7.2.29′]

where the last factor (depending on Kv) can become negative (at least for suffi-
ciently large P o) because of the regulation.

Similarly, by recalling Equation [7.2.16] it can be written:

D̂eq � 2ζ̂ ν̂oM ∼= Re(De(̃ ν̂o))

with De(s) = (Ke(s)−Keq)/s and Keq = ν̂2
oM .

As it can be checked based on the Bode diagrams, in practice the frequency
ν̂0 differs slightly from νo ∼= √

K ′
1/M , which holds in the absence of regulation,
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provided that ν0
v is sufficiently smaller than νo (otherwise, ν̂o can be greater than

νo). By assuming:

1

T̂

∼= νov � νo ∼=
√
K ′

1

M
∼= ν̂o

from Equation [7.2.29] it can be derived, similarly to the first of [7.2.17]:

ζ̂ ∼= 1

2νoT̂

K ′
1 − K̂1

K ′
1

= 1

2νoT

K ′
1 −K1 −KvK ′

2K3

K ′
1

[7.2.30]

or even, because of Equations [7.2.21]:

ζ̂ ∼= 1

2νo

b3(a1 +Kvb2)

b1
[7.2.30′]

The variation in the damping factor, caused by regulation, is then:

∆ζ ∼= − 1

2νoT

KvK
′
2K3

K ′
1

= 1

2νo

Kvb2b3

b1
[7.2.31]

and is usually negative. Similarly, it holds(2):

D̂eq
∼= M

T̂

K ′
1 − K̂1

K ′
1

= M

T

K ′
1 −K1 −KvK ′

2K3

K ′
1

= Mb3(a1 +Kvb2)

b1
[7.2.32]

∆Deq
∼= −M

T

KvK
′
2K3

K ′
1

= MKvb2b3

b1
[7.2.33]

It also should be remembered that at P o = 0 — as it occurs for a synchronous
compensator — we have instead K2 = K ′

2 = K3 = ∆Ke(s) = 0, so that the volt-
age regulation changes neither the damping nor the frequency of the oscillation.

(2) Because of the hypothesis that the oscillation frequency remains unchanged, the expressions of
∆ζ and Deq also can be directly derived based on:

∆Deq = 2∆ζ ν̂oM ∼= Re

(
∆Ke(̃ ν̂o)

̃ ν̂o

)
= Im(∆Ke(̃ ν̂o))

ν̂o

where ∆Ke(s) is given by Equation [7.2.24].
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With machine representation, it can be observed that:

• the third-order model, defined in Section 4.2.2 and adopted here, can be acceptable
at least for sufficiently large Xe (in this case, the effect of additional rotor circuits
may be disregarded);

• with particular reference to the electromechanical oscillation, if ν̂0T � 1 we may
have the approximations:



∆Pe ∼= K ′

1(∆δ −∆αe)+ K3

sT
∆vf +H ′

1

∆eR

eoR

∆v ∼= −K ′
2(∆δ −∆αe)+ K4

sT
∆vf +H ′

2

∆eR

eoR

according to Equations [7.2.20] and [7.2.21], with ∆ψf = ∆vf /s; such approxima-
tions correspond to a simplified model:

• again of the third order, with zero damping in the absence of control;

• consistent with the model defined by Equations [4.2.9] and [4.2.10] (in pu, with
machine equivalent reactances x̂ ′

d and xq , respectively on the direct and quadrature
axes), but with a possibly varying ψf (dψf /dt = vf − vof );

• the further passage to a second-order model (see also Section 4.2.3), with proper
equivalent reactances (Xd eq, Xq eq) on the machine direct and quadrature axes, can
be somewhat justified for approximated analyses when the damping is negligible,
e.g., in the cases of the:

• synchronous compensator, for large Xe;

• generator, when the positive damping effect of the field circuit (and other rotor
circuits) is cancelled by the negative effect of regulations;

whereas the possible assumption of the same equivalent reactance on the two axes
of the machine, can appear acceptable only if the difference between Xd eq and Xq eq

is actually small (also with respect to the external reactance Xe);

• furthermore, as a first approximation, the damping is sometimes considered as if it
were of mechanical origin, by assuming (see also Fig. 7.4b) Dm(s) = constant =
Deq; by doing so, the model remains of the second order.

(c) Effects of Additional Signals in Excitation Control
As seen, the damping of the electromechanical oscillation can become too small
and even negative, above all because of the voltage regulation. On the other
hand, for large values of the reactance Xe, the oscillation frequency ν̂o value is
relatively small, and therefore the damping effect of the additional rotor circuits
cannot be relied on.

To guarantee a satisfactory damping factor (e.g., not smaller than ∼0.1) it can
be thought to make use of “additional signals” in the excitation control, so as to
realize a further dependence of ∆Pe on ∆Ω , as follows:

(∆Pe)add = ∆Deq∆Ω [7.2.34]
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where ∆Deq is a proper constant. According to Equation [7.2.16], it is possible
to obtain an increase in the damping factor equal to ∆ζ = ∆Deq/2ν̂oM , if the
oscillation frequency ν̂o remains unchanged.

On the other hand, based on the diagram of Figure 7.13a, it is easy to show
that, in response to the signal ∆w, it results:

(∆Pe)add = K3

K4
Fv(s)∆w [7.2.35]

(where Fv(s) is the closed-loop transfer function defined by [7.2.25]), or further,
if we accept Equation [7.2.25′]:

(∆Pe)add
∼= K3/K4

1 + s/νov
∆w [7.2.35′]

As a consequence, Equation [7.2.34] can be satisfied by assuming:

∆w = K4

K3Fv(s)
∆Deq∆Ω ∼= K4

K3
∆Deq

(
1 + s

νov

)
∆Ω [7.2.36]

i.e., by deriving a signal ∆w sensitive both to the speed variation ∆Ω and the
acceleration dΩ/dt .

However, it must be observed that usually, because of the small value of
|Dm(̃ ν̂o)|, the electromechanical oscillation is accompanied by negligible vari-
ations ∆Pm of the driving power. Thus, it is possible to assume, around the
frequency ν̂0:

−∆Pe ∼= sM∆Ω [7.2.37]

By recalling Equation [7.2.36] (and without the approximation marks), it is
possible to derive the following relationship:

∆w = Kω∆Ω −Kp∆Pe [7.2.36′]

with:

Kω = K4

K3
∆Deq

Kp = K4

K3

∆Deq

Mνov




[7.2.38]

(Kω = Mν0
vKp), according to the diagram of Figure 7.18.

The following are some possibilities for simplification:

• if ν̂o � νov , Equation [7.2.25′] can be substituted around the oscillation frequency
by Fv(s) ∼= νov /s, so that Equation [7.2.36] reduces to:

∆w ∼= K4

K3
∆Deq

s

νov
∆Ω
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filter

Figure 7.18. Block diagram of the linearized system: definition of the additional
signals in excitation control (see also Fig. 7.13a).

and thus Kω = 0 in [7.2.36′] (that is a single additional signal, sensitive to active
power);

• if, instead, ν̂o � νov , it can be similarly assumed Fv(s) ∼= 1:

∆w ∼= K4

K3
∆Deq∆Ω

and thus Kp = 0 (a single additional signal that is sensitive to speed).

Before concluding, it is useful to point out the following.

(1) If the approximation Gv(s) ∼= Kv is accepted, the system is of the third
order, with state variables ∆Ω , ∆δ, and ∆ψf (ψf is the machine field
flux). In general terms, the system dynamic behavior can be improved
(particularly by “shifting” its characteristic roots) by proper feedbacks
starting from the state variables. On the other hand, in the absence of
disturbances on the network it results:

∆Pe = K ′
1∆δ + K3

T
∆ψf

(recall Equations [7.2.20] and [7.2.21]), so that in practice (as ∆ψf is
not directly measurable) the feedbacks can be conveniently achieved from
∆Ω , ∆δ and ∆Pe.
After these premises, it can be recognized (based on the diagram of
Figure 7.13a, assuming K3 and K4 positive, and recalling Equation
[7.2.35′]) that:
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• feedback of the type ∆w = Kω∆Ω , with Kω > 0, increases K̂ ′
1;

• feedback of the type ∆w = −Kp∆Pe, with Kp > 0, reduces K̂1 and T̂ ;

• feedback of the type ∆w = Kδ∆δ, with Kδ > 0, increases K̂1.

Therefore the convenience of using additional signals sensitive to speed
and active power is confirmed, particularly to shift the pair of com-
plex conjugate roots that correspond to the electromechanical oscillation.
Instead, a signal sensitive to the phase-shift δ, apart from the difficulties
for measuring it, would not appear as useful, except for the possibility of
properly adjusting the shift of the remaining (real) characteristic root.

(2) It is also necessary to consider that the parameters of the linearized system,
as considered so far, actually vary with the operating point.
However, even assuming that Kω and Kp are constants, it is possible to
obtain a significant increase of the stability zone in the plane ((P/v2)o,
(Q/v2)o), as illustrated in the qualitative example of Figure 7.19.
On the other hand, at low loads:
• the gain K3/K4 that appears in Equation [7.2.35] is relatively small, so

that the effect of ∆w is reduced;
• the gain K ′

2 that appears in Equations [7.2.29′] and [7.2.31] is small
and can even be negative, so that the destabilizing effect of voltage
regulation may disappear;

as a consequence, the additional signals are often disconnected when P o

falls below a given value (e.g., 30% of the nominal power).
Furthermore, the gain K3 has the same sign as P o (as well as vod ; note the
second of Equations [7.2.18]), so that:
• if P o = 0 (K3 = 0)—as in the case of a synchronous compensator—the

additional signals cannot have effect (on the other hand, it is already
seen that the voltage regulation does not modify the damping);

with voltage regulation
 and additional signals

without voltage regulation
       (see fig. 7.10b)

with voltage regulation,
 but without additional 
             signals

Figure 7.19. Stability zone in the plane ((P/v2)o, (Q/v2)o) (qualitative example
for the round rotor).
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• if P o < 0 (K3 < 0)—as in the case of a pumping hydroelectric unit—it
is necessary to change the sign of Kω, Kp.

(3) If some interaction with the torsional phenomena is possible, it is conve-
nient that the speed measurement (for the feedback) is performed at a place
in the shaft for which the torsional speed oscillations are sufficiently small.
In general, the speed measurement can be avoided by recalling
Equation [7.2.37] and approximating [7.2.36′] by a relationship of
the form:

∆w = −
(

KωTω

M(1 + sTω) +Kp
)
∆Pe

with Tω � 1/ν̂o.

(4) The additional signals cause a disturbance to the voltage regulation, as ∆w
is equivalent (Fig. 7.13a) to a variation in the reference ∆vrif (specifically,
the dependency of ∆w on ∆vf , through ∆Ω and ∆Pe, is equivalent to a
modification in the transfer function Gv(s), as far as the voltage regulation
is concerned). By interposing a proper band-pass filter (Fig. 7.18), it is
possible to operate so that ∆w is practically active only for a narrow
band of frequencies around the electromechanical oscillation frequency ν̂o
(where it is possible to realize the desired damping effect). Considering the
low-pass effect of Fv(s), it can be sufficient to use a filter with a transfer
function of the type sτ/(1 + sτ ), i.e., a high-pass filter, with ν̂oτ � 1
(e.g., τ in the order of seconds).

(5) Usually, the additional signals are limited in magnitude to reduce possible
destabilizing effects in case of large perturbations (see Section 7.3).

(6) In real cases with several machines, the additional signals can be use-
fully adopted in a similar way, to improve the damping of one or more
oscillations (see Section 8.5.2).

7.2.3. Effects of an Intermediate Load

With reference to the system in Figure 7.1, again disregard, for simplicity:

• the line capacitances (Fig. 7.20);

• the armature resistance;

• the magnetic saturation;

• the additional rotor circuits;

• the torsional phenomena.

• the dynamics of the inductive and capacitive elements (in Fig. 7.20, the
reactance Xe1 represents the transformer and the first section of the line,
whereas the reactance Xe2 represents the second section of the line; further-
more, G and B are the load conductance and susceptance, possibly variable
as specified below);
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transformer
line

load

Figure 7.20. Case with intermediate load: system under examination.

and consider the following cases:

• system without regulations;
• load voltage regulated through the machine excitation;
• load voltage regulated through an on-load tap-changing transformer or

through a static compensator.

For small variations, the block diagram of Figure 7.21 can be generically
derived (with respect to the diagram of Figure 7.13a, the inputs ∆G and ∆B are
added; further, the presence of the load modifies the different parameters T , K1,
K2, etc., as it will be shown).

More precisely:

• Equation [7.2.19] still holds,
• Equations [7.2.20] can be generalized by the following equations:

Rf∆if = a1(∆δ −∆αe)+ a2∆ψf + a3
∆eR

eoR
+ a4∆G+ a5∆B

∆Pe = b1(∆δ −∆αe)+ b3∆ψf + c1
∆eR

eoR
+ d1∆G+ e1∆B

∆v = b2(∆δ −∆αe)+ b4∆ψf + c2
∆eR

eoR
+ d2∆G+ e2∆B




[7.2.39]
• by eliminating Rf∆if and ∆ψf , relationships like [7.2.21] can be obtained

and similarly:

D1 = d1 − a4b3T , D′
1 = d1, E1 = e1 − a5b3T , E′

1 = e1

D2 = d2 − a4b4T , D′
2 = d2, E2 = e2 − a5b4T , E′

2 = e2

}
[7.2.40]

whereas we have the following identities (corresponding to Equations [7.2.22]):
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Figure 7.21. Block diagram of the linearized system in the presence of control
and with an intermediate load (and without additional rotor circuits).

K ′
1 −K1

K2 −K ′
2

= H ′
1 −H1

H ′
2 −H2

= D′
1 −D1

D′
2 −D2

= E′
1 − E1

E′
2 − E2

= K3

K4
[7.2.41]

For simpler notation, in the following it will be assumed that Xe1 = 0, Xe2 = Xe,
as in the case of load at machine terminals. Generally, it would be necessary to
add Xe1 to the machine reactances and to substitute Xe by Xe2.

For the time constant T , it can be deduced:

T = X̂′
dN

′T̂ ′
do

XdN
[7.2.42]

where:

N �
(

1

Xe
+ 1

Xd
− Bo

)(
1

Xe
+ 1

Xq
− Bo

)
+Go2

N ′ �
(

1

Xe
+ 1

X̂′
d

− Bo
)(

1

Xe
+ 1

Xq
− Bo

)
+Go2




[7.2.43]
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Furthermore, in terms of P o, Qo, vo (and of Go, Bo), instead of Equations
[7.2.14] and [7.2.18] it can be shown that:

K1 = 1

N

{(
1

Xe
+ 1

Xd
− Bo

)
Q′Q′′ − P o2

vo2
+Go2Q′

−
(

1

Xq
− 1

Xd

)[(
1

Xe
+ 1

Xq
− Bo

)2

+Go2
]
vo2P o2

P o2 +Q′2

}

K2 = 1

N

{(
1

Xe
+ 1

Xd
− Bo

)
P o

vo
−GoQ

′

vo

+
(

1

Xq
− 1

Xd

)[(
1

Xe
+ 1

Xq
− Bo

)
Q′ +GoP o

]
voP o

P o2 +Q′2

}

K3 = Xmd

RfXdN

{[(
1

Xe
+ 1

Xq
− Bo

)2

+Go2
]
vod +Go

√
P o2 +Q′2

vo

}

K4 = Xmd

RfXdN

[(
1

Xe
+ 1

Xq
− Bo

)
voq +Govod

]
1

vo

H1 = P o − 1

N

{
Go
P o2 +Q′2

vo2
+
(

1

Xq
− 1

Xd

)[(
1

Xe
+ 1

Xq
− Bo

)
P o −GoQ′

−
((

1

Xe
+ 1

Xq
− Bo

)2

+Go2
)
vo2P oQ′

P o2 +Q′2

]}

H2 = vo − 1

N

[(
1

Xe
+ 1

Xq
− Bo

)
Q′ +GoP o

] [
1

vo
−
(

1

Xq
− 1

Xd

)
voQ′

P o2 +Q′2

]




[7.2.44]

and moreover:

D1 = 1

N

{(
1

Xe
+ 1

Xd
− Bo

)
Q′ −GoP o

−
(

1

Xq
− 1

Xd

)[(
1

Xe
+ 1

Xq
− Bo

)
P o +GoQ′

]
vo2P o

P o2 +Q′2

}

D2 = −v
o

N

[(
1

Xq
− 1

Xd

)
P oQ′

P o2 +Q′2 +Go
]

E1 = 1

N

{(
1

Xe
+ 1

Xd
− Bo

)
P o +GoQ′

+
(

1

Xq
− 1

Xd

)[(
1

Xe
+ 1

Xq
− Bo

)
Q′ −GoP o

]
vo2P o

P o2 +Q′2

}

E2 = 1

N

[(
1

Xe
+ 1

Xd
− Bo

)
P o2 +

(
1

Xe
+ 1

Xq
− Bo

)
Q′2

]
vo

P o2 +Q′2

(the expressions of K ′
1, K ′

2, H ′
1, H ′

2, D′
1, D′

2, E′
1, E′

2 can be obtained from those
of K1, K2, etc., by simply replacing Xd by X̂′

d and N by N ′). In these equations
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it is assumed: 

Q′ � Qo + vo2

Xq

Q′′ � vo2
(

1

Xe
− Bo

)
−Qo

and further: 


vod = vo sin δoi = voP o√
P o2 +Q′2

voq = vo cos δoi = voQ′√
P o2 +Q′2

Note that, with respect to the case without load (Fig. 7.10a), it now holds:




voeoR

Xe
sin δoe = P o −Govo2

voeoR

Xe
cos δoe = vo2

(
1

Xe
− Bo

)
−Qo = Q′′

and thus: 

eoR = Xe

vo

√
(P o −Govo2)2 +Q′′2

tan δoe = P o −Govo2
Q′′

whereas it still holds:

tan δoi = P o

Qo + vo2

Xq

= P o

Q′

If, instead, P o, eoR, vo are assigned, in the previous expressions we have to
note that: 


Q′′2 =

(
eoRv

o

Xe

)2

− (P o −Govo2)2

Q′ = vo2
(

1

Xe
+ 1

Xq
− Bo

)
−Q′′

whereas:

Qo = Q′ − vo2

Xq
= vo2

(
1

Xe
− Bo

)
−Q′′

Moreover, for given eoR and vo:

• K1, K ′
1, and K4 are no longer “even” functions of P o, and K2, K ′

2, and K3

are no longer “odd” functions of P o;
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• for P o = 0 we no longer have K2 = K ′
2 = K3 = 0, so that the voltage

regulation loop remains coupled with the electromechanical loop; further-
more, K ′

1 is no longer equal to K1 (for P o = 0, we have K ′
1 −K1 =

(−1/(NN ′))(1/X̂′
d − 1/Xd)(GoQ′/vo)2).

Specifically, from the diagrams in Figure 7.22 (compared with those without
load, in Fig. 7.14) it can be concluded that:

• for very small |P o|, K ′
1 < K1 holds;

• for P o > 0: K2 is negative for small P o, and K ′
2 changes its sign for a

value of P o larger than that without load;
• for P o < 0: K ′

2 can be always negative, whereas K3 remains positive for
sufficiently small |P o|.

As far as the operating point is concerned, note that:

• at the same values of P o, eoR , vo, an increase in Go implies a reduction in P oR =
P o −Govo2 (Fig. 7.20) and possibly P oR < 0 (i.e., the load is also supplied by the
network);

Figure 7.22. Dependence of parameters K1, K ′
1, K2, etc. on P o, with an inter-

mediate load, assuming that eoR = 0.8vnom, vo = vnom, xd = xq = 2, x̂ ′
d = 0.2,

xe = 0.7 as in Figure 7.14, and Bo = 0, Go = 0.5Anom/v
2
nom.
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• without the load, a large value of Xe has no practical interest, because it would
imply an underutilization of the machine; instead, in the presence of the load, Xe
can be large (in the case P oR = 0, the connection to the network may be of interest
as a reserve to supply the load) and thus the electromechanical oscillation frequency
may be low.

In the absence of regulation, the characteristic Equation [7.2.11′] and the sta-
bility conditions [7.2.12] can be found again.

The condition T > 0 is usually satisfied (recall Equations [7.2.42] and [7.2.43],
where both N and N ′ are usually positive). Furthermore, except for very small
|P o|, the condition K ′

1 > K1 is also satisfied, so that the only condition to con-
sider, as in the “basic case” without load, is K1 > 0 (otherwise, there is an
aperiodical-type instability), for which the slope of the “static” characteristic
(P oe , δo) at the operating point must be positive (Fig. 7.23).

If the voltage at the load is regulated by the machine excitation (see also
Section 6.2.2a2, with voltage regulation at a downstream node), the stability
implies conditions [7.2.28] (or equivalently [7.2.28′]), of which K ′

1 > K̂1 is usu-
ally the more stringent one (otherwise, there is an oscillatory-type instability).

In comparison to the case without load, the stability zone in the plane (Kv, P o)
is modified according to Figure 7.24 (recall Fig. 7.17). Specifically, the operation
as generator (P o > 0) with arbitrarily large Kv becomes possible for a range of
P o larger than that without load (with K ′

2 < 0 and K3 > 0).
If the voltage at the load is regulated by an on-load tap-changing transformer

or by a static compensator (Fig. 7.25a and b, respectively), the dependence of
∆G and ∆B on ∆v also should be considered (see the dashed-line block in the
diagram of Fig. 7.21).

arctan

constant)

Figure 7.23. Dependence of P oe and P oR on δo, for constant iof (assuming eoR =
0.8vnom, xd = xq = 2, xe = 0.7, Bo = 0, Go = 0.5Anom/v

2
nom, and iof = 3I ∗

f =
3vnom/Xmd ).
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stability zone

Figure 7.24. Stability zone in the plane (Kv, P o), with an intermediate load and
Kv > 0 (numerical example as in Fig. 7.22).

By letting:
∆G = −RG(s)∆v
∆B = −RB(s)∆v

}
[7.2.45]

and recalling Equations [7.2.41], it can be derived that:

Ke(s) � L(∆Pe)
L(∆δ)

=

= [K1(1 +K4Gv +D2RG + E2RB)+K2(K3Gv +D1RG + E1RB)]

(1 +K4Gv +D2RG + E2RB)+ sT (1 +D′
2RG + E′

2RB)

+ sT [K ′
1(1 +D′

2RG + E′
2RB)+K ′

2(D
′
1RG + E′

1RB)]

(1 +K4Gv +D2RG + E2RB)+ sT (1 +D′
2RG + E′

2RB)
[7.2.46]
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Figure 7.25. Load voltage regulation: (a) by an on-load tap-changing trans-
former; (b) by a static compensator.

(If the load voltage is regulated only as specified above, i.e., if the machine
excitation is kept constant, it must be assumed that Gv = 0.)

Assuming, as specified,Gv(s) ∼= Kv and supposing for simplicity that the elec-
tromechanical oscillation frequency remains practically unchanged with respect
to the case RG = RB = 0, and equal to:

ν̂o ∼=
√
K ′

1

M
� 1

T̂

(with T̂ � T /(1 +KvK4)), the effect that the above regulations have on the
damping can be translated at a first approximation into:

∆Deq = 2∆ζ ν̂oM ∼= Re(∆De(̃ ν̂o)) = Im(∆Ke(̃ ν̂o))

ν̂o
[7.2.47]

where:
∆Ke(s) � Ke(s)− (Ke(s))RG=RB=0

With the on-load tap-changing transformer (Fig. 7.25a), by neglecting the transformer
reactance it follows:

v = mv′, G = G′

m2
, B = B ′

m2

and for small variations, by assuming ∆m = (Km/s)∆v′ (see Section 6.3), it can be
derived that:

RG(s) = 2Go/vo

1 + sτ , RB(s) = 2Bo/vo

1 + sτ

with τ � mo2/(Kmvo).
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With the static compensator (Fig. 7.25b) it holds:

G = G′, B = B ′ + Br

and, by assuming ∆Br = −(KB/s)∆v (see Section 6.4), it can be directly derived:

RG(s) = 0, RB(s) = KB

s

If G′ = 0, we are again in the case for which the compensator has only the task of “voltage
support.”

By applying Equation [7.2.47], the diagrams of Figure 7.26 can be obtained under the
indicated assumptions.

7.2.4. Case with Series-Compensated Line

If the line is series-compensated by the interposition of a capacitive element (see
Fig. 7.27a), the “LC dynamics” cannot generally be neglected, primarily because
of its interaction with the torsional phenomena on the unit shaft.

To account for the LC dynamics, it is convenient (as already specified) to
apply the Park’s transformation with a “network” angular reference, equal to the
electrical angular position θs of a fictitious rotor, rotating at the constant speed
dθs/dt = Ωs (and we assume Ωs = Ωnom).

On the other hand, useful indications can be obtained — avoiding to burden
the analytical treatment too much — representing the electromagnetic part of the

Figure 7.26. Damping contribution of the load voltage regulation (see
text), obtained (a) by an on-load tap-changing transformer, (b) by a static
compensator, for the numerical example in Figure 7.22, and by further assuming
Ωnom = 314 rad/sec, T̂ ′

do = 7 sec, Ta = ΩnomM/Pnom = 8 sec, Gv = 0. (Note
that P o/Anom = 0.2, 0.5, 0.8, respectively, means P oR/Anom = −0.3, 0, +0.3).
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Figure 7.27. Case with series-compensated line: (a) system under examination;
(b) equivalent circuit (with a simplified model of the machine; see text).

machine (and its voltage regulation) by a purely algebraic model, e.g., substituting
Equations [7.1.9] by equations like:

ψd = (ψd)id=0 − Leqid

ψq = −Leqiq

}
[7.2.48]

where (ψd)id=0 and Leq (equivalent inductance) have proper constant values.
With such assumption, in the “basic case” the damping of the electromechanical
oscillation would be zero; to counteract this, as a first approximation it is possible
to introduce a proper coefficient Deq in the model of the mechanical part of the
machine, according to the end of Section 7.2.2b.

By adopting the subscript “s” for the Park’s vectors obtained by the “network”
reference, and by accounting in general terms for a total series impedance Zs(s)
(Fig. 7.27b), it can be derived:

eMs = Zs(s)ıs + eRs

where, by recalling Equations [7.1.1] and [7.1.2] and assuming eR = ER/mo (mo
is the transformation ratio of the transformer in Fig. 7.1):

eMs = jΩ(ψd)id=0 ε
jδ

eRs = jeRεjαe

and furthermore:

CeΩm nom = Ωnom(ψd)id=0 iq = eoM(−ids sin δ + iqs cos δ)

with e0
M � Ωnom(ψd)id=0, whereas it results ı = ısε−jδ , and thus:

{
id = ids cos δ + iqs sin δ

iq = −ids sin δ + iqs cos δ
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For small variations, by letting:

Zs(s) � r(s)+ jx(s)

it can then be derived, for α0
e = 0:

∆CeΩm nom = eoMe
o
R

r2(s)+ x2(s)

·
[
(−r(s) cos δo + x(s) sin δo)

∆er

eoR
− (r(s) sin δo + x(s) cos δo)∆αe

]

+
[
−Qoe + eo2M

r2(s)+ x2(s)

(
sr(s)

Ωnom
+ x(s)

)]
∆δ [7.2.49]

where:
Qoe � eoMiod

is the reactive power delivered by the emf. eMs (Fig. 7.27b).
In the present case, by denoting L � Leq + Le, and considering more generally

a series resistance R (possibly including the machine armature resistance) it
results (see Fig. 7.27b and Section 5.2):

Zs(s) = R + (s + jΩnom)L+ 1

(s + jΩnom)C

and thus: 

r(s) = R + sL+ s

(s2 +Ω2
nom)C

x(s) = ΩnomL− Ωnom

(s2 +Ω2
nom)C

Substituting the above into Equation [7.2.49], it follows:

Ke(s) � L(∆CeΩm nom)

L(∆δ)
= −Qoe + eo2M

ΩnomL

n(s)

d(s)
[7.2.50]

where n(s) and d(s) are polynomials of the fourth degree and precisely:

n(s) � s4 + R

L
s3 +

(
2Ω2

nom + 1

LC

)
s2 +Ω2

nom
R

L
s +Ω2

nom

(
Ω2

nom − 1

LC

)

d(s) � s4 + 2R

L
s3 +

(
2
(
Ω2

nom + 1

LC

)
+ R2

L2

)
s2 + 2R

L

(
Ω2

nom + 1

LC

)
s

+
(
Ω2

nom − 1

LC

)2

+
(
ΩnomR

L

)2




[7.2.51]
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For R = 0, the results are simply:

n(s) = (s2 + ν′2
1 )(s

2 + ν′2
2 )

d(s) = (s2 + ν2
1)(s

2 + ν2
2)

}
[7.2.51′]

with:

ν′2
1 , ν

′2
2 = Ω2

nom + 1

2LC
(1 ∓

√
1 + 8Ω2

nomLC) [7.2.52]

ν2
1 , ν

2
2 =

(
Ωnom ∓ 1√

LC

)2

[7.2.53]

Thus, for R = 0, the transfer function Ke(s) exhibits two pairs of imaginary
conjugate poles, which correspond to two undamped resonances, respectively, at
the frequencies ν1 and ν2 (positive solutions of Equation [7.2.53]).

In particular, the former of these resonances — at the frequency ν1, lower than
the synchronous frequency Ωnom — defines a “subsynchronous” oscillation (it is
assumed that 1/

√
LC < 2Ωnom, so that ν1 = |Ωnom − 1/

√
LC| < Ωnom).

Furthermore, the zeros of Ke(s) are given by the equation:

0 = −Qoed(s)+
eo2M

ΩnomL
n(s) [7.2.54]

thus, they depend on α � QoeΩnomL/e
o2
M , according to Figure 7.28. It is assumed that

1/
√
LC < Ωnom, thus:

1

ΩnomC
< ΩnomL [7.2.55]

This means that the capacitive reactance is not sufficient to compensate the overall induc-
tive reactance.

In particular, note that:

• it results:
ν1 < ν

′
1 < Ωnom < ν

′
2 < ν2

(where ν ′
1 and ν ′

2 are the positive solutions of Equation [7.2.52]);

• for Qoe = 0, there are two pairs of conjugate imaginary zeros that correspond to two
undamped antiresonances, at the frequencies ν ′

1 and ν ′
2;

• for Qoe < 0, there are again two undamped antiresonances (at frequencies, respec-
tively, between ν ′

1 and ν1, and between ν ′
2 and ν2);

• instead, for Qoe > 0, the undamped antiresonances are kept only for values of Qoe
sufficiently small (the corresponding frequencies are between ν ′

1 and ν ′
2) or relatively

large (with frequencies beyond the interval (ν1, ν2));
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and furthermore:

Figure 7.28. Shifting of the zeros of Ke(s) in the complex plane, when varying
α � QoeΩnomL/e

o2
M , for R = 0 and β � 1/(Ω2

nomLC) = 0.5. (Arrows correspond
to shifting for α > 0.)

• for intermediate values of Qoe > 0, there are one or two zeros having a positive
real part, i.e., the function Ke(s) becomes a “nonminimum phase” function, with
significant phase delays in the frequency response (see also Fig. 7.29).

Note, finally, that:

• for 1/(ΩnomC) = 0 (i.e., in the absence of compensation), ν1 = ν ′
1 = ν ′

2 = ν2 =
Ωnom, and thus Ke(s) = −Qoe + eo2M/(ΩnomL) = constant, independent of the
inductive element dynamics (this confirms what is already pointed out about
Equation [7.2.1]);

• for 1/(ΩnomC)→ ΩnomL (almost total compensation), we have instead ν1 → 0,
ν ′

1 → 0, ν ′
2 → √

3Ωnom, ν2 → 2Ωnom.

In practice, for R > 0, the above-mentioned resonances (and antiresonances)
become slightly damped, but the situation basically remains similar; see the dia-
grams in Figure 7.29.
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Figure 7.29. Frequency response of the function Ke(s), for R/(ΩnomL) = 0.2
and β � 1/(Ω2

nomLC) = 0.5.

With the electromechanical oscillation, the compensation under examination
appears to be destabilizing, as (with the adopted model) it usually results:

Im(Ke(̃νo)) < 0

(remember Equation [7.2.15] and Figure 7.29, with νo/Ωnom within the range of
0.005–0.05). Nevertheless, the resulting damping may be positive (because of
the actual behavior of the machine), or made positive through proper additional
signals.
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It is instead important to note that the frequency ν1 of the subsynchronous
oscillation may easily be within the frequency range of the torsional oscillations
of the unit shaft, according to Section 4.3.4 (e.g., for 1/(ΩnomC) = ΩnomL/2,
it follows ν1

∼= 0.3Ωnom, i.e., approximately 15 Hz for a system operating at
50 Hz). Consequently:

• the variations ∆Ce of electromagnetic torque may contain subsynchronous
oscillatory components, particularly heavy for the torsional deformation of
the shaft, even up to its breaking (conversely, the ∆δ oscillations may cause
large torque variations);

• the stability of the electromechanical loop can be compromised by these
interactions between the phenomena of electrical resonance (subsynchronous
oscillations) and those of mechanical resonance (torsional oscillations).

Therefore, because of their importance, such interactions must be analyzed
with particular attention, by adopting an adequate model (also for the dependence
of ∆Ω on ∆Ce; see Section 4.3.4).

As seen, for R = 0 the function Ke(s) exhibits, under the simplified Equations [7.2.48],
four purely imaginary poles (conjugate in pairs) resulting from electrical resonance phe-
nomena between the different inductances and capacitances.

If the electromagnetic part of the machine is instead correctly considered by using
Equations [7.1.9], the poles of Ke(s) are defined by the equation:

0 = (s2 +Ω2
nom)

2(Ld (s)+ Le)(Lq(s)+ Le)C2

+ (s2 −Ω2
nom)(Ld (s)+ Lq(s)+ 2Le)C + 1

(which can be derived similarly to [6.2.13]). By assuming for simplicity Ld(s) =
(Ld + sT̂ ′

doL̂
′
d)/(1 + sT̂ ′

do), Lq(s) = Lq , it can be shown that:

• the function Ke(s) has five poles;

• the number of poles of Ke(s) having positive real part, is:

P(+) =
{

0
1
2

according to whether
1

ΩnomC



> Ωnom(Ld + Le)
∈ (Ωnom(Lq + Le),Ωnom(Ld + Le))
< Ωnom(Lq + Le)

(see, in Section 6.2.1c, the condition [6.2.15] and the following considerations).

Therefore, if 1/(ΩnomC) is relatively small as it may occur in practical cases, the actual
behavior of the electromagnetic part of the machine may be responsible (for what concerns
the electrical resonances) for a destabilizing effect, similar to that of a negative resistance
and thus, actually, more or less compensated by the presence of the resistance R.

Anyway, the electrical resonances can be conveniently attenuated by inserting proper
series filters on the line or damping circuits in parallel to the condensers, whereas the
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subsynchronous torque oscillations can be further reduced (and damped) through the use
of additional signals into the machine excitation.

7.3. LARGE PERTURBATION BEHAVIOR

The behavior for large variations is affected by different nonlinearities of the
system, particularly by the nonlinear relationship between the resistant torque Ce
and the state variables ψf (field flux) and δ (electrical angular position of the
rotor, with respect to the “network” synchronous reference; see Equation [7.1.2]).

The greater concern on the system operation usually comes from the risk of
“loss of synchronism” between the machine and the infinite bus, as described
in Section 1.6. Therefore, in this section particular attention will be given to the
analysis of relative motion between the machine and the infinite bus, and to the
means that can be adopted to reduce such a risk.

The loss of synchronism is an undesired phenomenon, as explained in Section 1.6. Particu-
larly, the excessive increase in current (which can be viewed as produced by a short-circuit
at the so-called “electrical center”) can cause protection intervention, and definitive unit
rejection. By considering the probability of events that can cause the loss of synchro-
nism, the set of acceptable operating points may be significantly reduced, below what
can be allowed — at steady-state — by the stability conditions for small variations, by the
machine capability limits, by the transmissibility limit on the link, etc.

If the machine maintains the synchronism, the angle δ and the other quantities of the
system (voltage and currents magnitudes, etc.) exhibit, as seen, electromechanical oscil-
lations. Instead, during the loss of synchronism, there is a substantially “aperiodic”
increase of δ(t), following which the magnitudes of voltages, currents, etc. again assume
an oscillatory-type time behavior. However, such oscillations are only the result of the
dependence of these quantities on sin δ and cos δ (and thus of their periodic dependence
on δ), and therefore are not at all related with the “electromechanical” oscillations that
accompany the keeping of synchronism.

Following large perturbations, a rigorous analysis should require the use of
simulations, because of the complexities of the model. However, some simpli-
fications may appear reasonable, permitting a first-level approximate analysis,
such as that reported in Section 1.6.

Usually, the possibility of keeping synchronism becomes evident within tenths
of a second (time after which the angle δ diminishes again; see δab(t) in Fig. 1.6).
Consequently, to check whether or not synchronism is kept, it may be thought,
as a first approximation, that in such a time interval:

(1) the purely electrical transients (associated with inductive and capacitive
elements) can be considered vanished, as well as those of the “subtran-
sient” type of the machine dynamics (associated with the additional rotor
circuits);

(2) the field flux ψf , instead, remains practically constant.
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Accordingly, we can:

• write:

Pm − Pe(δ) = M d2δ

dt2
[7.3.1]

where the dependence of Pe on δ is defined by the “transient” characteristic,
at constant ψf (for the “basic case”, see the second of Equations [7.2.10]
or the characteristic in Figure 7.8b)(3);

• apply the analysis described in Section 1.6 (with Mb = ∞) based on the
“equal area” criterion: see the examples in Figure 7.30, which refer to:
• disconnection of an intermediate active load (at the instant t = ti);
• removal of a line section (at the instant t = ti);
• short-circuit on a line section (at the instant t = ti) and subsequent removal

of the section itself (at the instant t = te, by the protection system);
under the hypothesis that the system is initially at a steady-state condition
and that the driving power Pm remains constant(4).

With the approximations specified in Section 7.1:

• an active load disconnection in the network could be assimilated to a step ∆αe > 0,
and thus to a sudden shift to right (by the quantity ∆αe) of the characteristic Pe(δ);

• a reactive load connection in the network, instead, could be assimilated to a step
∆eR < 0, and thus to a sudden reduction in Pemax, similar to that in Figure 7.30b.

(3) More generally, it must be assumed Pe = Pe(eR, δ − αe), where eR and αe can vary because of
load perturbations in the network (see Section 7.1).

The analysis also can be extended, by similar approximations, to the case of two machines (see
Section 1.6). Moreover, each machine may represent a whole subsystem (including machines, loads
etc.) within which the angular slips could be disregarded (see also Section 8.4).

(4) In Figures 7.30b and 7.30c, it is assumed, for greater generality, that the opening or the short-
circuit occurs with a proper equivalent impedance, which accounts for:

• the possible residual impedance;

• the negative and zero sequence impedances;

according to Figures 5.63 and 5.64. In fact, in the present analysis, only the mechanical balance
expressed by Equation [7.3.1] is of interest, and, in the cases of unsymmetrical opening or short-
circuit, Pe can be evaluated by considering only the contribution related to the positive sequence
(see the conclusion of Section 5.7.3).

Moreover, with the only aim of a graphic simplicity, in the figures it is assumed that, for t > ti
(i.e., after the initial time), the dependence of Pe on δ is Pe = Pemax sin δ, where Pemax varies in
a discontinuous way corresponding to possible perturbations. This is equivalent to assume that it is
X̂′
d = Xq (see the second of Equations [7.2.10]), αe = 0, and that the system does not include any

resistive element for t > ti .
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Figure 7.30. Application of the “equal area” criterion, in the case of:

(a) disconnection of an intermediate active load;
(b) removal of a line section;
(c) short-circuit on a line section and subsequent removal of the section itself.

It is assumed that δi � δ(ti), δe � δ(te), whereas δmax is the maximum value
reached by δ (which must be smaller than δL, to keep the synchronism), and δo

is the value of δ corresponding to the final steady-state condition.
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By the examination of different cases, the necessity of properly limiting the
value Pm = Pe(t−i ) appears evident, so that synchronism can be maintained
(δmax < δ

L). In Figure 7.30c, with a double perturbation (short-circuit at the
instant ti , and removal of the faulted line section at the instant te), it becomes
important to greatly reduce the duration (te − ti ) (typical minimum values: 0.1 sec
or smaller).

In Figures 7.30b and 7.30c we should emphasize the convenience of having:

• more lines in parallel (otherwise, a three-phase perturbation might cause
Pe = 0 for t > ti);

• an intermediate station or more such stations (to avoid marked reductions
of the characteristic Pe(δ) after removal of the line section).

For a better approximation, it would be necessary to consider the variations in Pe caused
by variations in the field flux ψf (and in the fluxes associated to the additional rotor
circuits), which themselves depend on:

• the perturbation type (e.g., ψf can increase for the load disconnection in Fig. 7.30a
and decrease for the short-circuit in Fig. 7.30c);

• the excitation control;

whereas the variations in Pm caused by speed regulation usually can be considered
negligible.

In particular, the presence of the additional rotor circuits can lead to a beneficial effect in
the case of Figure 7.30a (because of the increase in the rotor fluxes) and to a disadvantage
in the case of Figure 7.30c (for the opposite reason).

Instead, the excitation control has generally a beneficial effect, which can be translated
(as in Figure 7.31, with a successful reclosure) into an increase of the maximum accept-
able power Pe(t

−
i ), e.g., 5% for rotating excitation and 10% for static excitation with

Figure 7.31. The case of Figure 7.30c, followed by a “fast reclosure” of the
section under examination (assuming δr � δ(tr ), etc.).



7.3 LARGE PERTURBATION BEHAVIOR 615

independent supply (with a dependent supply, such an effect can be significantly reduced
because of the voltage drop). Similar considerations can further apply for other voltage
regulation types, the benefits of which also can be considerable if the regulation is fast,
e.g., performed by means of a shunt-connected static compensator.

To reduce the risk of losing synchronism, it is possible to adopt specific
countermeasures(5), such to reduce (e.g., within a few tenths of a second) the
accelerating power (Pm − Pe) through rather sudden variations of Pe and/or Pm
(however, it is necessary to check that such variations do not result in unaccept-
able torsional stresses).

The countermeasures under examination can be achieved based on different
signals:

• associated with protections or sensitive to the status of line breakers;

• sensitive — in a way possibly coordinated with the control systems — to the
speed variation ∆Ω , the acceleration dΩ/dt , the power variation ∆Pe, the
voltage variation ∆v, etc. (in particular, the acceleration measurement may
require proper filtering of torsional oscillation effects).

Following a short-circuit and the subsequent removal of the faulted line section
(Fig. 7.30c), the typical countermeasure consists of the “fast reclosure” (at the
instant t = tr ) of this line section, which is automatically performed by the
protections, so that the original configuration is restored as well as (under the
above-recalled approximations (1) and (2)) the original characteristic Pe(δ) (see
Fig. 7.31).

Obviously, it is necessary to reclose after a “waiting” time (tr − te) sufficient
for the extinction of the arc that accompanies the short-circuit (e.g., 0.3–0.5 sec
for a three-phase short-circuit, and approximately 2 sec for a single-phase short-
circuit), hoping that the causes for the short-circuit have been removed in the
meantime. Possibly, the reclosure also can occur after more attempts; however,
the arc persistence may lead to an “unsuccessful” reclosure, particularly for a
single-phase short-circuit and a relatively long line.

More generally, other countermeasures — not all of which are commonly
adopted — also can be temporarily used for increasing Pe or diminishing Pm.

(5) Moreover, preventive-type countermeasures may concern:

• the machine parameters; specifically, to reduce the acceleration (at given accelerating power)
the inertia coefficient M could be increased by adding a fly wheel;

• the parameters and the structure of the link, e.g., by arranging more parallel lines (also to
reduce the longitudinal reactance of the link) and intermediate stations;

• the operating point; specifically, to reduce δi at the same initial power Pe(t
−
i ) it is convenient

to operate the system at a large eR (e.g., 1.1 pu) and large ψf (i.e., Q > 0 and sufficiently
large).



616 CHAPTER 7 THE SYNCHRONOUS MACHINE CONNECTED TO AN INFINITE BUS

Such countermeasures must be based on local-type strategies, accounting for
the nature of the perturbation and the possible occurrence of the reclosure, as
described above.

More precisely, to increase Pe at the same δ, it is possible to:

(1) amplify the characteristic Pe(δ), in the sense of the ordinates (Fig. 7.32a):
(1a) by reducing the longitudinal reactance of the link, through the inser-

tion of series condensers(6);
(1b) increasing the voltage magnitude by “forcing” the excitation control

(or the control of the possible static compensator or in-phase regulat-
ing transformers), or by the insertion of shunt-connected condensers
or the disconnection of reactors(7).

(2) move the characteristic Pe(δ), predominantly toward the left side
(Fig. 7.32b), by increasing the phase difference between the link terminals;
this can be performed by “forcing” quadrature-regulating transformers

Figure 7.32. Variation of the characteristic Pe(δ): (a) amplification in the sense
of ordinates; (b) predominant moving toward the left side; (c) predominant mov-
ing toward the up side. It is assumed that the characteristic varies in a discon-
tinuous way at the instant tc, with δc � δ(tc). It is further intended that δmax and
δ∗max are, respectively, the maximum values of δ with and without variation of
the characteristic.

(6) For instance, if the link consists of four line sections, two-by-two parallel connected (see the
previous figures), each having a reactance X:

• the resulting reactance initially (before the short-circuit) is X;

• after a short-circuit and the (complete) removal of the faulted section, such a reactance can be
returned to the value X (to restore the original characteristic Pe(δ), as in the case of successful
reclosure) by means of a series capacitive reactance −X/2.

(7) In the presence of loads, the effects of the voltage increase can be different, according to the
characteristics that relate the (active and reactive) absorbed powers to the voltage magnitude.



7.3 LARGE PERTURBATION BEHAVIOR 617

(similarly, a shift in the opposite sense can be useful, whenever δ reaches
relatively large values);

(3) move the characteristic Pe(δ), predominantly toward the up side
(Fig. 7.32c), by inserting a shunt-connected fictitious load, e.g., constituted
by “braking resistors”(8).

Finally, to decrease Pm it is possible, for a thermal unit, to stop the steam flow
to the turbine by opening proper “bypass” valves (“fast-valving”; see Fig. 7.33),
based on signals sensitive to the acceleration or the delivered active power.

If the machine considered so far actually represents a multimachine subsystem
(see footnote(3)), the disconnection of hydroelectric units also may be provided.

Normally, the above-reported countermeasures should be used temporarily. On the other
hand, once the loss of synchronism has been prevented, they:

• generally are not convenient in the subsequent stage at ∆Ω < 0, for which it would
be preferable to decrease Pe and/or increase Pm (e.g., by removing the braking
resistors and/or restoring the steam to the turbine);

• may correspond, at steady-state conditions, to unacceptable situations (e.g., because
of an excessive value of the machine excitation current).

Moreover, by switching the characteristic Pe(δ) (as described above, but in both senses
alternatively) it is possible to improve the subsequent transient, until reaching the final
steady-state condition.

Figure 7.33. Example of behavior of Pm(t) under “fast-valving” (e.g.,
τ1 = 0.1–0.15 sec; τ2 = 0.2–0.4 sec; τ3 = 1–3 sec; τ4 = 1.5–2 sec).

(8) By doing so, the energy absorbed by the artificial load is dissipated. Alternatively, it can be thought
to store this energy in the form of magnetic energy (which can be successively reused), by realizing
the fictitious load by means of inductive circuits of negligible resistance (i.e., superconductors),
operating (through the interposition of a converter) in a “direct current (dc) mode.”
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Figure 7.34. Reaching the final steady-state condition, by switching the char-
acteristic Pe(δ): ideal case, with only two switchings (δ1 � δ(t1), δ2 � δ(t2)
= δmax = δo).

According to Figure 7.34, such a steady-state condition (∆Ω = 0, δ = δo) could be
reached even after only two switchings — at proper instants t = t1 and t = t2 — of the
characteristic Pe(δ). In practice this is not achievable, both because of the complexities
and uncertainties in modelling (and in diagnosis), and because of the discontinuities in
the tuning of the switching effects. However, reaching the final steady-state condition can
clearly be accelerated by switchings performed at proper instants.

ANNOTATED REFERENCES

Among the works of more general interest, it can be made reference to: 4, 6, 7, 10, 19,
37, 42, 50, 51, 68, 77, 81, 88, 98, 103, 106, 109, 111, 115, 125, 135, 147, 191, 214,
292, 293.

More specifically, for what concerns

• the effects of an intermediate load: notes prepared by the author, in view of the
writing of 53;

• the case of a series-compensated line: 36, 208, 209, 223;

• the large perturbations behavior: 98, 118, 161, 173, 262, 264, 275, 279, 283, 287,
302, 315.



CHAPTER 8

ELECTROMECHANICAL PHENOMENA
IN A MULTIMACHINE SYSTEM

8.1. PRELIMINARIES

To completely represent the dynamic behavior of a power system, a nonlinear
model of a very high dynamic order should be used, which would certainly be
prohibitive for an analysis not supported by simulation. The complications of
the model also would cause problems within the simulations, even if a powerful
computer is available.

Therefore it is necessary, in practice, to simplify the model according to the
specific problem to be solved.

A commonly used simplification is assuming a synchronous machine con-
nected to a network of infinite power (see Chapter 7). This scenario is likely
acceptable for particular problems of “local” character, i.e., when the phenomenon
mainly concerns a single machine (e.g., by the effect of a disturbance near it)
and is primarily determined by the dynamic behavior of this machine.

It must be indicated, however, that even in this case use of a complete model
(for the machine and its control systems) could be avoided, because details
of the model can actually be disregarded without compromising the accuracy
of the results.

In the general case of a multimachine system, the model complications also
depend on the number of machines (which may be very large), on the character-
istics of the network, and so on.

On the other hand, if the problem is not of a “local” character as mentioned
above, it may be presumed that a model which specifically considers interactions
between the components, can give reasonable results (at least for a first approx-
imation analysis), even if the representation of each component is drastically
simplified.

619
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In this chapter, analysis will be developed referring to the machine motions
(transients of angular position and speed of the rotors, with respect to a given syn-
chronous steady-state operation), assuming simplified models for the machines,
loads, and network elements.

In qualitative terms, these assumptions appear very useful to show, relatively
simply, the fundamental characteristics of the machine motions, considering the
interactions caused by the rest of the system. It must not be forgotten that,
notwithstanding the simplifications, the results of this analysis can be useful also
from a quantitative point of view — subject to a suitable choice of the value of
parameters — as it has been confirmed by some experimental results achieved on
actual systems.

In equilibrium steady-state conditions, all the (synchronous) machines in a
given system have the same electrical angular speed (equal to the “synchronous”
speed Ωs), whereas their electrical angular positions differ from each other, with
constant shifts depending on the loading conditions of individual machines.

In any dynamic condition, the mechanical balance equations of an N -machine
system can generally be written in the following form:

dΩi

dt
= 1

Mi

(Pmi − Pei)

dδi
dt

= Ωi − Ωs




(i = 1, . . . , N) [8.1.1]

where, for the i-th machine:

• Ωi = electrical angular speed;
• δi = electrical angular position, evaluated with respect to that (θs) of a

fictitious rotor, rotating at the synchronous speed dθs/dt = Ωs ;
• Pmi = mechanical driving power;
• Pei = active electrical power generated;
• Mi = coefficient of inertia;

(see Equation [3.1.2], with mechanical losses neglected).
If it is assumed that the powers Pmi and Pei are only functions of the speeds and

angular positions of the machines, and of possible input variables (represented by
a “column matrix” u), the motion of the machines turns out to be fully represented
by the Equations [8.1.1], which define a model of 2N dynamic order, with state
variables Ω1, . . . ,ΩN , δ1, . . . , δN , and input u. This first approximation model
will be detailed later in this chapter. The input variables may, for example, corre-
spond to external actions on the turbines (as the set-points of governors), capable
of varying the Pmi’s independently of the speed variations, or to perturbations on
the structure of the electric part of the system (opening of lines, load switching,
etc.), capable of directly varying the Pei’s. The synchronous speed Ωs may, on
the other hand, be regarded as a parameter, with an arbitrary constant value.
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Actually, for a more complete dynamic representation of the system, other differen-
tial equations should be added to [8.1.1] to take into account the dynamic behaviour
of the electromagnetic parts of the machines, of control systems, etc. Therefore, more
generally, a better approximation model can be obtained by adding to [8.1.1] a matrix
equation of the type

dx ′′

dt
= f ′′(Ω, δ, x ′′, u) [8.1.2]

where:

• Ω = column matrix of the speeds Ω1, . . . ,ΩN ;

• δ = column matrix of the positions δ1, . . . , δN ;

• x ′′ = column matrix of the additional state variables (e.g., magnetic flux linkages in
the machines, state variables of the control systems etc.);

• u = input column matrix, appropriately defined (including, for example, the set
points of the regulators, etc.);

and assuming that the powers Pmi and Pei , as well as the vector f ′′, in general depend
on Ω , δ, x ′′, u.

Then, the first approximation model can be considered a simplified version of the more
complete model, obtained by replacing the differential Equation [8.1.2] with an algebraic
equation that makes it possible to eliminate x ′′.

As a first approximation, applying the Park’s transformation with a syn-
chronous angular reference θs and neglecting, for simplicity, the subscript “s” in
the Park’s vectors, it can be assumed that (Fig. 8.1):

• the generic i-th machine can be represented, possibly considering its voltage
regulation, by an “equivalent” electromotive force (vector):

ei = jeiε
jδi (i = 1, . . . , N) [8.1.3]

rest of the system
 (passive linear elements)

Figure 8.1. Multimachine system under examination.
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behind a suitable output impedance (as a result of Equation [8.1.3], the
phases of the electromotive forces are given by δi + 90◦, which corresponds
to the assumption that the electromotive forces act along the “quadrature
axes” of the respective machines);

• the rest of the system (network and loads) consists of passive linear elements
that can be represented by suitable impedances or admittances evaluated
at frequency Ωs .

Under these hypotheses, the currents ı1, . . . , ıN (vectors) indicated in Figure 8.1
are linked to the electromotive forces e1, . . . , eN by means of linear equations:

ıi =
N∑
1

jY ij ej (i = 1, . . . , N) [8.1.4]

where the Y ij ’s are constant complex admittances (i, j = 1, . . . , N ), with Y ij =
Y ji , whereas the active electrical powers are expressed by:

Pei = Re (eiı
∗
i ) (i = 1, . . . , N) [8.1.5]

From Equations [8.1.3], [8.1.4], and [8.1.5], by letting Y ij � Gij + jBij , δij �
δi − δj , it can be derived:

Pei = e2
i Gii + ei

N∑
1

j �=i ej (Gij cos δij + Bij sin δij ) (i = 1, . . . , N)

[8.1.6]
so that the powers Pei are functions of:

• the magnitudes e1, . . . , eN of the electromotive forces;
• the phase differences between the electromotive forces (i.e., the differences

between the electrical angular positions of the rotors) or equivalently the
(N − 1) differences δ1N, . . . , δ(N−1)N , having taken as phase reference the
phase of the N -th electromotive force;

• the conductances Gij and the susceptances Bij that characterize the system
interposed between the electromotive forces.

By substituting Equation [8.1.6] in [8.1.1], we can derive the simplified model:

dΩi

dt
= 1

Mi

(Pmi − Pei(e, δ, Y (i)))

dδi
dt

= Ωi − Ωs




(i = 1, . . . , N) [8.1.7]

where e, δ, Y (i) are column matrices, respectively, consisting of the magni-
tudes e1, . . . , eN of the emfs, the angular shifts δ1, . . . , δN , and the admittances
Y i1, . . . , Y iN .
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For a correct formulation of the analysis, it seems appropriate to present some
clarifications about the model in Equations [8.1.7] and about other models that
may be deduced from it.

If it is assumed that the driving powers Pmi are directly controllable (by
suitable actions on the turbines), as well as the magnitudes ei of the electromotive
forces (by the excitation of the machines) and the admittances Y ij = Gij + jBij

(by structure perturbations), Equations [8.1.7] constitute a model of 2N dynamic
order, with state variables Ωi , δi , and input variables Pmi , ei , Gij , Bij (i, j =
1, . . . , N ).

The equilibrium points of the system in Equations [8.1.7] are defined by the
conditions:

dΩi

dt
= 0,

dδi
dt

= 0 ∀i = 1, . . . , N

i.e.,

Pmi − Pei(e, δ, Y (i)) = 0 [8.1.8]
}

∀i = 1, . . . , N
Ωi − Ωs = 0 [8.1.9]

Conditions [8.1.9] lead to Ω1 = · · · = ΩN = Ωs , implying that speeds of all
machines are equal (zero slips) to the synchronous speed. Conditions [8.1.8]
constitute, for given values of the input variables, N equations in δ1, . . . , δN . It
is, however, clear that these equations only have solutions for particular choices
of the input variables, because the powers Pei actually depend on (N − 1) phase
differences, rather than on the N phases δ1, . . . , δN independently.

In other words, to determine possible solutions in the (N − 1) unknown
δ1N, . . . , δ(N−1)N , only (N − 1) of the Equations [8.1.8] are sufficient, after which
the remainder of [8.1.8] — with the δiN ’s found (i = 1, . . . , N − 1) — defines a
very precise constraint on the input variables (see also Section 2.1.5). In prac-
tice, this constraint is automatically satisfied, by suitable distribution of the Pmi’s
caused by the f/P control.

For each solution δ1N, . . . , δ(N−1)N it is then derived δi = δiN + δN (i =
1, . . . , N ) with arbitrary δN . Because of this arbitrariness, every solution cor-
responds to a given equilibrium point in the space {δ1N, . . . , δ(N−1)N }, and to a
straight-line of possible equilibrium points in the space {δ1, . . . , δN }. This must be
considered, for example, to avoid an incorrect application of the “Lyapunov-like”
theorems for the stability analysis (see Section 8.3.)

For this reason, it may be more convenient to:

• rewrite Equations [8.1.7] in the form:

dΩi

dt
= 1

Mi

(Pmi − Pei(e, δ
′, Y (i))) (i = 1, . . . , N)

dδkN
dt

= Ωk − ΩN (k = 1, . . . , N − 1)




[8.1.10]



624 CHAPTER 8 ELECTROMECHANICAL PHENOMENA IN A MULTIMACHINE SYSTEM

dδN
dt

= ΩN − Ωs [8.1.11]

where δ′ � [δ1N, . . . , δ(N−1)N ]T ;

• pay attention only to Equations [8.1.10], which define a model of (2N − 1)
dynamic order, with state variables Ω1, . . . ,ΩN , δ1N, . . . , δ(N−1)N (with
the exception of considering also Equation [8.1.11] in rare cases where the
behavior of δN , and thus of the individual angular positions, may be of
some interest).

By imposing the equilibrium conditions of the system [8.1.10], a constraint is
found again on the input variables, as already specified (in fact, the N equations
Pmi − Pei = 0, in the (N − 1) unknowns δ1N, . . . , δ(N−1)N , must be consistent
with each other). If this constraint is satisfied, every equilibrium point is character-
ized by constant values of the angular differences (obtained from the Pmi − Pei =
0) and zero values of the slips, whereas the constant value of the speed (common
to all the machines) is arbitrary.

Moreover, Equations [8.1.10] can be rewritten as:

dΩkN

dt
=
(
Pmk

Mk

− PmN

MN

)
−
(
Pek

Mk

− PeN

MN

)

dδkN
dt

= ΩkN




(k = 1, . . . , N − 1)

[8.1.12]

dΩN

dt
= 1

MN

(PmN − PeN) [8.1.13]

with ΩkN � Ωk − ΩN , Pek = Pek(e, δ
′, Y (k)), PeN = PeN(e, δ

′, Y (N)). Equations
[8.1.12] define a (2N − 2) dynamic order model (with state variables ΩkN , δkN ,
k = 1, . . . , N − 1) that fully describes the relative machine motion with respect
to the motion of the N -th machine. Note that the evolution of system [8.1.12]
influences, by the dependence of PeN on the δkN ’s, Equation [8.1.13], but not
vice versa (see also, for the linearized case, Fig. 8.3).

Imposing the equilibrium conditions for Equations [8.1.12]:

• the (constant) values of the (N − 1) unknowns δ1N, . . . , δ(N−1)N must be
derived from the (N − 1) equations:

0 = 1

Mk

(Pmk − Pek) − 1

MN

(PmN − PeN) (k = 1, . . . , N − 1)

without any constraint on the input variables;

• one may then derive ΩkN = 0 (k = 1, . . . , N − 1), i.e., zero slips, whereas
the individual speeds, equal to each other, may vary with time.
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This corresponds to an equilibrium point in the space {Ω1N, . . . ,Ω(N−1)N ,

δ1N, . . . , δ(N−1)N }.

8.2. LINEARIZED ANALYSIS

8.2.1. Basic Equations

Linearizing Equations [8.1.7] around a given equilibrium point (characterized by
the superscript “o”), we may obtain:

d∆Ωi

dt
= 1

Mi

(
∆ui −

N∑
1

jKij∆δj

)

d∆δi
dt

= ∆Ωi




(i = 1, . . . , N) [8.2.1]

with:

∆ui � ∆Pmi −
N∑
1

j

(
∂Pei

∂ej

)o

∆ej − ∆PS
ei

Kij �
(
∂Pei

∂δj

)o




[8.2.2]

by denoting ∆PS
ei as the variation of Pei caused by possible variations of the Gij ,

Bij (structure perturbations; see for example Section 3.3.3).
In agreement with what is already said, Equations [8.2.1] define a linear model

of 2N dynamic order, with state variables ∆Ωi , ∆δi , and input variables ∆ui
(i = 1, . . . , N ) (∆ui can be interpreted as an equivalent variation of the driving
power on the i-th machine).

TheKij coefficients, which we will call “synchronizing” coefficients, satisfy the conditions:

N∑
1

jKij = 0 ∀i = 1, . . . , N [8.2.3]

because the power Pei‘s depend on the phase differences (rather than on the phases
δ1, . . . , δN independently), so that ∆Pei = 0 if ∆δ1 = · · · = ∆δN . Therefore, in the matrix
K � {Kij }, the sum of the elements in each row is zero.

Particularly, from Equation [8.1.6] we may derive:

Kij =




[eiej (Gij sin δij − Bij cos δij )]o if j �= i

N∑
1

h �=i[eieh(−Gih sin δih + Bih cos δih)]
o if j = i

[8.2.4]

from which Equation [8.2.3].
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(Equations [8.2.5])

(Equation [8.2.6])

Figure 8.2. Block diagram of the linearized system.

Therefore, in the first of Equations [8.2.1] it also results:

N∑
1

j Kij∆δj =
N∑
1

j �=i Kij∆δji =
N−1∑

1

j Kij∆δjN

Moreover, Equations [8.2.1] can be rewritten as (see Fig. 8.2):

d∆Ωi

dt
= 1

Mi

(
∆ui −

N−1∑
1

jKij∆δjN

)
(i = 1, . . . , N)

d∆δkN
dt

= ∆Ωk − ∆ΩN (k = 1, . . . , N − 1)




[8.2.5]

d∆δN
dt

= ∆ΩN [8.2.6]

as can be derived by linearizing, respectively, Equations [8.1.10] and [8.1.11].
For what is already said with regard to Equations [8.1.10], the analysis will be
carried out with particular regard to the linearized model [8.2.5], of (2N − 1)
dynamic order, with state variables ∆Ω1, . . . , ∆ΩN , ∆δ1N, . . . ,∆δ(N−1)N and
input variables ∆u1, . . . , ∆uN .

Finally, to show the relative machine motion, it can be useful to rewrite
Equations [8.2.5] as follows:

d∆ΩkN

dt
= 1

Mk

(
∆u′

k −
N−1∑

1

jK
′
kj∆δjN

)

d∆δkN
dt

= ∆ΩkN




(k = 1, . . . , N − 1) [8.2.7]

d∆ΩN

dt
= 1

MN

(
∆uN −

N−1∑
1

jKNj∆δjN

)
[8.2.8]
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relative motion of the machines 
with respect to the N-th machine

(Equations [8.2.7])

motion of the N-th machine
 (Equations [8.2.6],[8.2.8])

Figure 8.3. Variant of the block diagram to show the relative motion of the
machines with respect to one of them.

as can be derived by linearizing Equations [8.1.12] and [8.1.13], respectively,
and denoting: 


∆u′

k � ∆uk − Mk

∆uN

MN

K ′
kj � Kkj − Mk

KNj

MN

according to Figure 8.3.

8.2.2. Characteristic Roots and Stability

With matrix notations, Equation [8.2.1] can be rewritten as:

d∆Ω

dt
= −M−1K∆δ + M−1∆u

d∆δ

dt
= ∆Ω




[8.2.9]

with M � diag{M1, . . . ,MN }, K � {Kij }(i, j = 1, . . . , N), whereas ∆Ω , ∆δ,
∆u are the column matrices consisting of ∆Ωi , ∆δi , ∆ui (i = 1, . . . , N ),
respectively.

From these equations, it also follows:

d2∆δ

dt2
= −M−1K∆δ + M−1∆u
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so that the characteristic roots Λ1, . . . ,Λ2N of the system in question can be
derived by solving for the unknown Λ in the equation:

0 = det(Λ2I(N) + M−1K) [8.2.10]

On the other hand, Equation [8.2.10] has solutions:

Λ2 = L1, . . . , LN

where L1, . . . , LN denote the N eigenvalues of the matrix [−M−1K]; therefore,
the characteristic roots Λ1, . . . ,Λ2N are given by the square roots of L1, . . . , LN .

If the properties defined by [8.2.3] are considered, it can be seen that the “syn-
chronizing” matrix K is singular, and therefore also the [−M−1K] matrix. Con-
sequently, (at least) one of the eigenvalues Li(i = 1, . . . , N) is equal to zero.

By means of a suitable choice of indices, assuming:

LN = 0 [8.2.11]

it can be written:

Λh = −Λ(h+N−1) = (Lh)
1/2 (h = 1, . . . , N − 1)

Λ(2N−1) = 0

}
[8.2.12]

and furthermore:
Λ2N = 0

The (2N − 1) characteristic roots of the system [8.2.5] — for which the
analysis will be particularly developed here — are the same as those of the
system [8.2.1] except for one at the origin, corresponding to Equation [8.2.6]
(see also Fig. 8.2); more precisely, these characteristic roots are expressed by
Equations [8.2.12].

It is easy to prove that, for the stability of the system [8.2.5], it is necessary
(and sufficient) that L1, . . . , LN−1 are distinct, real, and negative (as we shall
assume later on). In fact, in this case, it results, from Equations [8.2.12]:

Λh = −Λ(h+N−1) = ̃ νh (h = 1, . . . , N − 1)
Λ(2N−1) = 0

}
[8.2.13]

with:
νh �

√−Lh [8.2.14]

(i.e., all simple and imaginary characteristic roots), which corresponds to “weak”
stability of the linearized system [8.2.5]. In any other case, there would be at
least one characteristic root with a positive real part, or multiple with real part
equal to zero, and the system in question would be unstable.
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As expressed by Equations [8.2.13], one of the characteristic roots lies at the
origin, whereas the others make up (N − 1) pairs of imaginary conjugate roots
±̃ νh, corresponding to just as many oscillatory “modes” with zero damping and
resonance frequencies ν1, . . . , ν(N−1) given by Equation [8.2.14].

In principle, the weak stability of the linearized system does not guarantee
anything about the actual stability properties of the (nonlinear) system around the
considered equilibrium point. To obtain exhaustive indications, it is necessary to
refer to an analysis of the Lyapunov type, such as that illustrated in Section 8.3.
However, the present results may appear useful, as they correspond (because
of the approximations adopted) to a limit situation, with respect to what may
be obtained by adopting more realistic models with nonimaginary characteristic
roots (see Section 8.5).

8.2.3. Modal Analysis: ‘‘Mean Motion’’
and Electromechanical Oscillations

Assuming, as said, that the matrix [−M−1K] has distinct eigenvalues, it can be
written in the form:

−M−1K = ALA−1 [8.2.15]

with L � diag{L1, . . . , LN }, whereas A is the matrix consisting of the “(column)
eigenvectors” corresponding to L1, . . . , LN , respectively.

Note that it results:

N∑
1

j (A
−1)hjAjN =

N∑
1

i(A
−1)NiAih = 0 ∀h = 1, . . . , N − 1 [8.2.16]

whereas:
N∑
1

i (A
−1)NiAiN = 1 [8.2.17]

Moreover, as LN = 0, the elements of the last column of A (i.e., the elements
of the eigenvector corresponding to LN ) are equal to each other, i.e.,

A1N = · · · = ANN [8.2.18]

so that it can be derived, by accounting for Equations [8.2.16] and [8.2.17],
respectively:

N∑
1

j (A
−1)hj = 0 ∀h = 1, . . . , N − 1 [8.2.19]

N∑
1

i (A
−1)Ni = (A1N)

−1 [8.2.20]
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In terms of Laplace transforms, from Equations [8.2.9] and recalling [8.2.15]
it is possible to derive:

∆Ωi(s) =
N−1∑

1

h

s

s2 + ν2
h

φ
(h)
Ωi
(s) + ∆Ωo(s) [8.2.21]

∆δi(s) =
N−1∑

1

h

s

s2 + ν2
h

φ
(h)
δi
(s) + ∆δo(s) [8.2.21′]

(i = 1, . . . , N), where:

φ
(h)
Ωi
(s) � Aih

N∑
1

j (A
−1)hj

(
∆uj(s)

Mj

+ ∆Ω
(o)
j − ν2

h

∆δ
(o)
j

s

)
[8.2.22]

φ
(h)
δi
(s) � Aih

N∑
1

j (A
−1)hj

(
1

s

(
∆uj(s)

Mj

+ ∆Ω
(o)
j

)
+ ∆δ

(o)
j

)
[8.2.22′]

(h = 1, . . . , N − 1), whereas:

∆Ωo(s) = 1

s
A1N

N∑
1

j (A
−1)Nj

(
∆uj(s)

Mj

+ ∆Ω
(o)
j

)
[8.2.23]

∆δo(s) = 1

s

(
∆Ωo(s) + A1N

N∑
1

j (A
−1)Nj∆δ

(o)
j

)
[8.2.23′]

In the above, the superscript “(o)” denotes initial conditions, i.e., the values
at t = 0.

For any given h, the functions φ(h)
Ωi
(s) are all similar to each other in that they

depend on the index i only through the proportionality coefficients Aih. The same
holds for their inverse transforms. (This is also valid for the functions φ(h)

δi
(s).)

These results are worth some important comments, as follows:

(1) In Equations [8.2.21] and [8.2.21′], the terms ∆Ωo and ∆δo do not depend
on the index i, and therefore form a common characteristic for machine
motion. It is natural to assume these terms as representatives of the “mean
motion” of the set of the machines. In particular, the common concept of
“mean frequency” of the network, generally used in an empirical way, gets
a precise definition here. Then, with the model adopted, the term ∆Ωo

represents the “mean frequency” variation.
On the contrary, the other terms in Equations [8.2.21] and [8.2.21′] depend
on the index i, and therefore characterize the relative motion of the
machines between themselves, and with respect to the mean motion.
These terms correspond to the oscillatory modes already mentioned, i.e.,
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to the “electromechanical oscillations” of the machines, at frequencies
ν1, . . . , ν(N−1).

(2) By recalling Equations [8.2.16] and [8.2.20], it is easy to verify that it
results (both in the s and the t domains):

∆Ωo = A1N

N∑
1

i(A
−1)Ni∆Ωi [8.2.24]

and similarly:

∆δo = A1N

N∑
1

i(A
−1)Ni∆δi [8.2.24′]

so that ∆Ωo may be interpreted as an “ensemble average” of the ∆Ωi’s
and more precisely (recalling Equation [8.2.20]) as a “weighted” average
with a unitary sum of the weights. The same applies for ∆δo, for what
concerns the ∆δi’s. Moreover, using the following notation for brevity:

(
∆u

M

)
o

� A1N

N∑
1

j (A
−1)Nj

∆uj

Mj

[8.2.24′′]

the mean motion may be represented by the differential equations:

d∆Ωo

dt
=
(
∆u

M

)
o

d∆δo
dt

= ∆Ωo




[8.2.25]

i.e., by a second-order system, with both the characteristic roots at the origin.

Furthermore it can be checked that, for every j = 1,. . ., N , it results:

(A−1)Nj = γjMj

N∑
1

kγkMk

(A1N)
−1 [8.2.26]

where γ1, . . . , γN are the cofactors of the K1i , . . . , KNi elements of any i-th col-
umn of the K matrix (the arbitrariness of the column derives from [8.2.3], i.e.,
from the fact that, in the K matrix, each column is the opposite of the sum of the
others). In fact, for any given i = 1, . . . , N it holds:

N∑
1

j γjKji = detK = 0 [8.2.27]
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and similarly (since A−1M−1K = −LA−1, LN = 0):

N∑
1

j

(A−1)Nj

Mj

Kji = −LN(A
−1)Ni = 0 [8.2.27′]

so that the ratios (A−1)Nj /(Mjγj ) (j = 1, . . . , N) are independent of the index
j ; recalling [8.2.20], the equation [8.2.26] can be then derived.

Alternatively it is possible to write, denoting by adj (. . .) the “adjoint” matrix:

γj = [adj(K)]ij ∀i = 1, . . . , N

where (since K = −MALA−1):

adj(K) = Aadj(L)A−1adj(M)(−1)N−1

so that, by developing, it can be derived:

γj = (A−1)Nj

Mj

A1Nν
2
1 . . . ν

2
(N−1)M1 . . .MN

and thus again Equation [8.2.26], as a result of [8.2.20]; in particular, note that:

N∑
1

kγkMk = ν2
1 . . . ν

2
(N−1)M1 . . .MN

As a consequence, Equations [8.2.24], [8.2.24′], and [8.2.24′′] may be finally
rewritten as:

∆Ωo =

N∑
1

iγiMi∆Ωi

N∑
1

kγkMk

[8.2.28]

∆δo =

N∑
1

iγiMi∆δi

N∑
1

kγkMk

[8.2.28′]

(
∆u

M

)
o

=

N∑
1

iγi∆ui

N∑
1

kγkMk

[8.2.28′′]
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so that, in the definition of the mean motion:

• the variations of the angular positions and speeds must be combined linearly,
with weights proportional to γiMi , and not simply Mi , as it is frequently
assumed without a precise justification;

• for the computation of (∆u/M)o (i.e., of the equivalent input, for what con-
cerns the mean motion), the variations ∆u1, . . . , ∆uN and the inertia coefficients
M1, . . . ,MN must be linearly combined, with weights respectively proportional
to γ1, . . . , γN , and not simply added.

Usually, however, the values of γ1, . . . , γN are rather close to each other, so
that it may be reasonably assumed (∆u/M)o ∼= ∑N

1 i∆ui/
∑N

1 kMk , etc. (see
Section 8.2.4.)

(3) If we define:
∆Ωio � ∆Ωi − ∆Ωo

∆δio � ∆δi − ∆δo

∆ui(o) � ∆ui − Mi

(
∆u

M

)
o




[8.2.29]

Equations [8.2.1] or [8.2.9], also may be substituted by:
• Equations [8.2.25], which define a system of second dynamic order,

corresponding to the mean motion;
• the following additional equations:

d∆Ωko

dt
= 1

Mk

(
∆uk(o) −

N−1∑
1

jKkj (∆δjo

− ∆δNo)

)

d∆δko
dt

= ∆Ωko




(k = 1, . . . , N − 1)

[8.2.30]
which define a system of (2N − 2) dynamic order, corresponding to the
motion of the machines with respect to the mean motion.

Note that ∆ΩNo can be derived starting from the values ∆Ωio for i =
1, . . . , N − 1, as it results (because of Equations [8.2.20] and [8.2.24]):

0 =
N∑
1

i (A
−1)Ni∆Ωio

and a similar conclusion holds for ∆δNo, ∆uN(o)/MN , starting from ∆δio,
∆ui(o)/Mi , i = 1, . . . , N − 1.

It is interesting to observe that the systems [8.2.25] and [8.2.30] are nonin-
teracting, as indicated in Figure 8.4 (this, in contrast, does not occur for the
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motion of the machines with
 respect to the mean motion

 (Equations [8.2.30])

mean motion (Equations [8.2.25])

Figure 8.4. Variant of the block diagram to show the mean motion and the
machine motion with respect to it.

systems in Fig. 8.3). Furthermore, the characteristic roots of the system [8.2.30]
(machine motion with respect to the mean motion) coincide with those of the
system [8.2.7] (relative machine motion between themselves), and consist of the
(N − 1) pairs of imaginary conjugate roots ±̃ ν1, . . . ,±̃ ν(N−1).

It is possible to conclude this both by considering Equations [8.2.21] and
[8.2.21′], and by observing that such characteristic roots must be the same as for
the full Equations [8.2.1], except for two roots at the origin which correspond to
[8.2.25] (mean motion; see also Fig. 8.4) or to [8.2.6] and [8.2.8] (Fig. 8.3).

From the present formulations, which correspond to the “modal” analysis
of the system [8.2.1], it is also possible to derive, in quite expressive terms, the
scheme of Figure 8.5, where, in accordance with Equations [8.2.21] and [8.2.22]:

• the generic coefficient (A−1)hj /Mj , which, for brevity, will be called “exci-
tance,” constitutes a measure of how much the h-th “mode” is excited by
an equivalent variation (∆uj ) of driving power on the j -th machine (h, j =
1, . . . , N );

• the generic coefficient Aih, which will be called “accipiency,” constitutes a
measure of how much the h-th “mode” is present in the variation of speed
(∆Ωi) of the i-th machine (h, i = 1, . . . , N );

whereas:
d∆δi

dt
= ∆Ωi, ∆δi(s) = ∆Ωi(s) + ∆δ

(o)
i

s

Specifically, as a result of Equations [8.2.18], the accipiencies relative to the
mode h = N , which corresponds to the mean motion, are all equal.
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j-th machine

POWER PERTURBATIONS

excitance

h-th mode MODES

accipiency

SPEED VARIATIONS

i-th machine

Figure 8.5. Effects of power perturbations on speed variations: interpretation in
“modal” terms.

Actually, the “measures” expressed by the above-mentioned coefficients must be inter-
preted in relative terms among the different machines. On the other hand, it must be
recalled that A is an eigenvector matrix, and thus, for any given h, all the accipiencies
Aih are defined with an arbitrary proportionality constant. This is also true for the exci-
tances (A−1)hj /Mj , with a proportionality constant that is the inverse of the previous
one. To overcome this arbitrariness, such coefficients may be properly “normalized,” e.g.,
according to Equations [8.2.38] described in the next section.

8.2.4. Particular Cases

If the synchronizing coefficients Kij satisfy, in addition to [8.2.3], the conditions:

N∑
1

iKij = 0 ∀j = 1, . . . , N [8.2.31]
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i.e., in the K matrix, the sum of the elements in each column is also equal to
zero, just as the case for the elements of each row, from Equations [8.2.27] and
[8.2.27′] we may derive:

γ1 = · · · = γN [8.2.32]

as well as:
(A−1)N1

M1
= · · · = (A−1)NN

MN

[8.2.32′]

(and vice versa, these last equations imply [8.2.31]). By letting MT �
∑N

1 iMi

(total inertia coefficient), from Equation [8.2.20] or [8.2.26] it can be derived:

(A−1)Nj

Mj

= 1

A1NMT

∀j = 1, . . . , N [8.2.33]

Therefore, in this case, even the excitances relative to the mode h = N are (as
the accipiencies) all equal. Furthermore:

∆Ωo =
N∑
1

iMi∆Ωi/MT

∆δo =
N∑
1

iMi∆δi/MT

(
∆u

M

)
o

=
N∑
1

i∆ui/MT




[8.2.34]

according to what is usually adopted in the definition of the mean motion.
Finally, from Equation [8.2.15] it can be derived that MAL = −KA, and

thus, for h = 1, . . . , N − 1:

MiAih = −
N∑
1

jKijAjh/Lh

from which, under the present assumptions:

N∑
1

iMiAih = 0 ∀h = 1, . . . , N − 1

The conditions [8.2.31] are equivalent to:

∂

(
N∑
1

iPei

)

∂δj
= 0 ∀j = 1, . . . , N [8.2.35]
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for which the total generated power
(∑N

1 iPei

)
is invariant to possible variations of the

angular positions of the machines. This might occur in each of the following cases:

• the system supplied by the emfs consists of only reactive elements and, removing
the linearity hypothesis, by loads at constant active power;

• as above but with loads (with active and reactive powers dependent on the volt-
age magnitude) perfectly voltage-regulated by a suitable action on the magnitudes
e1, . . . , eN of the emfs;

• the matrix K is symmetric (see the following).

In fact, in the first two cases, the total power
∑N

1 iPei is constant and thus Equation [8.2.35]
would apply (with K nonsymmetric in general), whereas in the third case [8.2.3] is directly
translated into [8.2.31].

If the matrix K is symmetrical, the conditions [8.2.31] hold, also implying all
the properties just described. Moreover, by recalling Equation [8.2.15] it can be
written:

MALA−1 = −K = −KT = (A−1)T LATM

ATMAL = LATMA

so that (because L is diagonal, having distinct elements) the matrix [ATMA]
is diagonal. If:

βh � ([ATMA]hh)
−1 =

(
N∑
1

kMkA
2
kh

)−1

(h = 1, . . . , N) [8.2.36]

from A−1 = [ATMA]−1ATM it follows that:

(A−1)hj

Mj

= βhAjh (h, j = 1, . . . , N) [8.2.37]

i.e., for each index h, the excitances relative to the different machines are simply
proportional to the respective accipiencies.

Equation [8.2.37] may also suggest the following definition of “normalized”
(nonadimensional) accipiencies and excitances:

aih � Aih

√
βh

ehj � (A−1)hj

Mj

√
βh


 [8.2.38]

so that aihehj = Aih(A
−1)hj /Mj and moreover, for symmetrical K , ehj = ajh.
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Finally, it is interesting to observe that the eigenvalues L1, . . . , LN of the
matrix [−M−1K] are real. In fact, the equation:

0 = det(−M−1K − λI(N))

is equivalent to:
0 = det(M−1/2KM−1/2 + λI(N))

and thus the eigenvalues under consideration are also those of [−M−1/2KM−1/2],
which under the present assumption are real, because of the symmetry of this
last matrix.

The assumption of a symmetric K may correspond to each of the following cases:

• the system supplied by the emfs consists of only reactive elements, and of loads of
the synchronous type, or located at emf’s terminals (this implies Gij = 0 ∀i, j , and
from Equations [8.2.4] it follows Kij = Kji);

• as above, but with loads at constant active power and voltage magnitude (this situa-
tion also may be seen as a limit case of the previous one, by assimilating the loads
under consideration to synchronous loads having negligible inertia);

• at the considered operating point, δoij = 0 ∀i, j , i.e., all the rotors are in phase with
each other (from Equations [8.2.4] it follows Kij = Kji).

Such examples obviously constitute ideal cases. However, the treatment based on the
assumption of a symmetrical K retains its precise interest in that — for many practical
cases, because of the concomitance of situations not far from the ones described — the
dissymmetries of K are actually relatively modest and, above all, Equations [8.2.34] and
[8.2.37] appear applicable as a good approximation.

If one of the emfs (let us assume the N -th) corresponds to an “infinite power”
network, the model defined by Equations [8.2.1] is translated into the following
one, with a dynamic order (2N − 2):




d∆Ωi

dt
= 1

Mi

(
∆ûi −

N−1∑
1

jKij∆δj

)

d∆δi
dt

= ∆Ωi

(i = 1, . . . , N − 1)

where the inputs ∆ûi � ∆ui − KiN∆δN also consider, for a greater generality
(see Section 7.1), possible variations in the magnitude and the phase of the emf
eN (remember that the effect of ∆eN is already included in the ∆ui’s; see the
first of Equations [8.2.2]).
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Through considerations similar to those already developed, it can be shown that:

• the (2N − 2) characteristic roots are given by the square roots of the eigen-
values L̂1, . . . , L̂(N−1) of the matrix [−M̂−1K̂], where:

{
M̂ � diag{M1, . . . ,M(N−1)}
K̂ � {Kij } with i, j = 1, . . . , N − 1

• for the (weak) stability of the linearized system, it is necessary and sufficient
that the above-mentioned eigenvalues are distinct, real, and negative;

• the system then exhibits (N − 1) pairs of imaginary conjugate characteris-
tic roots ±̃ ν̂h, corresponding to as many oscillatory modes, having zero

damping and resonance frequencies ν̂h =
√

−L̂h (h = 1, . . . , N − 1);
• expressions similar to Equations [8.2.21] and [8.2.21′], etc. can be derived,

without the terms corresponding to the mean motion;
• if the matrix K̂ is symmetrical, the proportionality between the excitances

and accipiencies is found again for each oscillatory mode (moreover, the
eigenvalues L̂h are real).

Finally, the extension to the case of several infinite power networks is obvious.

8.2.5. Time-Domain Response

From Equations [8.2.21] and [8.2.23] it can be derived, in general, that:

∆Ωi(t) =
N−1∑

1

h L−1

(
s

s2 + ν2
h

φ
(h)
Ωi
(s)

)
+ ∆Ωo(t) [8.2.39]

(i = 1, . . . , N ), where, by recalling the first of Equations [8.2.25]:

∆Ωo(t) = A1N

N∑
1

j (A
−1)Nj

(∫ t

0

∆uj(t)

Mj

dt + ∆Ω
(o)
j

)

=
∫ t

0

(
∆u

M

)
o

(t) dt + ∆Ω(o)
o [8.2.40]

In the following, the analysis of the variations ∆δi(t)(i = 1, . . . , N) and ∆δo(t) is omitted
for simplicity; note that ∆δi(t) = ∆δ

(o)
i + ∫ t

0 ∆Ωi(t) dt , ∆δo(t) = ∆δ(o)o + ∫ t

0 ∆Ωo(t) dt .

In Equation [8.2.39], the generic function L−1(. . .) includes a sinusoidal term
equal to:

|φ(h)
Ωi
(̃ νh)| cos

(
νht + � φ(h)

Ωi
(̃νh)

)
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the magnitude of which is proportional to |Aih| as a result of Equation [8.2.22].
(It is assumed that the functions ∆uj(s), and thus φ(h)

Ωi
(s), have no poles at ̃ νh.)

Therefore:

• (N − 1) sinusoidal components at the frequencies ν1, . . . , ν(N−1) (electro-
mechanical oscillations) are present in each of the ∆Ωi(t).

• For any given h, the magnitude of the oscillation varies from one machine
to the other, proportionally to the magnitude of the respective accipiency
Aih(i = 1, . . . , N). This is true independently of the nature, the size, and
the point of application of the perturbations.

The sign of Aih influences instead the oscillation phase, as the machines with
accipiencies of the same sign oscillate in phase with each other, and in opposite
phase with respect to the remaining ones.

In particular, the “free” response (i.e., the response with zero inputs ∆ui ,
i = 1, . . . , N ) is defined by:

∆Ωi(t) =
N−1∑

1

hAih

N∑
1

j (A
−1)hj (∆Ω

(o)
j cos νht

− νh∆δ
(o)
j sin νht) + ∆Ωo(t) [8.2.41]

∆Ωo(t) = A1N

N∑
1

j (A
−1)Nj∆Ω

(o)
j = ∆Ω(o)

o = constant [8.2.42]

Regarding the “forced” response (i.e., the response at zero initial conditions
∆Ω

(o)
j , ∆δ(o)j ), if:

{
∆uj(t) = 1(t) (unit step)
∆uk(t) = 0 ∀k �= j ; k = 1, . . . , N

it can be derived:

∆Ωi(t) =
N−1∑

1

h

Aih(A
−1)hj

νhMj

sin νht + ∆Ωo(t) [8.2.43]

∆Ωo(t) = A1N(A
−1)Nj

Mj

t [8.2.44]

In particular, from Equation [8.2.43] it is possible to derive that, for any
given h, the machines oscillate at zero phase or at 180◦ phase, and at different
magnitudes, according to the value of Aih(A

−1)hj /Mj , where the accipiency Aih

depends on the machine considered, whereas the excitance (A−1)hj /Mj depends
on the point of step application.
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The initial accelerations are:

d∆Ωi

dt
(0+) =

N−1∑
1

h

Aih(A
−1)hj

Mj

+ A1N(A
−1)Nj

Mj

=
{

1/Mj for i = j

0 for i �= j

i.e., as it is obvious, the unit step in ∆uj causes a nonzero initial acceleration (equal to
1/Mj ) only on the j -th machine to which it is applied.

The effects of a sudden structure perturbation (e.g., a line opening, a load
rejection, a generator tripping, etc.) may be assimilated to those of a set of steps
∆ui = −∆PS

ei (see the first of Equations [8.2.2]), where ∆PS
ei is the variation of

Pei caused by the perturbation considered, at the instant the perturbation occurs.

In Equations [8.2.41] and [8.2.43], the term ∆Ωo(t) represents not only an “ensemble
average” (as already specified) of ∆Ω1(t), . . . , ∆ΩN(t) at each instant, but also, with its
time behavior, the “time average” of each of the ∆Ωi(t). Such a property is important
as it may allow to experimentally derive the means frequency starting from only one of
the machine speeds, or from the frequency at a generic network location. In particular,
the response to a sudden structure perturbation is (with the present model):

∆Ωo(t) = −A1N

(
N∑
1

j (A
−1)Nj

∆P S
ej

Mj

)
t = −

N∑
1

j γj∆P
S
ej

N∑
1

kγkMk

t [8.2.45]

which, by assuming that the coefficients (A−1)Nj /Mj or equivalently γj (j = 1, . . . , N)
are slightly different from each other, may be approximated by:

∆Ωo(t) ∼= −

N∑
1

j ∆P
S
ej

MT

t [8.2.45′]

and this allows one to experimentally derive (with some approximations and with the
condition that the actual total perturbation

∑N
1 j ∆P S

ej is evaluated with the required
care; see Section 3.3.3) the total inertia coefficient MT , after estimating ∆Ωo(t) from the
frequency recording at a generic network location.

8.3. STABILITY OF THE RELATIVE MOTION

To study the stability without explicitly resolving the system equations by simula-
tion, the methods based on the Lyapunov theory may be (at least in principle) used.

This approach may generally seem particularly attractive, not only as an alter-
native to the simulation methods for stability checks (in effect, the calculation
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of the transients may be found to be rather heavy, and may also be superfluous
when the only information required concerns the stability), but also as a rapid
mean for the detection of critical situations, as can be required in planning studies
(with many cases to analyze) or for checking the system during operation (with
very little time available).

However, the practical applicability of the methods under consideration is
radically limited by various orders of difficulty, and in particular:

• the difficulty to find a suitable “Lyapunov function” (on which the analysis
is based), unless the model of the system is sufficiently simple;

• the difficulty, of both an analytical and computational nature, to determine
the “stability region” (in the state space) around a given stable equilibrium
point(1).

Therefore, in the following we will limit ourselves to outline a possible pro-
cedure, illustrating also the limitations and difficulties that it may imply.

In the field of multimachine systems, an example of application regarding
the stability of the relative motion (and in particular, for large variations, the
“keeping in step” of the machines) is to use the first approximation model defined
by Equations [8.1.12], with the further hypotheses:

Pmi(o) � Pmi − Mi

N∑
1

kPmk

MT

= constant ∀i = 1, . . . , N

where MT �
∑N

1 kMk is the total inertia coefficient, or equivalently (for varia-
tions of any magnitude):

∆Pm1

M1
= · · · = ∆PmN

MN

[8.3.1]

and furthermore:

ei = constant ∀i = 1, . . . , N

Pei(o) � Pei − Mi

N∑
1

kPek

MT

= Pei(o)(δ1N, . . . , δ(N−1)N )

(1) It is assumed that the system configuration does not change from the instant t i (referred to as
the initial instant). In the presence of structure perturbations, e.g., caused by a short-circuit and/or
intervention of protections, it must be assumed that all perturbations occur within t < ti , and their
effect on the initial state of the system (t = t i ) must be evaluated in advance.
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with:
∂Pei(o)

∂δjN
= ∂Pej (o)

∂δiN
∀i, j = 1, . . . , N − 1 [8.3.2]

In practice, Equations [8.3.1] do not appear to be particularly limiting. In fact, the vari-
ations ∆Pmi caused by the speed regulators (relatively slow, and thus often negligible
within the scope of the considered problems) as a first approximation can likely be con-
sidered proportional to the nominal powers, or even to the inertia coefficients Mi of the
respective units.

Equation [8.3.2] must then apply for any set of values δiN and is verified if the loads
are synchronous, or directly supplied by the emfs, or characterized by constant active
power and voltage magnitude, whereas all the other network elements are purely reactive
(symmetrical matrix K).

Note that
∑N

1 kPmk �= ∑N
1 kPek may hold; therefore, it also is possible to analyze the

stability, e.g., after a generator tripping, load-shedding, or after the separation from
other systems.

Under the above stated hypotheses, the following “Lyapunov function” can be
assumed:

V (δ′,Ω ′) = W(δ′) + C(Ω ′) [8.3.3]

where:

W(δ′) �
N−1∑

1

i

∫ δiN

δ
(R)

iN

Pei(o)(δ1N, . . . , δiN , δ
(R)
(i+1)N , . . . , δ

(R)
(N−1)N ) dδiN

+
N−1∑

1

iPmi(o)(δ
(R)
iN − δiN ) [8.3.3′]

C(Ω ′) � 1

2MT

N−1∑
1

iMi

N∑
i+1

jMj (ΩiN − ΩjN)
2 [8.3.3′′]

where δ′ � [δ1N . . . δ(N−1)N ]T ,Ω ′ � [Ω1N . . .Ω(N−1)N ]T , while δ(R)1N , . . . , δ
(R)
(N−1)N

may take arbitrary values. Equation [8.3.3] constitutes a generalization of [1.6.2],
which is derived from the case of two machines.

For the function V (δ′,Ω ′) we have, because of Equations [8.1.12]:

V̇ �
N−1∑

1

i

(
∂V

∂δiN

dδiN
dt

+ ∂V

∂ΩiN

dΩiN

dt

)
= 0 [8.3.4]

in the whole state space {δ′,Ω ′}. Therefore, it can be stated that, along every
generic trajectory of the system, the V function remains constant (an analogy
can be seen with a conservative system characterized by a constant V energy).
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It can be further verified that:

• the equilibrium points may at most be “weakly” stable (recall the conditions
in Section 8.2.2);

• in the (weakly) stable equilibrium points (and only in them), the function
V exhibits a minimum;

• consequently, around the mentioned points, the surfaces V = constant are
closed.

(Moreover, recall that, at each equilibrium point, Ω ′ = 0, C(Ω ′) = 0.)
The “stability region” R(δ′o, 0), corresponding to a given stable equilibrium

point (δ′o, 0), can be defined as the state space region within which the surfaces
V = constant maintain themselves closed around (δ′o, 0) (recall e.g., for N = 2,
the dashed region in Figure 1.7, around the point (δoab, 0)).

To check maintainance of machine synchronism starting from an assigned
initial point (δ′i , Ω ′i) of the state space, it is sufficient to determine that a point
(δ′o, 0) exists such that (δ′i , Ω ′i) pertains to R(δ′o, 0). In the presence of damping,
which is ignored here, the point (δ′i , 0) might define the final equilibrium point to
which reference must be made in the “static security” checks (see Section 2.2.5c).

As in Section 1.6 for the case N = 2, the maintenance of synchronism may
be checked through a procedure of the following type:

• starting from (δ′i , Ω ′i), let us move in the state space with continually
decreasing values of V , down until a minimum of the function V is reached,
i.e., a stable equilibrium point (δ′o, 0);

• determine the (unstable) equilibrium points, which can be connected to
(δ′o, 0) through a path for which V is always decreasing;

• check that it holds that:
V (δ′i ,Ω ′i) < V L [8.3.5]

where V Lis the minimum among the values assumed by V in the above-
mentioned points (V Lis the upper limit of the values of V in R(δ′o, 0)).

It is clear, according to what has been already stated, that the procedure
described can imply considerable practical difficulties (particularly for the eval-
uation of V L) if the number of machines is not small. In particular, it may be
necessary to calculate in advance an enormous number of equilibrium points, to
check their connection to (δ′o, 0), as specified above.

Some modest simplifications may derive from the fact that, at the equilibrium points, it
holds Ω ′ = 0, V = W , so that the determination of (δ′o, 0) and of V L can be performed
based on the behavior only of the function W in the subspace {δ′}, whereas the term
C(Ω ′) of Equation [8.3.3] must be considered only for evaluating V (δ′i ,Ω ′i ).
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However, for particular classes of problems, it is possible to obtain, through a
supplementary theoretical investigation, an analytical formulation of the stability
properties. Assume, for example, that the dependence of the Pei’s on the phase
shifts δkN can be expressed by equations:

Pei = bi

N∑
1

j bj sin δij (i = 1, . . . , N) [8.3.6]

with b1, . . . , bN constant and all being positive, δij � δi − δj , and moreover that:

Pmi(o) = 0 ∀i = 1, . . . , N − 1 [8.3.7]

Equation [8.3.6] may be verified, e.g., in the case of a system like the one indicated in
Figure 8.6a, as specified in the following, or also generally in the case of Figure 8.6b.

Equation [8.3.7], which also implies PmN(o) = 0, then corresponds to the conditions
Pm1/M1 = · · · = PmN/MN , by which the powers Pmi (which may possibly vary) must
practically be, with a good approximation, proportional to the respective nominal values.
The analysis can be extended, without excessive difficulties, to the rather realistic case of
Pmi(o) with relatively small absolute value.

Under the adopted hypotheses, and by proper development, it can be derived:

W(δ′) = 1

2


 N∑

1

ib
2
i −

(
N∑
1

ibi cos δiN

)2

−
(
N−1∑

1

ibi sin δiN

)2

 [8.3.8]

apart from a constant additional term that depends on the (arbitrary) choice of
δ
(R)
1N , . . . , δ

(R)
(N−1)N , and that therefore may be assumed to be zero, in a simpler

way and without any consequence on the results of the analysis.
Furthermore, it can be demonstrated that:

• the equilibrium points can be of the following three types:
• solutions of the “type 0” (stable): those solutions with all the rotors in

phase (apart from multiples of 360◦);
• solutions of the “type 1” (unstable): those solutions with one or more

rotors in phase with each other and in opposite phase with respect to the
remaining ones;

• solutions of the “type 2” (unstable), with notzero sin δiN at least for a
value of the index i;

• by assuming V L � V (δ′L, 0) = W(δ′L), the search for δ′L may be limited
to the “type 1” solutions;
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purely reactive
 two-port element

purely reactive
 network

Figure 8.6. Stability analysis for large variations: (a) system under examination;
(b) possible generalization of the system under examination.

• by examining the values of W at the “type 1” solutions, it then follows:

V L = 1

2


 N∑

1

hb
2
h −

(
N∑
1

hbh − 2bmin

)2

 [8.3.9]

with:
bmin � min(b1, . . . , bN)

(note that, if bmin = bs , the solution δ′L is the one for which the s-th rotor
is in opposite phase with respect to all the other ones).
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If the example of Figure 8.6a (with t i = 0) is considered, assuming that XM

is the reactance of the two-port element as seen from the node M at t > 0,
and moreover:

Xp �
(

1

XM

+
N∑
1

i

1

Xi

)−1

> 0

it can be derived (see Equation [8.3.6]):

bi = ei

Xi

√
Xp (i = 1, . . . , N)

Furthermore, the value W(δ′i) that corresponds to the initial point, can be ex-
pressed as a function of the values assumed by PM , QM and vM (see Fig. 8.6a)
at t = 0−. Finally, the stability condition [8.3.5] may be rewritten in the form:



(
QM

vM
+ vM

N∑
1

i

1

Xi

)2

+
(
PM

vM

)2


t=0−

>

(
N∑
1

h

eh

Xh

− 2
( e
X

)
min

)2

+ 2C(Ω ′i )
Xp

[8.3.10]

with: ( e
X

)
min

� min
(
e1

X1
, . . . ,

eN

XN

)

This corresponds to the stability zone indicated in Figure 8.7.

stable

unstable

PM, QM,   M evaluated at t = 0−

Figure 8.7. Stability zone for large variations.
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In particular, if the system is at equilibrium for t < 0, in condition [8.3.10] it
results that C(Ω ′i ) = 0, whereas it can be demonstrated that, for t < 0:

QM

vM
+ vM

N∑
1

i

1

Xi

=
N∑
1

h

√(
eh

Xh

)2

−
(
Mh

MT

PM

vM

)2

so that [8.3.10] is finally translated only into a condition on the value assumed
by (PM/vM)

2 for t < 0.
It is possible to determine that such a value cannot be larger than

[MT (e/XM)min]2, with:
( e

XM

)
min

� min
(

e1

X1M1
, . . . ,

eN

XNMN

)

Therefore, it appears significant to check if the stability is guaranteed within
the whole interval of admissibility for [(PM/vM)

2]t<0 (this case corresponds
to a “total security” condition) or only within a part of it (“conditioned secu-
rity”). Note that the stability condition is certainly verified for some values of
[(PM/vM)

2]t<0; e.g., when such a value is zero.
Referring to the problem considered, it is useful to notice that the left-hand

side of condition [8.3.10] is a nonincreasing function of [(PM/vM)
2]t<0. As a

consequence, by putting into [8.3.10]:[(
PM

vM

)2
]
t<0

=
[
MT

( e

XM

)
min

]2

which is the maximum admissible value, the following total security condition
can be derived:

 N∑
1

h

√(
eh

Xh

)2

−
(
Mh

( e

XM

)
min

)2



2

+
[
MT

( e

XM

)
min

]2

>

[
N∑
1

h

eh

Xh

− 2
( e
X

)
min

]2

(8.3.11]

which constitutes a condition on (2N − 2) adimensional parameters (e.g., the
(N − 1) ratios between the ei/Xi’s, and those between the Mi’s, whereas the
reactance XM does not appear in the condition itself).

For example, if: ( e
X

)
min

= eN

XN

and moreover: 


e1

X1M1
= · · · = er

XrMr

e(r+1)

X(r+1)M(r+1)
= · · · = eN

XNMN
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Figure 8.8. “Total” security condition (see text).

(with 0 ≤ r < N ), assuming:




α �
r∑
1

i

ei/Xi

eN/XN

β �
N∑
1

h

eh/Xh

eN/XN

the condition [8.3.11], through proper developments, can be translated into:

( e

XM

)
min( e

XM

)
max

> 1 − 2(β − 1)

α(β − α)
[8.3.12]

The above is related to the diagrams of Figure 8.8. (Note that α ≥ r , β ≥ N ,
β − α ≥ N − r > 0 and, furthermore, that condition [8.3.12] is certainly satisfied
if α ≤ 2, or if β ≤ 4 + 2

√
2 ∼= 6.83.)

8.4. SIMPLIFICATION OF THE OVERALL MODEL

8.4.1. Generalities

In the dynamic analysis of a multimachine system it is often necessary to make
adequate simplifications; in fact, the use of an overdetailed model may be:

• burdensome, not only for the analysis itself, but also for other aspects such
as data collection (and consequent setting up of the model), simulations by
computer, etc.
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• inadequate, above all if one considers the practical difficulty that exists
in defining a complete model for all system parts, and in obtaining well-
founded information on all the necessary data (especially on external
systems, interconnected with that of more direct interest), as well as the
minor importance of many model details, for the specific problem under
examination.

In particular, then, the simplified model should be realizable based on essential
and actually available data.

The simplifications may concern not only the individual components, as already
underlined in Section 8.1, but also the whole system. Even if the individual com-
ponents are represented in a very simplified manner, the overall model may, in
fact, be unacceptable especially because of the great number of machines and the
nonlinear characteristics of interaction between them.

Moreover, the simplifications may be required for the entire system or only
for some parts of it. For instance, given parts of the system (with or without the
respective controlling systems) must be represented by a “simplified equivalent”
as viewed from the rest of the system; or the whole set of machines, network,
and loads, must be represented by a simplified equivalent as viewed from the
controlling systems (see Fig. 8.9).

The validity of the simplifications, within the requested approximations and
with regard to the particular problem examined, may be supported by:

• intuitive considerations: for instance, two or more machines may likely be
considered “coherent” (i.e., with equal electrical speeds) if they are electri-
cally close enough to each other;

• experimental or simulation tests: for instance, the “spectral” analysis of the
interesting variables may reveal, in linearized terms, the existence of only a
few “dominant modes,” as in the case of a system of dynamic order much
smaller than the actual one;

• theoretical justifications: for instance, if the transients to be analyzed have
a short duration, only the “transient” characteristics of the machines etc.
may seem essential, whereas the analysis of the relatively slow transients
(such as those related to the f /P control) can make use of significant
simplifications for the faster transient components; moreover, possible sys-
tem parts that are subject to small perturbations, can be represented by
linearized models.

Finally, the degree of approximation of the simplified model can be defined
on the basis of various objectives, among which the satisfactory reproduction
of the behavior of some selected variables (voltages, speeds, power flows at
given points of the network, etc.), for a given time interval (for instance, up
to a few seconds, or to several minutes) and after given perturbations; or the
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controlling system

controlling system

simplified equivalent 
of the area “B”

controlling
system of the
area “A”

controlling
system of the
area “B”

simplified
equivalent of
the area “B”
and of its
controlling 
system

simplified 
equivalent of
the area “B”

controlling system

simplified
equivalent of
the area “A”

simplified 
equivalent of the 
area “B”

simplified 
equivalent of the
whole system
      (A+B)

“A”

“A”“A” “B”

Figure 8.9. Simplification of the overall model: (a) original model; (b), (c), (d)
typical examples of simplified models. The model (c) assumes that the controlling
systems of areas “A” and “B” can be considered separately.

satisfactory reproduction of some properties of the real system (for instance,
stability limits)(2).

8.4.2. ‘‘Area’’ Models

The common simplified models are based on the definition of one or more (geo-
graphically bounded) “areas”, within each of which some simplification criteria
independent of the rest of the system are applied. As already pointed out, the
area(s) under study may cover the whole or part of the system.

(2) It also must be remembered that the required degree of approximation may be very different
according to the type of problem, e.g., previsional scheduling, reconstruction (through off-line sim-
ulation) of events actually occurred, and so on.
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Clearly, the wide use of these models is justified by their flexibility and the
relative simplicity in setup, because the simplification of the overall model is the
result of one or several partial simplifications made independently of each other.

The quality of a multiarea model depends on the choice of the areas themselves
and on the simplification criteria applied to each. Once the choice of the areas
has been determined, the model setup is generally quite simple; however, the
choice of areas may imply some uncertainties or perplexities for its possible
consequences on the resulting approximation. The boundaries of one or several
areas are sometimes suggested by considerations of practical convenience, based,
for instance, on strictly geographical criteria. Moreover, an external system not
well-known in detail is often assumed as a single area, since rough representation
of such a system is presumably acceptable, also considering the uncertainties of
the corresponding data.

The more usual simplification criterion is based on the assumption that, within
each area, the rotors of the machines are “coherent” to each other. Therefore,
if for instance the considered area includes the machines 1, . . . , r , it is assumed
that the phase displacements (δi − δj ) remain constant in time for all the i, j =
1, . . . , r , and that the electrical angular speeds Ω1, . . . ,Ωr are equal to each
other at any time instant.

For a reasonable application of such criterion, it is appropriate to make preliminary checks
about the practical “coherency” of the machines assigned to each area, for example by
analyzing the behavior of the system for small variations, through simulations or, less
empirically, by means of modal analysis techniques of the type described in Section 8.4.3.
Ignoring such checks, the choice of areas may be based on more or less empirical evalu-
ations of the “electrical distance” between the machines. A rather used procedure, for the
case in which the perturbation is constituted by a zero-impedance, three-phase short-circuit
(at the instant t = 0), is for example the following one:

• Based on the model represented in Figure 8.1, the relative voltage drops, caused (by
the short-circuit) at the terminals of the different machines, are evaluated for t = 0+.

• Two machine subsets (A, B) are defined, respectively, constituted by the machines
that have relative voltage drops larger than a predetermined value (subset A) and
by the remaining ones (subset B); each machine pertaining to the subset A will be
kept in the final model, whereas those pertaining to the subset B will be grouped
into one or more areas.

• The machines i ∈ B which have, with respect to the subset A, values of the “elec-
trical distance” d(i) not much different, are grouped into the same area (i.e., they
are considered as “coherent” with each other); the generic d(i) may be, for example,
simply defined by:

d(i) = max
j∈A

|Y ij | (i ∈ B)

where Y ij is the mutual admittance between the emfs ei , ej (see Equation [8.1.4]),
or by the so-called “reflection coefficient”:

d(i) = max
j∈A

|aji | (i ∈ B)
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where aji is the acceleration of the j -th machine caused by the variation ∆δi after
a sufficiently small time τ (following the short-circuit). By obvious notation, the
accelerations aji are evaluated based on (dΩi/dt)(0+) = (Pei(0−) − Pei(0+))/Mi ,
∆δi(τ ) ∼= (dΩi/dt)(0+)τ 2/2, aji ∼= Kji∆δi(τ )/Mi .

Through such a procedure, it is possible to obtain relatively wide areas, however based
on an assumed “coherency” between machines that actually can be far from each other.

The equations of mechanical balance for the individual machines of the generic
area (i.e., Equations [8.1.1] with i = 1, . . . , r) are then simply replaced by:

dΩa

dt
= 1

Ma

(Pma − Pea)

dδa
dt

= Ωa − Ωs




[8.4.1]

by letting:

Ωa � Ω1 = · · · = Ωr

∆δa � ∆δ1 = · · · = ∆δr

}
[8.4.2]

Pma �
r∑
1

iPmi

Pea �
r∑
1

iPei

Ma �
r∑
1

iMi

so that the dynamic order of the model, for the given area, is reduced by (2r − 2).
However, no appreciable computational savings may be expected from this

reduction of the dynamic order, if the dynamic order of the original model (for
the whole system) is relatively high. The greatest advantages are obtained when
the original model of each machine considered is already the simplified second-
order model, and the dynamic order of the area model is therefore reduced from
2r (with state variables Ωi , δi , i = 1, . . . , r) to 2 (with state variables Ωa , δa).

However, also in this case, the advantages in question could still be moderate,
since the computation work depends not only on the dynamic order of the model,
but also (if not mostly) on the complexity of the algebraic-type operations to be
effected. In particular, the computation of:

Pea =
r∑
1

iPei(δ1(δa), . . . , δr (δa), δ(r+1), . . .) � Pea(δa, δ(r+1), . . .)
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may still imply a considerable work — with no practical advantage with respect to
the original model — if the dependence of Pea on δa cannot be expressed directly,
i.e., without passing through the intermediary of the variables δ1, . . . , δr . A sim-
ilar conclusion can be drawn regarding the powers delivered by the machines
outside the area and other variables depending on δa .



8.4 SIMPLIFICATION OF THE OVERALL MODEL 655

Figure 8.10. Area with a single boundary node: (a) system under examination;
(b) equivalent system under the assumption of “coherency” between the machines
(Y s , Yd1, Y d2 represent the admittances of the different branches).

and furthermore:

yeq �
r∑
1

kek ε
−jδo

kr

r∑
1

iykiei ε
jδo

ir

/
(me2

eq)

whereas eeq, magnitude of eeq, is arbitrary (in particular it can be assumed, for simplic-
ity, eeq = vv). When passing from the original system to the equivalent, the relationship
between v and ı does not change; instead, the total mechanical power and the total complex
power (i.e., the active and the reactive powers) supplied by the emfs are divided by m.
However, with Meq = Ma/m, the electromechanical phenomena remain unchanged.

The situation becomes more complicated, in the case of more than one boundary node.
In particular, the network connecting the equivalent machine and the boundary nodes is
generally characterized by a nonsymmetrical admittance matrix.

If the whole system is regarded as a single area (e.g., for problems of f /P control),
all angular differences δ1N, . . . , δ(N−1)N are assumed to be constant. If, in the original
model, the machines are represented by emfs with a constant magnitude and connected
between them by a linear network, then the powers Pei , and therefore Pea , are constant
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(unless there are perturbations in the network), without any dependence on δa . For small
variations around a steady-state operating point, Equations [8.4.1] then give:




d∆Ωa

dt
= 1

Ma

(∆Pma − ∆Pea) =
N∑
1

i ∆ui/MT

d∆δa
dt

= ∆Ωa

and the motion of the equivalent machine constitutes a generally acceptable approx-
imation of the mean motion of the machines (see Equations [8.2.25] and the last of
Equations [8.2.34])(3).

The previous statements can be extended to several areas, provided that the motion,
common (by hypothesis) to all the machines in the same area, may be considered as a
significant mean of the motions of such machines, also for what concerns the phase-shifts
with respect to the machines of the other areas, and the consequent power flows.

In the most usual practice, the model of each area is based not only on the
assumption of “coherency” between the machines, but also on further simplifying
assumptions (more or less intuitive, and often empirical). This allows to define,
for a given area, an equivalent machine (with an order even greater than the
second one, equipped with a possible “equivalent voltage regulator”, etc.), con-
nected to the boundary nodes through a network with a symmetrical admittance
matrix. A simplified equivalent of the area is then obtained, consistent with the
usual models and simulation programs.

However, as a particular consequence of these further simplifications, in Equa-
tions [8.4.1] it is possible to have, under generic dynamic conditions:

Pea �=
r∑
1

iPei

and therefore the mechanical balance of the system may not be exactly repro-
duced, given the assumption of coherency within each area.

On the other hand, the only hypothesis of “coherency” is sufficient to define for each
area, without further approximations, an “equivalent speed governor,” by simply adding

(3) MT �
∑N

1 i Mi is the total inertia coefficient, whereas it holds ∆ui � ∆Pmi − ∆PS
ei , where ∆PS

ei

is the variation of Pei due to possible structure perturbations in the network. More generally, if the
magnitudes ei of the emfs can be considered as inputs — possibly varying — of the system, it can
be assumed:

∆ui � ∆Pmi −
N∑
1

j

(
∂Pei

∂ej

)o
∆ej − ∆PS

ei

in accordance with the first of Equations [8.2.2].
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up the effects of the single governors, i.e., assuming:

∂Pma

∂Ωa

(s) =
r∑
1

i

∂Pmi

∂Ωi

(s)

(see also Section 3.3.1).

Sometimes — in particular for problems of f/P control of interconnected systems — the
boundary nodes between the areas are not explicitly taken into evidence. The effect of
the electrical links is directly translated into proper (approximate) equations between the
active powers delivered by the equivalent machines (or “exported” by the single areas,
apart from losses) and the respective angular positions (see also Sections 3.3.1 and 3.4.1).

The assumption of machine “coherency” within each area (or the whole sys-
tem), even when not accompanied by further simplifying assumptions, may gen-
erally appear rather rough and restrictive, as, in the actual system, the machines
are electrically and not mechanically coupled to each other. In particular, such
an assumption prevents consideration of variations of the machine relative posi-
tions within the same area, and has similar consequences on these variables that
depend substantially on the above relative positions, such as powers exchanged
within the area, etc.

For an improved approximation a new model has been then proposed, based
on the assumption that, within each area, the accelerating powers of the machines
are, at every time instant, proportional to the respective inertia coefficients. Such
an assumption is evidently contained in the assumption of “coherency.” However,
the acceleration value (unique for each area) is now ascribed not to the machine
rotors, but to the so-called area “center of inertia.” The variation of position
of the latter is suitably defined as function of the variations of angular position
of the rotors themselves. In other words, if the considered area includes the
machines 1, . . . , r , in Equations [8.1.1] the accelerations dΩ1/dt , . . . , dΩr/dt of
the individual area machines are all formally replaced by the acceleration dΩa/dt
of the center of inertia. By doing so, we still have Equations [8.4.1], i.e.,

dΩa

dt
= 1

Ma

(Pma − Pea)

dδa
dt

= Ωa − Ωs




[8.4.1 rep.]

(with Pma �
∑r

1 iPmi , Pea �
∑r

1 iPei , Ma �
∑r

1 iMi), to which the following
equations, in place of Equations [8.4.2], must now be added:



Pm1 − Pe1

M1
= · · · = Pmr − Per

Mr

(
= dΩa

dt

)

∆δa = ∆δa(∆δ1, . . . , ∆δr)

[8.4.3]

Ωi = Ωs + dδi
dt

(i = 1, . . . , r) [8.4.4]
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where the r Equations [8.4.3] make it possible to deduce behaviors of ∆δ1, . . . ,

∆δr . In fact, for given initial values δ
(o)
1 , . . . , δ(o)r , the Pei’s are functions of

∆δ1, . . . , ∆δr , in addition to other variables relative to the electrical part of the
system. Regarding the choice of the function ∆δa(∆δ1, . . . , ∆δr), it may appear
reasonable enough to assume:

∆δa =

r∑
1

i Mi∆δi

Ma

even if (referring to Section 8.2) this expression only appears justifiable with
reference to the mean motion of an area not interconnected with others, for
small perturbations, and under particular assumptions (see the second part of
Equations [8.2.34]).

Therefore, compared with those previously described, the present model admits
variations of the relative positions for the machines of the same area and, there-
fore, even in all the quantities that depend on them. However, these variations are
not accompanied by electromechanical oscillations between the machines them-
selves, and may be evaluated based on variations of the powers Pei generated by
the machines, according to “static”-type relationships similar to those involved
in usual “load-flow” computations.

From the point of view of the resulting degree of approximation, considerable
improvements may be obtained in comparison with previous models. However
it is not possible, for the general case of several areas, to derive a simple equiv-
alent of the generic area as “viewed” by the boundary nodes. Furthermore, the
computation work for simulations may be considerable.

In the case of a single area (r = N), if the definition of δa and the deduction of the
single δi’s and Ωi’s are not considered, the preceding equations can be reduced to the
following N ones:

Pm1 − Pe1

M1
= · · · = PmN − PeN

MN

= dΩo

dt
[8.4.5]

in the N unknowns δ1N, . . . , δ(N−1)N , dΩo/dt (in fact, Pei’s depend on δ1N, . . . , δ(N−1)N ;
see the scheme of Fig. 8.11), where Ωo can be assumed as the “mean frequency”; see the
conclusion of Section 8.4.3.

Equations [8.4.5] allow the development of a particularly useful model to analyze the
slowest dynamic phenomena (“long-term dynamics”):

• also accounting for the evolution of the (mean) regime of the different electrical
quantities — voltages, power fluxes, etc. — further than the mechanical ones, for
example with the aim of (“quasistatic”) security assessments more credible than
those of static security (see Sections 2.2.5 and 2.3.1),

• assuming that the f /P control is sensitive to the mean frequency Ωo (instead of to
the single Ωi’s).
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(other
outputs)

“load-flow”
calculations

Figure 8.11. Block diagram for the analysis of the slowest phenomena
(“long-term dynamics”).

The assumptions described above, independent of their acceptability for given
applications, are suggested by rather empirical simplification criteria (as well as
the choice itself of areas) that are strictly oriented to mechanical type phenomena.

Rational criteria, based on the “modal” analysis for small variations, have
been proposed for the model simplification of any given area, as viewed by its
boundary nodes, considering jointly the control systems acting on the area itself.

These criteria imply, for each area, the simplification of the modes that may be
regarded as “nondominant,” in response to small perturbations of a given kind.
Such a procedure may be applied in general, independently of the original model
of the area. The simplified equivalent of the generic area is not consistent, gener-
ally, with the usual models and simulation programs, but may allow satisfactory
approximations, provided that:

• the area is actually submitted to relatively small perturbations;
• the nondominant modes are identified with reference to likely meaningful

input functions, with regard to the operation of the whole system (for any
given area, the set of input variables also includes electrical variables, such
as voltages or powers, at the boundary nodes).

Finally, the computation work depends on the desired degree of approximation.

8.4.3. Models of More General Type

Some improvement in simplifying procedures may be suggested by various
considerations.
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First, the simplified model of any given area is developed, according to the
above, independently of the rest of the system, although it should generally
depend on the characteristics of interconnected operation and therefore (in dif-
ferent measures) on the value of all parameters. The definition itself of “areas” in
the above sense (referred to as subsystems, each simplified according to criteria
independent of the rest of the system) may be considered forced and arbitrary
even from a formal point of view, that is regardless of the difficulties which could
be met for a satisfactory criterion for the choice of the areas themselves (unless
this last problem is not particularly “well-conditioned,” taking into account the
structure of the network etc.).

Specifically, for small variations, the resulting “modes” of a multiarea model
do not correspond, neither in frequency nor in magnitude and phase, to any sub-
set of original model modes. However, it is important that the dominant modes
(i.e., those contributing mostly to the observed variable response, under the con-
sidered operating conditions) are reproduced with a satisfactory approximation.
To improve the approximation, the number of areas could be increased, but this
measure would lead to a dynamic order of the simplified model rather higher
than that required (which may be very small in case of few dominant modes).
For instance, n areas characterized by second-order equivalent machines may
account for (n − 1) electromechanical oscillations, but a number of areas rather
higher than 2 may be necessary to satisfactorily reproduce only one oscillatory
mode of the original model. Even when not considering such an inconvenience,
increasing the number of areas would be a rather empirical remedy, without the
possibility of easily foreseeing the most suitable configuration to adopt for the
simplified model.

In practice, the feasibility of an area subdivision also must be evaluated with respect
to the particular type of problem. If the considered perturbations are concentrated in a
relatively small region (e.g., after a fault at a given point in the network), as well as the
variables whose behavior must be examined, it may be reasonable to simplify those system
parts that are far enough from that region. This can be accomplished by treating them
like “areas” in the above-mentioned sense, without expecting substantial detriment to the
resulting approximation. However, this concept may not appear reliable in more general
cases, when the perturbations and the variables to be observed are actually distributed
(e.g., as a result of control actions) throughout the system, so that no parts of it are likely
more suitable for a subdivision into areas.

Finally, it should be recalled that the traditional simplification criteria are
strictly oriented to mechanical phenomena. This means that if the state variables
of the original model are not of an exclusively mechanical nature (specifi-
cally, motor speeds and positions), these criteria result in a minor role in the
simplification process.

It may therefore be useful to identify simplifying criteria:

• with efficiency not dependent on the particular nature (i.e., mechanical etc.)
of the model to simplify;
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• with a “global” character, i.e., complying with the operating characteristics
of the whole system.

Such requirements may be satisfied by “modal reduction”criteria (of the type
already mentioned at the end of Section 8.4.2, but applied to the whole system),
which, even if based on the linearized behavior, prove useful also for nonsmall
variations within reasonable value ranges.

By modal reduction, the dominant modes can be exactly retained in the sim-
plified model, with their contributions to the response to any perturbation type.
Obviously, the requirement of exactly reproducing the dominant mode contribu-
tions also may be limited to reduced sets of output and input variables. This also
may lead to a reduction of the set of modes to be assumed as dominant.

Leaving out, for the sake of simplicity, the analytic (rather elementary) devel-
opments required for making a model of “modal” type for small variations, it is
important to indicate that, if the original model (of n0 dynamic order) is defined
in the matrix form:

dx

dt
= Ax + Bu

y = Cx + Du


 [8.4.6]

(where x, u, y are column matrices, consisting of the n0 state variables, and of the
input and output variables, respectively; see Equations [A3.1.3] and footnote(3)

in Appendix 3), the simplified model (of nr dynamic order) may be written as
follows:

dz

dt
= R(Ax + Bu)

x = Sz + T u

y = Cx + Du




[8.4.7]

where:

• z is the “reduced” state (nr variables);

• S and T are suitable matrices, depending on the choice of the dominant
modes and on the simplification of the remainders;

• R is any arbitrary matrix (nr , n0) satisfying the condition RS = I(nr ).

The first of Equations [8.4.7] exhibits an interesting formal analogy with the original
model, as it explicitly contains the same term (Ax + Bu) appearing in the first of
Equations [8.4.6]. Therefore, it may be spontaneous to extend the previous result to the
nonlinear case, assuming, if the original model is in the form:

dx

dt
= f (x, u)

y = g(x, u)


 [8.4.6′]
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a simplified model of the type:

dz

dt
= Rf (x, u)

∆x = Sz + T∆u

y = g(x, u)




[8.4.7′]

where it is understood that the variations ∆x, ∆u are evaluated with respect to the
equilibrium operating point assumed for calculating the matrices S and T .

For small variations, the simplified Equations [8.4.7′] satisfy the modal reduction criterion,
whatever the choice of R is (provided that RS = I(nr)). On the other hand, for large
variations, the quality of such model depends on R and can therefore be optimized to
some extent (for given operating conditions) by suitably taking advantage of the degrees
of freedom in the choice of R.

The modal-type model is not consistent with the most common models and
simulation programs for multimachine systems. However, considerable advan-
tages may be obtained in this connection, because of its formal analogy in respect
to the original model, as above outlined.

In the case of a relatively complex system, to obtain a less-demanding setup
of the simplified model, it may be advisable to apply in advance any reason-
able simplification (e.g., by replacing some parts of the system with equivalent
machines, so as to reduce the order n0 before applying the modal reduction).
The computational savings may be, especially in the field of small variations, of
the same order — and greater, for a given degree of approximation — than those
obtained by using the traditional “area” models.

Moreover, it is important to emphasize that an “area” model too can generally
be led to the Equations [8.4.7′], with matrices R, S, and T replaced by suitable
matrices. Therefore, it may be considered a simplified version of the modal-type
model. Consequently, the knowledge of this last one also may lead to impor-
tant indications regarding the best choice of possible areas, which may be used
to derive an “area” model or (as a compromise solution) a modal-type model,
developed starting from equivalent machines as mentioned above.

To better explain these considerations, we can refer to the case of a system including
N machines of the second order; as specified in Section 8.2, for small variations it is
possible to write (assuming initial conditions equal to zero, for simplicity):

∆Ωi(s) =
N−1∑

1

h

s

s2 + ν2
h

Aih

N∑
1

j (A
−1)hj

∆uj (s)

Mj

+ 1

s
A1N

N∑
1

j (A
−1)Nj

∆uj (s)

Mj

(see Equation [8.2.21] and subsequent ones), where the terms in the first summation
correspond to the electromechanical oscillations, whereas the last term corresponds to the
machine “mean motion.”
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In practice, it often occurs that in the ∆Ωi’s of greater interest, only a few oscillatory
terms are “dominant” (e.g., those for h = 1, . . . , q, with q equal to 3, 4, or slightly
more), whereas the other modes (obviously not unstable) can be disregarded or properly
simplified, since the contributions of the respective terms Aih(A

−1)hj∆uj (s)/Mj are small.
In practice, many oscillatory modes also may be adequately simplified or disregarded,
because they are characterized by high damping factors.

In such conditions, the modal reduction may lead to a simplified model, for which:

∆Ωi(s) =
q∑
1

h

s

s2 + ν2
h

Aih

N∑
1

j (A
−1)hj

∆uj (s)

Mj

+ 1

s
A1N

N∑
1

j (A
−1)Nj

∆uj(s)

Mj

+ εi(s) [8.4.8]

where εi(s) constitutes a suitable approximation of the (minor) terms corresponding to h =
q + 1, . . . , N − 1.

With Equation [8.4.8], it is obvious that, for instance, the machines 1, 2 can be considered
“coherent” to each other, for small variations at least, if:

A1h
∼= A2h [8.4.9]

(A−1)h1

M1

∼= (A−1)h2

M2
[8.4.10]

∀h = 1, . . . , q, and moreover for h = N

In fact, Equation [8.4.9] leads to ∆Ω1
∼= ∆Ω2, and [8.4.10] permits to add up the per-

turbations ∆u1, ∆u2 on the two machines, obtaining an equivalent total perturbation
(∆u1 + ∆u2), whereas the contribution of the difference between ε1(s) and ε2(s) can even
(by hypothesis) be disregarded. Note that the coherency implies not only the equality of
the speeds, but also that the perturbations can be summed up, as specified above.

A comparison, for the different machines (i = 1, . . . , N), between the values of the accip-
iencies Aih and between the values of the excitances (A−1)hj /Mj , only for the dominant
modes (h = 1, . . . , q), can therefore give some plausible practical indications for the
choice of possible areas.

Therefore, the knowledge of the accipiencies and excitances may seem helpful not only for
the selection of the dominant oscillations (based on the product values (Aih(A

−1)hj /Mj)

for the different h’s, and on the perturbation size ∆uj ), but also for the identification of
possible areas (4).

It should also be remembered that:

• for h = N , the accipiencies are equal to each other, either do the excitances at a
good approximation level (see Equations [8.2.32′]);

(4) A particularly convenient graphic representation can be created by using geographical maps, one
for each oscillation, where the values of the accipiencies and excitances are indicated for the respec-
tive machines. This may possibly allow (qualitative) geographical interpretations of the oscillations
themselves, e.g., in terms of oscillations between areas, etc.
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• for h = 1, . . . , N − 1 (oscillatory modes), the excitances are often roughly propor-
tional to the accipiencies (see [8.2.37]);

so that the present considerations may be limited only to the knowledge of the accipien-
cies Aih for h = 1, . . . , N − 1.

Finally, by linearizing the (single area) “long-term” model defined by Equations [8.4.5],
it follows:



∆u1

...

∆uN


 =




K11 · · · K1(N−1) M1

· · · · · ·
· · · · · ·
· · · · · ·

KN1 · · · KN(N−1) MN







∆δ1N

...

∆δ(N−1)N

d∆Ωo

dt




from which, in particular:

d∆Ωo

dt
=

N∑
1

i γi∆ui

N∑
1

k γkMk

This is in full agreement with the equations of the mean motion (see the first of Equations
[8.2.25], and Equation [8.2.28′′]). Then, the simplified model defined by Equations [8.4.5]
satisfies, for small variations, the modal reduction criterion for the case q = 0. Conse-
quently, the mean motion is then exactly reproduced, as well as the mean variations of
the phase-shifts between the machines, etc.

8.5. EFFECT OF FEEDBACKS SENSITIVE
TO THE MOTION OF MACHINES

8.5.1. Effect of Speed Regulations

From the results reported in Section 8.2, we can understand the importance of
accounting for the speed regulations, at least for the behavior of the mean fre-
quency (in particular, Equations [8.2.42], [8.2.44], [8.2.45], and [8.2.45′] are not
practically acceptable).

To this aim it can be assumed, in terms of Laplace transforms:

∆ui(s) � ∆ûi(s) − Gfi(s)∆Ωi(s) (i = 1, . . . , N) [8.5.1]

where the last term considers the speed regulation of the single units; similarly
to Equations [8.2.24′′], [8.2.28′′], and the last of Equations [8.2.29], it can be
further assumed:
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(
∆û

M

)
o

� A1N

N∑
1

j (A
−1)Nj

∆ûj

Mj

=

N∑
1

j γj∆ûj

N∑
1

k γkMk

∆ûi(o) � ∆ûi − Mi

(
∆û

M

)
o

(i = 1, . . . , N)

From the equations in Section 8.2, it can be then derived, assuming zero initial
conditions for simplicity:

∆Ωio(s) =
N−1∑

1

h

s

s2 + ν2
h

Aih

N∑
1

j (A
−1)hj

(
∆ûj(o)(s)

Mj

− Gfj (s)

Mj

∆Ωjo(s)

)

−
[
N−1∑

1

h

s

s2 + ν2
h

Aih

N∑
1

j (A
−1)hj

Gfj (s)

Mj

]
∆Ωo(s) [8.5.2]

(i = 1, . . . , N ), and furthermore:

∆Ωo(s) = 1

s

((
∆û

M

)
o

−
(
Gf (s)

M

)
o

∆Ωo(s)

)

− 1

s
A1N

N∑
1

j (A
−1)Nj

Gfj (s)

Mj

∆Ωjo(s) [8.5.3]

with:

(
Gf (s)

M

)
o

� A1N

N∑
1

j (A
−1)Nj

Gfj (s)

Mj

=

N∑
1

j γjGfj (s)

N∑
1

kγkMk

The last terms in Equations [8.5.2] and [8.5.3] define the interactions between
the mean motion, and the machine motion relative to the mean motion itself.
However, the electromechanical oscillations usually have rather high frequen-
cies compared to the “low-pass” characteristics of the regulators. Therefore, it
can be generally assumed that the terms Gfj (s)∆Ωjo(s) give negligible con-
tributions, as if the regulators are sensitive only to the mean frequency, thus
approximating [8.5.1] by:

∆ui(s) ∼= ∆ûi(s) − Gf i(s)∆Ωo(s) (i = 1, . . . , N)
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Under such an approximation:

• The effect of ∆Ωo on the ∆Ωio’s remains evident in Equation [8.5.2]: i.e.,
the mean motion still influences the relative motion.

• Equation [8.5.3] becomes instead:

∆Ωo(s) ∼= 1

s

((
∆û

M

)
o

−
(
Gf (s)

M

)
o

∆Ωo(s)

)
[8.5.3′]

from which, independently of the relative motion:

∆Ωo(s) ∼=

(
∆û

M

)
o

s +
(
Gf (s)

M

)
o

or more explicitly:

∆Ωo(s) ∼=

N∑
1

j γj∆ûj (s)

N∑
1

kγk(sMk + Gfk(s))

which can be simplified according to the assumptions made in Chapter 3,
if γ1, . . . , γN are slightly different from each other.

The interaction between the mean motion and the relative motion results in, instead, a
total lack in the case (even not too far from the reality) of “similar” regulators, with:

Gf 1(s)

M1
= · · · = GfN(s)

MN

Remember in fact that
∑N

1 j (A
−1)hj = 0 (h = 1, . . . , N − 1),

∑N
1 j (A

−1)Nj∆Ωjo = 0, so
that the last terms in Equations [8.5.2] and [8.5.3] become both zero. Note in particular
that, under the present hypothesis, Equation [8.5.3′] holds without the approximation sign
and, inside it, it holds: (

Gf (s)

M

)
o

= Gf 1(s)

M1
= · · ·

The presence of the terms Gfj (s)∆Ωjo(s) in Equation [8.5.2] causes a
(usually modest) variation in the characteristic roots which correspond to the
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relative motion. According to Equation [A3.6.1] in Appendix 3, and in analogy
to Section 7.2.2a, it can be generally stated with a good approximation that,
because of the j -th regulator:

• the generic oscillation frequency νh undergoes a variation:

∼ −1

2
Ajh

(A−1)hj

Mj

Im(Gfj (̃ νh))

• the corresponding damping factor is no longer zero, and becomes:

ζh = ∆ζh ∼= 1

2νh
Ajh

(A−1)hj

Mj

Re(Gfj (̃ νh))

Therefore, it appears convenient that Re(Gfj (̃ νh)) > 0, at least for those units
which correspond to the largest values of accipiencies and excitances.

A more accurate analysis, based on better-approximated models, is instead
necessary in the case of very slow oscillations, such that they interact in a non-
negligible way with the frequency regulation, e.g., oscillations at a frequency
νh ∼= 0.6–1 rad/sec, which have been found in very large systems with a pre-
dominantly “longitudinal” structure.

8.5.2. Effect of Additional Signals in Excitation Controls

The connection with:

• large external areas, e.g., pertaining to different states, which were previ-
ously operated separately;

• new generating plants, located at very long distances, for the exploitation
of energy remote resources (particularly, hydraulic ones);

has led to the development of larger and larger systems which often have a
“longitudinal” and scarcely meshed structure and which are characterized by rel-
atively slow electromechanical oscillations, e.g., oscillations at frequencies νh in
the order of 1–3 rad/sec (which approximately correspond to 0.15–0.50 Hz, i.e.,
periods of 2–7 sec). Note that the extension itself of the system (not necessarily
the existence of “weak” links between the machines) can be sufficient cause for
the presence of slow oscillations.

For such low oscillation frequencies, according to Sections 7.2.1 and 7.2.2, it
is easy to recognize that:

• damper windings of the machines are practically inactive;
• voltage regulation may have destabilizing effects;
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• speed regulation has modest effects (apart from the case of even lower νh,
e.g., νh ∼= 0.85 rad/sec, with a stabilizing effect experimentally verified of
the thermal units’ regulation);

• therefore the most reliable stabilizing effect (although it may be modest) is
the one caused by the field windings,

so that, in all, such oscillations also may be unstable (negative damping); see for
example the experimental diagrams reported in Figure 8.12a.

The damping of such oscillations can be guaranteed in a relatively simple
and economic way by using “additional signals” in the excitation control of the
machines (or of some of them, properly chosen), similarly to what is described in
Section 7.2.2c; see for example the experimental results reported in Fig. 8.12b.

For an illustrative analysis, we can use the simplifications adopted in the
previous sections (machines, real and/or equivalent ones, characterized by suitable
emfs, etc.), assuming that the additional signals cause variations of the emf’s
magnitudes (∆ej ) depending on the respective speed variations (∆Ωj ). In such a
way, a dependence of the generated powers Pei on the ∆Ωj ’s (i, j = 1, . . . , N )
is defined, which must be considered into Equations [8.1.1] without any increase
in the dynamic order of the model.

For small variations, it is possible to derive (instead of Equations [8.2.1] and
[8.2.2], and not considering the speed regulators):

d∆Ωi

dt
= 1

Mi

(
∆wi −

N∑
1

jDij∆Ωj −
N∑
1

jKij∆δj

)

d∆δi
dt

= ∆Ωi




(i = 1, . . . , N)

[8.5.4]

Figure 8.12. Connection of the Yugoslavian network to the UCPTE (Western
Europe) network: (a) unsuccessful attempt because of unstable operation (June
19, 1973); (b) successful attempt because of the insertion of “additional signals”
at the Djerdap power station (April 19, 1974). P and Q are the active and reactive
powers recorded on the line Divača-Padriciano; Ω is the frequency measured on
that line in the case (a), and at Belgrad in case (b) (see reference 203).
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where:



∆wi � ∆ui +
N∑
1

j

(
∂Pei

∂ej

)o

∆ej = ∆Pmi − ∆PS
ei

Dij �
(
∂Pei

∂Ωj

)o

=
(
∂Pei

∂ej

)o
∆ej

∆Ωj

(“braking” coefficients)

Kij �
(
∂Pei

∂δj

)o

(“synchronizing” coefficients)

For a greater generality, the effect (on the ∆Pei’s) of possible variations ∆ej not
related to the speed variations, also can be accounted for in the ∆wi’s.

Equations [8.5.4] define a linear model of 2N dynamic order; from this, it is possi-
ble to derive, similar to what is illustrated in Section 8.2.1, models of the (2N − 1) or
(2N − 2) dynamic order, with state variables, respectively, ∆Ωi , ∆δkN or ∆ΩkN , ∆δkN
(i = 1, . . . , N ; k = 1, . . . , N − 1).
The relative motion of the machines 1, . . . , N − 1 with respect to the N-th machine, now
interacts with the motion of the N-th machine itself; however, if:

N∑
1

jD1j

M1
= · · · =

N∑
1

jDNj

MN

[8.5.5]

then the motion of the N-th machine no longer influences the relative motion, as in the
case of zero braking coefficients (see Fig. 8.3).

In matrix terms, the Equations [8.5.4] can be written as:

d∆Ω

dt
= −M−1D∆Ω − M−1K∆δ + M−1∆w

d∆δ

dt
= ∆Ω




[8.5.6]

in accordance to the block diagram of Figure 8.13, assuming that M � diag{Mi},
D � {Dij }, K � {Kij }(i, j = 1, . . . , N), and denoting by ∆Ω , ∆δ and ∆w the
column matrices constituted by ∆Ωi , ∆δi , and ∆wi(i = 1, . . . , N) respectively.

From these equations it can also be derived:

d2∆δ

dt2
= −M−1D

d∆δ

dt
− M−1K∆δ + M−1∆w

so that the 2N characteristic roots Λ1, . . . ,Λ2N of the system considered are
given by the solutions Λ of the equation:

0 = det(Λ2I(N) + ΛM−1D + M−1K) [8.5.7]
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Figure 8.13. Block diagram of the linearized system in the presence of “braking”
actions.

In particular, for braking coefficients of moderate value (and an obvious order-
ing of the indices), the first (2N − 2) characteristic roots are constituted by
(N − 1) pairs of complex conjugate values, generically of the type:

{
Λh

Λ(h+N−1)

}
=
(
−ζh ± ̃

√
1 − ζ 2

h

)
νh (h = 1, . . . , N − 1) [8.5.8]

with suitable ζh, νh, whereas Λ(2N−1) and Λ2N are real (and more precisely,
because of the singularity of K , it results Λ2N = 0).

Incidentally, if, in analogy to Equation [8.2.15]:

M−1D = A d A−1

with d diagonal matrix, from Equation [8.5.7] one can derive the N scalar equations:

0 = Λ2 + Λdh − Lh (h = 1, . . . , N)

from which, assuming Lh < −d2
h/4 for h = 1, . . . , N − 1:



ζh = dh

2
√−Lh

νh = √−Lh

whereas: {
Λ(2N−1) = −dN
Λ2N = 0

Under the adopted assumption, the oscillation frequencies νh are unchanged with respect
to the case of zero braking coefficients. Therefore, as braking coefficients vary, the corre-
sponding characteristic roots move in the complex plane along circles having their centers
at the origin and radius

√−Lh.

Furthermore, by recalling Equations [8.2.18], [8.2.19], and [8.2.20], it can be derived:
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N∑
1

jDkj

Mk

= dN ∀k = 1, . . . , N

so that Equations [8.5.5] are verified.

Now examine the effect of the braking coefficients on the characteristic roots,
assuming that these coefficients all have a small size.

To this aim, it is useful to indicate (recalling the block diagram in Fig. 8.13)
that the effect of the generic coefficient Dji corresponds to the feedback in
Figure 8.14, where, resulting from Equation [8.2.21] and subsequent equations:

Gij (s) �
(
∂Ωi

∂wj

(s)

)
D=0

=
N−1∑

1

h

s

s2 + νo2
h

Aih

(A−1)hj

Mj

+ 1

s
A1N

(A−1)Nj

Mj

with νoh �
√−Lh.

By applying what is reported in Appendix 3 (Equation [A3.6.1]), the following
“sensitivity coefficients” can be derived:

∂ζh

∂Dji

= Aih(A
−1)hj

2Mjν
o
h

∂νh

∂Dji

= 0




(h = 1, . . . , N − 1; j, i = 1, . . . , N) [8.5.9]

(where ζh and νh are generically defined by Equation [8.5.8]), and moreover:

∂Λ(2N−1)

∂Dji

= −A1N
(A−1)Nj

Mj

(j, i = 1, . . . , N) [8.5.10]

whereas it still holds, as already said, Λ2N = 0.
Because of Equations [8.5.9], the braking coefficients (of small size) introduce

a damping in the electromechanical oscillations, without practically altering their

Figure 8.14. Detail of the block diagram with the “braking” coefficient Dji

represented.
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frequency. For any given Dji , the effect on ζh can be considered proportional to
the product of the accipiency Aih and the excitance (A−1)hj /Mj .

Such a correlation with accipiencies and excitances seems very useful for the
synthesis of the feedbacks by additional signals, and for the choice of the machines
to which these feedbacks should be applied (so as to guarantee a sufficient damp-
ing for all the oscillations).

Moreover, the sensitivity coefficients [8.5.9] can be derived experimentally,
e.g., by the response of the original system (without additional signals) to a step
∆uj(t) = 1(t), as it simply results:

∆Ωi(t) =
N−1∑

1

h2
∂ζh

∂Dji

sin νoht + ∆Ωo(t)

(recall [8.2.43]). More generally, through Equation [8.2.22] it follows:

∂ζh/∂Dji

∂ζh/∂Djr

= Aih

Arh

= φ
(h)
Ωi

φ
(h)
Ωr

[8.5.11]

(h = 1, . . . , N − 1; j, i, r = 1, . . . , N ), so that the ratios, for any given j , between
the above-mentioned sensitivity coefficients can be deduced by experimentally
measuring the magnitudes (and the phases) of oscillation of the machines i, r ,
at any operating conditions. Similar considerations apply also in the presence of
one or more “infinite power” networks.

Finally, for Equation [8.5.10] it can be observed that the right-hand member
does not actually depend on i, so that it can be substituted by:

∂Λ(2N−1)

∂

(
N∑
1

kDjk

) = −A1N
(A−1)Nj

Mj

(j = 1, . . . , N) [8.5.10′]

Based on such equations, it can be stated that the braking coefficients move
the real root Λ(2N−1) from the origin. However, such a result has a modest
practical interest, if one considers that the additional signals act through proper
band-pass filters to reduce the consequent disturbances on the voltage regulations
(see Section 7.2.2), so that their low-frequency effects are disregarded.

If Equation [8.2.31] holds true (i.e., if in the matrix K the sum of the elements of each
column is equal to zero), the right-hand member in Equation [8.5.10′] is equal to −1/MT ,
independently of j , so that such equations can be substituted by a single one (which has
a scarce practical interest, as said), i.e.,

∂Λ(2N−1)

∂DT

= − 1

MT

[8.5.10′′]

with DT �
∑N

1 j

∑N
1 kDjk .
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Moreover, if the matrix K is symmetrical:

• Because of Equation [8.2.37] it can be derived:

∂ζh

∂Dji

= βh

2νoh
AihAjh

(in particular, then, the coefficients ∂ζh/∂Dii are nonnegative).

• It generically results:

∂ζh

∂Dir

= ∂ζh

∂Dri

=
∂ζh

∂Dji

∂ζh

∂Djr

∂ζh

∂Djj

so that, if ∂ζh/∂Dj1, . . . , ∂ζh/∂DjN have been (experimentally) identified by a single
test at known ∆uj , it is possible to derive all the other sensitivity coefficients.

• Equation [8.5.11] can be generalized into:

∂ζh/∂Dji

∂ζh/∂Dkr

= φ
(h)
Ωj
φ
(h)
Ωi

φ
(h)
Ωk
φ
(h)
Ωr

(h = 1, . . . , N − 1; j, i, k, r = 1, . . . , N), from which in particular:

∂ζh/∂Dii

∂ζh/∂Drr

=
(
φ
(h)
Ωi

φ
(h)
Ωr

)2

equal to the square of the ratio between the oscillation magnitudes of the machines
i, r , under any operating conditions. This last equation is particularly indicative
for the choice of the machines to which the additional signals should be applied, as
usually each ei has more influence on the respective Pei than on the Pej ’s of the other
machines, and therefore the matrix D can be considered a dominant diagonal matrix.

For a better evaluation of the functions φ
(h)
Ωi

(for any given h), it is suitable
that the oscillation magnitudes are not too small.

To this aim, because of Equation [8.2.22] it appears convenient to perturb the
machines j in correspondence to which the excitance (A−1)hj /Mj — or equiva-
lently the accipiency Ajh, within the approximation limits of Equation [8.2.37] —
assumes the largest (absolute) values.

As the accipiencies are (for varying index j ) proportional to the respective
φ
(h)
Ωj

’s, i.e., to the oscillation magnitudes, the machines to which perturbations
should be applied are those which largely oscillate. Therefore, to identify such
machines it is possible to use experimental estimations under normal operating
conditions.
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Generally, if variations ∆Kji also are considered (because of network parameter variations
etc., or to additional signals sensitive to the positions δi , in which case the matching of
Equation [8.2.3] may even fail), it can be derived:




∂ζh

∂Dji

= ∂νh

∂Kji

= Aih(A
−1)hj

2Mjν
o
h

∂νh

∂Dji

= ∂ζh

∂Kji

= 0

∂Λ(2N−1)

∂Dji

= ∂(Λ(2N−1))
2

∂Kji

= ∂(Λ2N)
2

∂Kji

= −A1N
(A−1)Nj

Mj

from which it results that (small) variations of the synchronizing coefficients can mod-
ify the oscillation frequencies (without practically introducing any damping), and move
from the origin both the real roots Λ(2N−1) and Λ2N (provided that Equation [8.2.3] does
not hold).

If in the original system D �= 0, the expressions of the sensitivity coefficients (obviously
more complicated) can be deduced similarly.

In any case, the knowledge of the sensitivity coefficients may be useful also for identi-
fying corrections ∆Dji and ∆Kji to be applied to the model parameters , starting from
(small) deviations between the characteristic roots experimentally obtained and those
originally assumed.

Before concluding, the following should be indicated.

• Despite different approximations, the analysis reported here proved par-
ticularly useful in practical cases (large systems, with very small or even
negative damping), at least for a first-attempt selection of the machines to
which the additional signals should be applied.

• For a better approximation, the response delays of the voltage regulation
loops, etc. also should be considered, e.g., by replacing the braking coef-
ficients with proper transfer functions Dji(s). In practice, the existence of
such delays may suggest the implementation of additional signals sensi-
tive also to the delivered active powers, similarly to what is illustrated in
Section 7.2.2c.

• In general, and beyond any model approximation, it is important to remem-
ber (see Appendix 3) that the characteristic root variations, as a consequence
of a given feedback with a moderate gain, can be estimated based on the
respective open-loop “residuals,” which also can be determined experimen-
tally, at least in principle. Therefore, to estimate the effects obtainable by a
feedback sensitive to the speed Ωi (or to the power Pei) of a given unit, and
acting on the set point of the respective voltage regulator, it is important to
know the response of Ωi (or of Pei) to perturbations on this set-point; and
so on, for any possible pair of input and output variables of the original
system.
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Among the works of more general interest, the following are mentioned: 19, 37, 142, 238.
More particularly, for what concerns

• the modal analysis: 102 (including the definition of the mean motion), 183, 198, 202;

• the stability of the relative motion: 27, 52, 56, 61, 69, 80, 93, 105, 108, 117, 118,
119, 127 (with the example of a complete analysis, reported in the text), 134, 140,
145, 171 (with a rich bibliography), 270, 273, 336;

• the simplification of the overall model: 28, 122, 124, 144, 155, 156, 158, 170, 172,
175, 176, 180, 206, 221, 233, 241 (with a rich bibliography), 251, 256, 258, 272,
277, 290, 291, 301, 309, 310, 316, 317, 327 (with a rich bibliography);

• the effect of feedbacks sensitive to the motion of machines: 51, 95, 113, 146, 181,
183, 191, 192, 201, 202, 203, 214, 215, 216, 254.



APPENDIX 1

TRANSFORMATION TO SYMMETRICAL
COMPONENTS

For any given frequency ν, a sinusoidal variable:

w(t) = WM cos(νt + ϕw)

can be represented by a “phasor” of the type:

w̃ � Wε̃ϕw [A1.1]

where:

W � WM/
√

2 is the rms value of w(t),
̃ is the imaginary unit in the “phasor plane”;

with obvious notation it conversely results:

w(t) = √
2Re(w̃ε̃νt ) [A1.2]

It then holds, with α1 and α2 arbitrary constants:

[A1.3]

and moreover: ˜(dw

dt

)
= ̃ νw̃ [A1.4]

676
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In the case of a linear and stationary (continuous-time) system, operating at a sinusoidal
regime at frequency ν, the relationships among the different phasors can be then directly
deduced from the differential equations of the system, by substituting:

• the single variables (or their Laplace transforms) with their respective phasors;
• the operator p = d/dt (or the Laplace variable s, in the transfer functions) by the

multiplication factor ̃ ν.

In the case of three-phase electrical systems it is possible to define, for any
given point, a set of phase voltages and a set of phase currents, with indices a,
b, c (according to a predetermined order).

Under the (ideal ) equilibrium steady-state at frequency ω, such sets constitute
positive sequence sinusoidal sets at frequency ω, generically of the type:

wa(t) = WM(1) cos(ωt + α(1))

wb(t) = WM(1) cos(ωt + α(1) − 120◦
)

wc(t) = WM(1) cos(ωt + α(1) − 240◦
)


 [A1.5]

Because of [A1.1], the phase variable wa(t) is defined, for the given frequency
ω, by the following phasor:

w̃a � W(1)ε
̃α(1)

where W(1) � WM(1)/
√

2, whereas it can be similarly derived:

w̃b = w̃aε
−̃120◦

w̃c = w̃aε
−̃240◦

Under the mentioned conditions, the entire set is then defined by w̃a , or equiv-
alently by the phasor:

w̃(1) �
√

3w̃a [A1.6]

named “symmetrical component of the positive sequence;” it also results:

w̃(1) = 1√
3
(w̃a + w̃bε

−̃240◦ + w̃cε
−̃120◦

) [A1.6′]

and furthermore, accounting for the previous expressions:

w̃(1) = √
3W(1)ε

̃α(1) =
√

3
2WM(1)ε

̃α(1) [A1.7]

The inverse transformation is then defined by:

w̃a = 1√
3
w̃(1)

w̃b = 1√
3
w̃(1)ε

−̃120◦

w̃c = 1√
3
w̃(1)ε

−̃240◦




[A1.8]
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whereas: 


wa(t) = √
2Re(w̃aε̃ωt ) =

√
2
3 Re(w̃(1)ε̃ωt )

wb(t) = √
2Re(w̃bε̃ωt ) =

√
2
3 Re(w̃(1)ε̃ (ωt−120◦

))

wc(t) = √
2Re(w̃cε̃ωt ) =

√
2
3 Re(w̃(1)ε̃ (ωt−240◦

))

The choice of the coefficient
√

3 in the Equation [A1.6], or equivalently of the coefficient
1/

√
3 in [A1.6′], appears suitable as it allows to obtain, for the voltages va , vb, vc and

the currents ia , ib, ic at a given point (indicating by ı̃∗(1) the conjugate of ı̃(1)):

ṽ(1)ı̃
∗
(1) = 3ṽa ı̃

∗
a = ṽa ı̃

∗
a + ṽbı̃

∗
b + ṽc ı̃

∗
c = P + ̃Q [A1.9]

with P and Q the corresponding active and reactive powers.

In general, under sinusoidal steady-state conditions at frequency ω, each set
of phase variables may include components of the positive, negative, and zero
sequence. More precisely, it can be recognized that a generic sinusoidal set,
corresponding to the phasors w̃a , w̃b, and w̃c, can be written in the form:

wa(t) = WM(0) cos(ωt + α(0))+WM(1) cos(ωt + α(1))

+WM(2) cos(ωt + α(2))

wb(t) = WM(0) cos(ωt + α(0))+WM(1) cos(ωt + α(1) − 120◦
)

+WM(2) cos(ωt + α(2) − 240◦
)

wc(t) = WM(0) cos(ωt + α(0))+WM(1) cos(ωt + α(1) − 240◦
)

+WM(2) cos(ωt + α(2) − 120◦
)




[A1.10]

By such positions it in fact follows:



w̃a = W(0)ε

̃α(0) +W(1)ε
̃α(1) +W(2)ε

̃α(2)

w̃b = W(0)ε
̃α(0) +W(1)ε

̃ (α(1)−120◦
) +W(2)ε

̃ (α(2)−240◦
)

w̃c = W(0)ε
̃α(0) +W(1)ε

̃ (α(1)−240◦
) +W(2)ε

̃ (α(2)−120◦
)

with W(0) � WM(0)/
√

2, W(1) � WM(1)/
√

2, W(2) � WM(2)/
√

2, so that WM(0),
α(0), WM(1), α(1), WM(2), α(2) can be derived starting from w̃a , w̃b, and w̃c.

The entire set can be then defined by the phasors:

w̃(0) � 1√
3
(w̃a + w̃b + w̃c)

w̃(1) � 1√
3
(w̃a + w̃bε

−̃240◦ + w̃cε
−̃120◦

)

w̃(2) � 1√
3
(w̃a + w̃bε

−̃120◦ + w̃cε
−̃240◦

)




[A1.11]

which constitute the so-called “symmetrical components,” respectively of the
zero, positive, and negative sequence; accounting for the previous expressions it
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can be furthermore derived, similarly to Equation [A1.7]:

w̃(0) = √
3W(0)ε

̃α(0) =
√

3
2WM(0)ε

̃α(0)

w̃(1) = √
3W(1)ε

̃α(1) =
√

3
2WM(1)ε

̃α(1)

w̃(2) = √
3W(2)ε

̃α(2) =
√

3
2WM(2)ε

̃α(2)




[A1.12]

Finally, the inverse transformation is given by:

w̃a = 1√
3
(w̃(0) + w̃(1) + w̃(2))

w̃b = 1√
3
(w̃(0) + w̃(1)ε

−̃120◦ + w̃(2)ε
−̃240◦

)

w̃c = 1√
3
(w̃(0) + w̃(1)ε

−̃240◦ + w̃(2)ε
−̃120◦

)




[A1.13]

which generalize Equations [A1.8], whereas:

wa(t) = √
2Re(w̃aε̃ωt ) =

√
2
3 Re[(w̃(0) + w̃(1) + w̃(2))ε

̃ωt ]

wb(t) = √
2Re(w̃bε̃ωt ) =

√
2
3 Re[(w̃(0) + w̃(1)ε

−̃120◦ + w̃(2)ε
−̃240◦

)ε̃ωt ]

wc(t) = √
2Re(w̃cε̃ωt ) =

√
2
3 Re[(w̃(0) + w̃(1)ε

−̃240◦ + w̃(2)ε
−̃120◦

)ε̃ωt ]




[A1.14]

The second of Equations [A1.11] coincides with Equation [A1.6′]. Similar to what was
noted above, the choice of the coefficient 1/

√
3 in [A1.11] allows to obtain, for the

voltages va , vb, vc and the currents ia , ib, ic at a given point:

ṽ(0)ı̃
∗
(0) + ṽ(1)ı̃

∗
(1) + ṽ(2)ı̃

∗
(2) = ṽa ı̃

∗
a + ṽbı̃

∗
b + ṽc ı̃

∗
c = P + ̃Q [A1.15]

with P and Q the corresponding active and reactive powers. This last relationship, clearly,
generalizes Equation [A1.9]. In the presence of zero sequence currents, it may be intended
that the return of the total current (ia + ib + ic) is through an “earth” circuit, and that the
voltages va , vb, vc are evaluated with respect to earth.

ANNOTATED REFERENCES

The following references are particularly indicated: 11, 33.



APPENDIX 2

PARK’S TRANSFORMATION

In a three-phase electrical system at any possible operating condition (even under
transient conditions), to the generic set of phase variables wa , wb, wc it is possible
to associate the following “Park’s variables”:

wdr � Kdq(wa cos θr + wb cos θ ′
r +wc cos θ ′′

r )

wqr � −Kdq(wa sin θr + wb sin θ ′
r + wc sin θ ′′

r )

wo � Ko(wa + wb + wc)


 [A2.1]

where:

Kdq and Ko are arbitrary constants(1);
θr is the “reference angular position”;

whereas it is intended, for brevity:

θ ′
r � θr − 120◦

, θ ′′
r � θr − 240◦

The variables wdr and wqr also can be interpreted as the components of the
“Park’s vector”:

wr � wdr + jwqr = Kdq(wa + wbεj120◦ +wcεj240◦
)ε−jθr [A2.1′]

(1) In the text chapters it is intended Kdq = √
2/3, Ko = 1/

√
3 (see Equations [A2.4]).

680
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where j is the imaginary unit in the plane of the Park’s vectors (which must not
be confused with the analog unit ̃ , relative to the phasors), whereas the variable
wo constitutes the “homopolar” (Park’s) variable.

In the symbol of the Park’s vector and of its components, the subscript “r” is
indicative of the dependence on the reference θr ; the homopolar variable instead
is independent of this reference.

Observe that:

• since 1 + εj120◦ + εj240◦ = 0, the Park’s vector wr depends (apart from θr ) only
on the differences between wa , wb, wc; in particular, having set wab � wa − wb,
etc., it follows:

wrε
jθr = Kdq(wa + wbεj120◦ + wcεj240◦

)

=




ε−j30◦

√
3
Kdq(wab + wbcεj120◦ +wcaεj240◦

)

ε+j30◦

√
3
Kdq(wac + wbaεj120◦ + wcbεj240◦

)




= Kdq(wabε−j60◦ + wacε+j60◦
)

• the homopolar variable wo depends instead only on the sum (wa + wb + wc).

Finally, the inverse transformation (from the Park’s variables to the phase
variables) is given by:

wa = wo

3Ko
+ 2

3Kdq
(wdr cos θr −wqr sin θr) = wo

3Ko
+ 2

3Kdq
Re(wrεjθr )

wb = wo

3Ko
+ 2

3Kdq
(wdr cos θ ′

r −wqr sin θ ′
r ) = wo

3Ko
+ 2

3Kdq
Re(wrεjθ

′
r )

wc = wo

3Ko
+ 2

3Kdq
(wdr cos θ ′′

r − wqr sin θ ′′
r ) = wo

3Ko
+ 2

3Kdq
Re(wrεjθ

′′
r )




[A2.2]

The principal properties of the Park’s transformation, defined by Equations
[A2.1], are as follows:

(1) If, with α1 and α2 arbitrary constants:



wa = α1wa1 + α2wa2

wb = α1wb1 + α2wb2

wc = α1wc1 + α2wc2
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then:


wdr = α1wdr1 + α2wdr2

wqr = α1wqr1 + α2wqr2

}
wr = α1wr1 + α2wr2

wo = α1wo1 + α2wo2

(2) If wa1, wb1, wc1 and wa2, wb2, wc2 are two generic sets of phase vari-
ables, it results:

wa1wa2 + wb1wb2 + wc1wc2 = wo1wo2

3K2
o

+ wdr1wdr2 + wqr1wqr2
3
2K

2
dq

= wo1wo2

3K2
o

+ 〈wr1, wr2〉
3
2K

2
dq

[A2.3]

where 〈wr1, wr2〉 = Re(wr1w
∗
r2) represents the scalar product of wr1 and

wr2 (in such a product, the dependence on the reference θr vanishes).

Therefore, if it is assumed: 

Kdq =

√
2
3

Ko = 1√
3

[A2.4]

it follows in a simpler way:

wa1wa2 + wb1wb2 + wc1wc2 = wo1wo2 + wdr1wdr2 + wqr1wqr2
= wo1wo2 + 〈wr1, wr2〉 [A2.3′]

which may be more convenient to have an energy equivalence between the phase
variable system and the Park’s variable system, if the terms that appear in Equation
[A2.3′] have the dimension of an energy or of a power (e.g., if the two sets, respec-
tively, correspond to the voltages and the currents at a given point of the system, so
that the left-hand member in Equation [A2.3′] represents the instantaneous active
power).

(3) Applying Equations [A2.1] to the set dwa/dt , dwb/dt , dwc/dt , and denot-
ing p � d/dt , Ωr � dθr/dt , it can be derived:

(
dw

dt

)
dr

= dwdr
dt

−Ωrwqr
(

dw

dt

)
qr

= dwqr
dt

+Ωrwdr



(

dw

dt

)
r

= (p + jΩr)wr

(
dw

dt

)
o

= dwo
dt




[A2.5]
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In fact it results, because of Equations [A2.1]:

dwdr
dt

= Kdq
(

dwa
dt

cos θr + dwb
dt

cos θ ′
r + dwc

dt
cos θ ′′

r

)

−Kdq(wa sin θr +wb sin θ ′
r + wc sin θ ′′

r )
dθr
dt

=
(

dw

dt

)
dr

+wqrΩr

and similarly dwqr/dt = (dw/dt)qr−wdrΩr , whereas dwo/dt = (dw/dt)o.
By a similar procedure, it is possible to derive the Park’s variables

corresponding to the derivatives (of phase variables) of higher order. More
precisely, it can be obtained:

(
d2w

dt2

)
r

= d2wr

dt2
+ 2jΩr

dwr
dt

+ j dΩr
dt
wr −Ω2

r wr

= (p + jΩr)[(p + jΩr)wr ](
d2w

dt2

)
o

= p2wo




in the former of which it must be intended that the operator p = d/dt out
of the square brackets is applied also to the Ωr included within bracket.
By so intending it can be finally obtained, more in general (k = 2, 3, . . .):

(
dkw

dtk

)
r

= (p + jΩr){(p + jΩr)[. . . (p + jΩr)︸ ︷︷ ︸
k

wr ]}
(

dkw

dtk

)
o

= pkwo




[A2.6]

A significant simplification results when Ωr = constant , in which case Equations
[A2.6] are reduced to:

(
dkw

dt k

)
r

= (p + jΩr)kwr
(

dkw

dt k

)
o

= pkwo




[A2.6′]

i.e., the application of the operator p to the phase variables becomes the applica-
tion of the operator (p + jΩr ) to the Park’s vectors, and of the operator p to the
homopolar variables.

(4) If we move from the reference θr to the reference θs , it follows:

wds = wdr cos(θr − θs)− wqr sin(θr − θs)
wqs = wdr sin(θr − θs)+wqr cos(θr − θs)

}
ws = wrεj (θr−θs ) [A2.7]
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whereas the homopolar variable remains, as stated, unchanged. In fact, as a
result of Equation [A2.1′], the vector wrεjθr is independent of the angular
reference of the transformation. Note that |ws | = |wr |, independent of this
reference.

Under sinusoidal steady-state conditions (of the phase variables) at frequency
ω, by recalling Equations [A1.10] it can be derived:

wdr = 3
2Kdq(WM(1) cos(ωt + α(1) − θr)+WM(2) cos(ωt + α(2) + θr))

wqr = 3
2Kdq(WM(1) sin(ωt + α(1) − θr)−WM(2) sin(ωt + α(2) + θr))

wo = 3KoWM(0) cos(ωt + α(0))



[A2.8]

and therefore:

• the positive- and negative-sequence components (with their magnitudes and
phases) influence only the Park’s vector (with its components wdr and wqr );

• the zero-sequence component (with its magnitude and phase) influences
only the homopolar component wo.

Similarly to the symmetrical components (phasors) in Equations [A1.12] (but
obviously with a different meaning), it also is possible to define the following
constant vectors:

w(0) �
√

3
2WM(0)ε

jα(0)

w(1) �
√

3
2WM(1)ε

jα(1)

w(2) �
√

3
2WM(2)ε

jα(2)




[A2.9]

It then follows, because of Equations [A2.8]:

wr =
√

3
2Kdq(w(1)ε

j (ωt−θr ) +w∗
(2)ε

−j (ωt+θr ))

wo = √
6KoRe(w(0)εjωt )


 [A2.10]

where the first equation simplifies to:

wr =
√

3
2Kdq(w(1) + w∗

(2)ε
−2jωt ) [A2.10′]

if it is assumed θr = ωt (it furthermore results
√

3/2Kdq = 1,
√

6Ko = √
2, if

[A2.4] are adopted).
In analogy to Equations [A1.14], the following expressions then hold:

wa(t) =
√

2
3 Re[(w(0) +w(1) + w(2))εjωt ]

wb(t) =
√

2
3 Re[(w(0) +w(1)ε−j120◦ +w(2)ε−j240◦

)εjωt ]

wc(t) =
√

2
3 Re[(w(0) +w(1)ε−j240◦ + w(2)ε−j120◦

)εjωt ]




[A2.11]
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whereas Equation [A1.15], for the voltages va , vb, vc and the currents ia , ib, ic
at a given point, with the already specified notation, translates into:

v(0)ı
∗
(0) + v(1)ı∗(1) + v(2)ı∗(2) = P + jQ [A2.12]

By putting into evidence, in wr , the separate effects of the positive and of the negative
sequences, the first of Equations [A2.10] also can be written as:

wr = wr1 + wr2

with: 

wr1 �

√
3
2Kdqw(1)ε

j (ωt−θr )

wr2 �
√

3
2Kdqw

∗
(2)ε

−j (ωt+θr )

It can then be derived, with Ωr � dθr/dt :




dwr1
dt

= j (ω −Ωr)wr1
dwr2

dt
= −j (ω +Ωr)wr2

and thus:

dwr
dt

= jω(wr1 − wr2)− jΩr(wr1 + wr2) = jω(wr1 − wr2)− jΩrwr

from which, recalling Equations [A2.5]:

(
dw

dt

)
r

= (p + jΩr)wr = jω(wr1 − wr2)

In particular, if the negative sequence is absent, this last equation becomes:

(
dw

dt

)
r

= (p + jΩr)wr = jωwr

and this means that, for a sinusoidal steady-state of the positive sequence at frequency ω:

• it has to be intended, for what concerns the Park’s vectors:

p = j (ω −Ωr)

(p = 0 if it is assumed Ωr = ω);



686 APPENDIX 2 PARK’S TRANSFORMATION

• the generic ratio (dw/dt)r/wr (between the vectors corresponding to the derivatives
of a set, and to the set itself) is equal to jω independently of the reference θr .

Note furthermore that, if the (phase) voltages and currents at a given point are only of
the positive sequence, it results, recalling Equation [A2.12]:

vr ı
∗
r = 3

2K
2
dqv(1)ı

∗
(1) = 3

2K
2
dq(P + jQ)

whereas, if the above-mentioned voltages and currents are only of the negative sequence,
it instead holds:

vr ı
∗
r = 3

2K
2
dqv

∗
(2)ı(2) = 3

2K
2
dq(P − jQ)

Therefore, the product vr ı
∗
r does not allow, in general, deduction of the reactive power

Q. Recall instead that, by Equation [A2.3], it is:

P = voio

3K2
o

+ 〈vr , ı∗r 〉
3
2K

2
dq

= voio

3K2
o

+ Re(vr ı
∗
r )

3
2K

2
dq

for any possible operating condition, even under transient conditions.

The variations in the magnitude and phase of the generic Park’s vector can be
evaluated on the basis of the identity:

dwr
wr

= d|wr |
wr

+ j d� wr

where the left-hand term is, because of Equation [A2.1′], equal to:

dwr
wr

= d(wa + wbεj120◦ + wcεj240◦
)

wa +wbεj120◦ + wcεj240◦ − j dθr

Intending wab � wa −wb, etc., it is then possible to derive:



d|wr |
|wr | = Re

(
dwr
wr

)
= (wab+wac) dwa + (wbc+wba) dwb + (wca+wcb) dwc

w2
ab + w2

bc + w2
ca

=
(
wab − wac

2

)
dwab +

(
wac − wab

2

)
dwac

w2
ab +w2

ac − wabwac
d� wr = Im

(
dwr
wr

)
= √

3
wcb dwa + wac dwb +wba dwc

w2
ab +w2

bc +w2
ca

− dθr

=
√

3

2

−wac dwab +wab dwac
w2
ab + w2

ac −wabwac − dθr

(where |wr | = (Kdq/
√

2)
√
w2
ab +w2

bc + w2
ca = Kdq

√
w2
ab +w2

ac − wabwac).
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At equilibrium steady-state (wa ,wb,wc sinusoidal at frequencyω, and only of the
positive sequence), having set wa = WM(1) cos(ωt + α(1)) etc., it can be derived:

{
d|wr | = 0
d� wr = (ω −Ωr) dt

with Ωr � dθr/dt , so that:

• the magnitude of wr remains constant;
• the phase of wr varies with a derivative (ω −Ωr ) (which is zero if Ωr = ω).

Based on this last result, it can be intended that the “frequency” associated
to the set wa , wb, wc is given — at any possible operating condition, even under
transient conditions — by:

ω(w) � d� wr
dt

+Ωr = √
3
wcb

dwa
dt

+ wac dwb
dt

+ wba dwc
dt

w2
ab + w2

bc +w2
ca

=
√

3

2

−wac dwab
dt

+ wab dwac
dt

w2
ab +w2

ac − wabwac [A2.13]

ANNOTATED REFERENCES

The following references are particularly indicated: 11, 33, 65, 99.



APPENDIX 3

ELEMENTARY OUTLINE OF THE
AUTOMATIC CONTROL THEORY

A3.1. PRELIMINARIES

Consider the (dynamic, continuous-time) system represented by the n-th order
differential equation:

an
dny

dtn
+ · · · + a1

dy

dt
+ a0y = bn

dnu

dtn
+ · · · + b1

du

dt
+ b0u [A3.1.1]

where u = u(t) and y = y(t), respectively, constitute the input and the output of
the system, and an �= 0(1).

Further assume, for simplicity, that the coefficients an, . . . , a0, bn, . . . , b0:

• do not depend on u, y (or on their derivatives): the system is then linear ;

• do not depend on t : the system is then stationary.

The value of n constitutes the dynamic order of the system.
The solution y(t) is the sum of two contributions:

• the “free” response resulting from the initial conditions;

• the “forced” response resulting from the input function u(t).

(1) On the contrary, the maximum derivative order at the right-hand side (i.e., related to the input
function u(t)) can be n′ < n, if bn = · · · = b(n′+1) = 0.
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More precisely, by applying the Laplace transformation and intending Y (s) �
L{y(t)}, U(s) � L{u(t)}, it is possible to derive:

Y (s) = · · ·
A(s)

+ B(s)

A(s)
U(s) [A3.1.2]

where the dotted term depends only on the initial conditions, whereas:

{
A(s) � ans

n + · · · + a1s + a0

B(s) � bns
n + · · · + b1s + b0

Therefore, the free response and the forced response can be derived respec-
tively by inverse-transforming the two terms at the right-hand side in Equation
[A3.1.2]. The function:

G(s) � B(s)

A(s)

which defines the dependence of the forced response on the input, is called
“transfer” function of the system. The knowledge of G(s) is sufficient to return
to the original Equation [A3.1.1] (and thus to perform analyses also of the free
response), if and only if there are no cancellations of common factors in B(s)
and A(s).

Under the mentioned conditions, the generic (linear and stationary) single-input and single-
output system also can be represented by equations:

dx

dt
= Ax + Bu

y = Cx + Du


 [A3.1.3]

(equations in “normal” form), where:

• x is a column matrix (n, 1), called “state” of the system(2);

• A, B, C are suitable constant matrices (respectively (n, n), (n, 1), (1, n) dimen-
sional);

• D is scalar, and equal to D = bn/an.

(2) The elements of x constitute the so-called “state variables,” which are n. The first of Equations
[A3.1.3] is equivalent to n first-order differential equations in such variables, whereas the latter
equation is purely algebraic. For any given nonimpulsive function u(t):

• the solution x(t) is continuous, whereas y(t) is nonimpulsive (and continuous, if bn = 0);

• to deduce such solutions, it is necessary and sufficient to know the initial state.
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From such equations, one can derive the transfer function in the following form:

G(s) = C(sI(n) − A)−1B + D [A3.1.4]

and similarly, as said, a single (n-th order) equation, of the type [A3.1.1]. However, if the
system has cancellations in G(s), the representation by Equations [A3.1.3] is exhaustive,
whereas [A3.1.1] may even correspond to different systems(3).

A3.2. STABILITY AND RESPONSE MODES

The free response is said to be “stable” if and only if, whichever be the set of
initial conditions, it is limited (it is still assumed, here and in the following, that
the system is linear and stationary). Particularly, the free response is said to be
“asymptotically stable” if, furthermore, it tends to zero for t → ∞ (otherwise, it
is said to be “weakly stable”).

To evaluate the stability properties (of the free response, or “of the system”
as it is commonly said), consider the characteristic equation:

0 = A(s)

the n solutions of which are the characteristic roots of the system. Alterna-
tively, with reference to the Equations [A3.1.3], the characteristic equation can
be written as:

0 = det(sI(n) − A)

so that the characteristic roots are given by the eigenvalues of the matrix A.
There is stability if and only if the characteristic roots have no positive real

part, and those (possible) with a null real part are simple roots. Particularly, the
stability is asymptotic if and only if all the characteristic roots have a negative
real part(4).

To check the asymptotic stability without computing the characteristic roots,
it is possible to apply the Routh-Hurwitz criterion, for which it is necessary and
sufficient that:

• all the (n + 1) coefficients an, . . . , a1, a0 have the same sign;

(3) In general, a (linear and stationary) system with m inputs and q outputs can be represented by
Equations [A3.1.3], intending that u and y are column matrices (respectively (m, 1) and (q, 1)), and
that A, B, C, D are proper constant matrices (respectively (n, n), (n,m), (q, n), (q,m)). In such a
case, the dependence of the forced response on the input is defined by a “transfer” matrix (q,m),
again expressed by Equation [A3.1.4].
(4) The present condition (of asymptotic stability) is the usually desired one, also because it guarantees
that the forced response is limited, when any possible limited input function is applied.
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and moreover:

• in the “Routh-Hurwitz table” (defined here below), all the (n + 1) elements
an, a(n−1), α1, β1, . . . of the first column have the same sign.

The Routh-Hurwitz table is defined as follows:

an a(n−2) a(n−4) a(n−6) · · ·
a(n−1) a(n−3) a(n−5) · · ·
α1 α2 α3 · · ·
β1 β2 · · ·
...

...

where:

• the first two rows are given by the coefficients of the polynomial A(s), according to
above;

• the third row is given by:




α1 = a(n−1)a(n−2) − ana(n−3)

a(n−1)

· · ·
αk = a(n−1)a(n−2k) − ana(n−2k−1)

a(n−1)

· · ·

(obviously intending ai = 0 for i < 0), up to a total number of elements equal to
that of the first row, less one;

• each one of the next rows is similarly derived, starting from the elements of the two
preceding rows (β1 = (α1a(n−3) − a(n−1)α2)/α1, etc.); in such a way a pseudotrian-
gular table is obtained, having (n + 1) significant rows (the last of which contains
only one element).

In general, the characteristic roots define (further than the stability properties)
the response “modes” of the system.

In particular:

• a real (nonnull) characteristic root defines an aperiodic mode, and, in A(s),
a factor of the following type can be associated to it:

(1 + sT ) [A3.2.1]

where T is called “time constant”;
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• a pair of complex conjugate characteristic roots defines an oscillatory mode,
and, in A(s), a factor of the following type can be associated to it:

(
1 + 2ζ

s

νo
+ s2

ν2
o

)
[A3.2.2]

(with |ζ | < 1, νo > 0), where νo and ζ are, respectively, called “resonance
frequency” and “damping factor.”

For such cases, the condition of asymptotic stability implies, respectively, that
T > 0 and ζ > 0; if, on the contrary, it were T < 0 or ζ < 0, there would be,
respectively, an instability of the “aperiodic” or of the “oscillatory” type.

By a similar formalism, and accounting for possible null roots, the generic
transfer function can be posed in the form:

G(s) = K

sh

n(s)

d(s)
[A3.2.3]

with h integer, whereas n(s) and d(s) are products of factors of the type [A3.2.1]
and/or [A3.2.2] (with n(0) = d(0) = 1), and K is a suitable constant. In particu-
lar, the value G(0) is called “static gain” (G(0) = K if h = 0, i.e., if G(s) has
no null zeros nor poles; G(0) = 0,∞ if h ≶ 0, respectively).

Furthermore, the function G(s) is said to be a “minimum-phase” function if,
and only if, in Equation [A3.2.3], the gain K , all the time constants and all the
damping factors (both in n(s) and d(s)) are positive.

A3.3. FREQUENCY RESPONSE

Now assume that the (linear and stationary) system is asymptotically stable, so
that its free response tends to zero for t → ∞. Then, in Equation [A3.2.3] it is
h ≤ 0, and all the factors in d(s) correspond to positive time constants and/or
damping factors.

The response to a sinusoid u(t) = UM sin(νt + ϕu), tends, for long times,
to a sinusoidal steady-state (or stationary) component, itself at the frequency
ν, equal to:

YM sin(νt + ϕy)

with, YM = |G(̃ν)|UM , ϕy = ϕu + � G(̃ν)(5). In terms of phasors, the ratio
between the output and the input results therefore given by the complex quantity

(5) Similarly, the response to a step with amplitude U tends, for t → ∞, to a constant stationary
component, equal to G(0)U . Moreover, y undergoes, for t = 0, a discontinuous variation equal to
G(∞)U .
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Figure A.1. Nyquist diagram.

G(̃ν), which defines, for varying ν, the so-called frequency response properties
of the system.

The most used diagrams for representing the dependence of G(̃ν) on the
frequency ν are of the following two types:

• the Nyquist diagram (or polar diagram): it is constituted by the line, in the
complex plane, described by G(̃ν) for varying ν (Fig. A.1);

• the Bode diagrams (or “logarithmic” diagrams): these are two diagrams that
represent, respectively, the magnitude and the phase of G(̃ν) for varying ν;
in them, |G(̃ν)| and ν are reported in a logarithmic scale, whereas � G(̃ν)

is reported in a linear scale (Fig. A.2).

If G(s) is known in the form [A3.2.3], the Bode diagrams can be easily
traced: in fact, by the above-mentioned choice of the scales, such diagrams are
the graphic sum and/or difference of (well-known) elementary diagrams, corre-
sponding to functions of the type K , s, (1 + sT ), (1 + 2ζ s/νo + s2/ν2

o ).
Furthermore, if G(s) is a minimum-phase function — as usually occurs — the

knowledge of the magnitude diagram is by itself sufficient to derive the phase
(and thus the whole function G(̃ν)) for any given ν.

Useful indications on the behavior of the magnitude diagram can be obtained by means
of the so-called “asymptotic” diagram, the tracing of which is extremely easy.

More precisely, by naming “critical” frequencies the values of the type |1/T |, νo:

• starting from the low frequencies, the “first” asymptote corresponds to the function
K/sh, and therefore it pertains to the straight-line passing for the point (1, |K|) with
a slope −h;

• the passage from the first to the “second” asymptote occurs in correspondence to
the lowest critical frequency, and is characterized by a variation in the slope equal
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Figure A.2. Bode diagrams.

to ±1 or ±2, as specified here below; and the same happens in the passage to the
subsequent asymptotes, in correspondence to the other critical frequencies;

• each term of the type (1 + sT ) causes a slope variation (at the corresponding critical
frequency |1/T |) equal to ±1, according to whether this term is at the numerator
or at the denominator of G(s);

• each term of the type (1 + 2ζ s/νo + s2/ν2
o ) causes a slope variation (at the corre-

sponding critical frequency νo) equal to ±2, according to whether this term is at the
numerator or at the denominator of G(s).

A3.4. ELEMENTARY CONTROL SYSTEMS: GENERALITIES

Figure A.3a represents a typical elementary control system. According to such a
scheme, the “controlled” system has for simplicity:

• a single output, that is the controlled variable y (the time behavior of which
must be as close as possible to the desired one);

• two inputs, that is the “controlling” variable u (the time behavior of which
is adapted to the control goals) and the “disturbance” d (which is instead
the result of external causes, independent of the above-mentioned goals).

The behavior of u is moreover dependent, through the “controlling” system, on:

• the so-called “reference” variable r , which takes into proper account the
desired behavior of y;
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command
variable

“reference”
variable “error”

comparator

forward
controlling

element

“controlling”
variable

disturbance

controlled
system

controlled
variable

“feedback”
variable

feedback
controlling
element

(control loop)

closed-loop
controlling system

Figure A.3. Elementary control system: (a) typical configuration; (b) transfer
functions of different parts; (c) resulting transfer functions.
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• the actual behavior of y, through the “feedback” element: in such a way a
“closed-loop” control is obtained, with a “control loop” like that defined
in the Figure A.3a.

Assuming that all the elements are linear and stationary, it is possible to derive
the block diagram of Figure A.3b, where each element is defined by its respective
transfer function.

The “closed-loop” transfer functions, indicated in Figure A.3c, can be easily
derived; they are expressed by:

F(s) = G1G2

1 + G1G2H
(s)

Fd(s) = Gd

1 + G1G2H
(s)




[A3.4.1]

where the product G1G2H(s), present at the denominator, constitutes the so-
called (total) transfer function “of the loop.”

The control has the following two basic goals:

• to reduce as much as possible the effects of the disturbance d on y;
• to realize a suitable dependence of y on r , defined by a “desired” transfer

function Fdes(s).

If r and d were sinusoidal at frequency ν, their effect on y would be determined
(under the hypothesis of asymptotic stability) by the quantities F(̃ν) and Fd(̃ν);
by imposing Fd(̃ν) → 0, F(̃ν) → Fdes(̃ν), it would result:

G1G
′
2(̃ ν) −−−→ ∞

H(̃ν) −−−→ 1

Fdes(̃ν)


 [A3.4.2]

recalling that G2 = G′
2G

′′
2, Gd = G′

dG
′′
2 (see Fig. A.3b), and obviously assuming

G′′
2(̃ν) �= 0, G′

d(̃ν) �= ∞.
Generally, if the behaviors of r and d are defined in “spectral” terms, the

conditions [A3.4.2] would be satisfied at least for the frequency ranges that are
more involved. The matching of these conditions may be, in practice, contrasted
by the stability requirement (as seen below), further than by different constraints,
of technological or economical type, etc. However, the convenience of achieving
a loop transfer function (G1G2H(s)) with a “gain” possibly high, by particularly
acting on G1(s) (e.g., through the use of an amplifier), is evident, whereas the
choice of H(s) essentially must be adapted to the desired function Fdes(s).

A3.5. CLOSED-LOOP DYNAMIC BEHAVIOR

Based on Equations [A3.4.1], the characteristic roots of the closed-loop system
are constituted — apart from cancellations in the transfer functions, which will
not be considered for simplicity — by:
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• the poles of G′
d(s) that can be intended as known (and which will be

assumed to have a negative real part);
• the solutions of the equation:

0 = 1 + G(s) [A3.5.1]

where G(s) � G1G2H(s) is the loop transfer function.

To check the closed-loop asymptotic stability without solving Equation [A3.5.1],
it is possible to apply the Nyquist criterion, which is based on properties (that may
be assumed as known) of the function G(s).

More precisely, according to this criterion it is necessary and sufficient that
the Nyquist diagram of G(̃ν):

• does not pass for the point (−1 + ̃0);
• describes around the point (−1 + ̃0), for increasing ν from −∞ to +∞,

a number Nao of anticlockwise rotations equal to:

Nao = P(+) [A3.5.2]

where P(+) is the number of poles of G(s) having a positive real part(6).

In particular, as it is P(+) ≥ 0, the criterion is certainly not satisfied if Nao < 0,
i.e., if there are clockwise rotations.

The Nyquist criterion appears often more preferable than the Routh-Hurwitz
criterion (already described) for various reasons, among which:

• it requires the knowledge of the function G(̃ν), i.e., a knowledge that may
be useful for other purposes (analysis of frequency response);

• if the elements of the loop (or some of them) are asymptotically stable, it
is not necessary to know the analytical expression of G(s) (as it instead
is for the Routh-Hurwitz criterion), as the function G(̃ν) (or a part of
it) can be derived experimentally, by frequency response tests in open-
loop conditions;

• the number Nao also can be derived starting from the Bode diagrams of
G(̃ν) (instead that from the Nyquist diagram), which are much easier
to be traced;

• the criterion application usually permits several simplifications, based — as
described in the following — on the consideration of certain parameters

(6) Actually, if G(s) exhibits one or more than one purely imaginary poles of the type ̃ νk , the
Nyquist diagram opens itself to the infinite for each value ν = νk . For the criterion application, it is
necessary to intend that, for each of the considered poles, the diagram closes itself, between ν = ν−

k

and ν = ν+
k , by means of a semicircle of infinite radius described in the clockwise sense.
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(cutoff frequency, phase margin, etc.) particularly significant also for the
synthesis of the controlling system.

In most of the practical cases it is P(+) = 0 (otherwise the open-loop system,
defined by G(s), would be unstable); for the closed-loop asymptotic stability it
is therefore necessary and sufficient that the Nyquist diagram of G(̃ν) does not
pass for (−1 + ̃0), nor does it describe any rotation around that point.

Furthermore, usually:

• it exists a single (positive) frequency νt , called “cutoff” frequency, for which
|G(̃νt )| = 1, whereas |G(̃ν)| ≷ 1, respectively, according to ν ≶ νt ;

• the Nyquist criterion leads to the simple condition � G(̃νt ) > −180◦, i.e.,

γ > 0

where the angle γ � � G(̃νt ) + 180◦ is called “phase margin”: see
Figure A.4(7).

For the first of Equations [A3.4.1], the “zeros” of the function F(s) are simply
constituted by the zeros of the functions G1G2(s) and (1/H)(s), whereas the
“poles” are the solutions of Equation [A3.5.1].

Figure A.4. Graphic definition of the cutoff frequency νt and the phase margin
γ , with reference to: (a) the Nyquist diagram; (b) the Bode diagrams.

(7) Often, the phase � G(̃νt ) can be estimated based on the slope by which the (magnitude) asymptotic
diagram cuts the unit gain axis (at an “asymptotic” cutoff frequency ν′

t , close to νt ). It is then possible
to derive to the so-called Bode criterion (which is extremely simple to be applied), for which the
above-mentioned slope must be −1 or even, possibly, −2.
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Furthermore, the function F(̃ν) can be written in the form:

F(̃ν) =
G1G2

1

H

G1G2 + 1

H

(̃ν)

so that, at each frequency ν for which the magnitudes of G1G2(̃ν) and (1/H)(̃ ν)

are considerably different from each other, the behavior of F(̃ν) is approximately
equal to that of the function (of the two above mentioned) which has the smaller
magnitude. Similar considerations can be applied to the function Fd , based on the
second of Equations [A3.4.1].

In practice, there is usually only a single cutoff frequency νt , as said, and it
is possible to define the following ranges of frequency:

• low-frequency range, with ν � νt and |G1G2(̃ν)| � |(1/H)(̃ ν)| (recall
the convenience of having high |G1G2H(̃ν)|), and thus:

F(̃ν) ∼= 1

H
(̃ν)

• high-frequency range, with ν � νt and |G1G2(̃ν)| � |(1/H)(̃ν)| (be-
cause of the unavoidable response delays of the loop elements), and thus:

F(̃ν) ∼= G1G2(̃ν)

separated by a suitable medium-frequency range within which — passing from
one approximation to the other — the asymptotic diagram of |F(̃ν)| undergoes
a relatively small variation in its slope, e.g., equal to −1 or −2 (recall the Bode
criterion, footnote(7), and consider that the slope of |G1G2H | is equal to the
relative slope of |G1G2| with respect to |1/H |).

On the other hand, the knowledge of F(̃ν) can allow (through the “critical”
frequencies, etc.) estimation of the poles of F(s), whereas the zeros are already
known.

As a first approximation (using the denomination “at low frequency” for the
poles and zeros the critical frequencies of which lie within the low-frequency
range, and so on), it is possible to state that:

• at low frequency, the poles of F(s) are close to the poles of (1/H)(s)

(and to the zeros of G1G2(s), by which, however, they are practically
cancelled);

• at high frequency, on the contrary, the poles of F(s) are close to the poles
of G1G2(s) (and to the zeros of (1/H)(s), by which, however, they are
practically cancelled);
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whereas the remaining poles of F(s), in a small number (e.g., one or two), lie
in the medium-frequency range and therefore have a critical frequency equal to
or close to the cutoff frequency(8).

A3.6. ELEMENTARY CRITERIA FOR SYNTHESIS

Based on previous information, it can be generically concluded that:

• at low frequency, the control goals can be well achieved by assuming
|G1G

′
2| quite high (to properly reduce the disturbance effects) and moreover

H ∼= 1/Fdes (to have F ∼= 1/H ∼= Fdes);
• the response delays that more greatly limit the control efficiency are, then,

those associated to the medium-frequency poles (strictly dependent on the
values of the cutoff frequency and of the phase margin: see also footnote(8)).

The synthesis criteria can be generally carried back to few fundamental spec-
ifications, such as:

• a high value of |G1G
′
2| at low frequency, and particularly a high static gain

G1G
′
2(0), to be realized by acting on G1 (if G1G

′
2(s) has a pole at the

origin, such a static gain is infinite; recall the first of Equations [A3.4.2],
with ν = 0);

• a high value of the cutoff frequency νt , provided that the stability and
more strictly the damping characteristics are not compromised (and thus
the phase margin does not become modest); on the other hand, the larger
is νt , the smaller the phase margin usually is, so that it is necessary to
adopt a compromise solution; typically, νt is chosen to have γ ∼= 30◦ − 60◦
(usually, it then holds what is said in footnote(8), with a damping factor of
0.25–0.50).

In most of the practical cases, the synthesis procedure can be defined as follows
(with the functions G′

2, G′
d , G′′

2 known):

• H(s) is chosen to have H(̃ν) ∼= (1/Fdes)(̃ ν) in a frequency range ex-
tended at its most;

• as a first attempt, it is assumed G1(s) = K1 (constant), and K1 is chosen
to achieve an acceptable value (γ(1)) of the phase margin;

(8) As a result of control system synthesis, at medium frequency there are often two complex con-
jugate poles, with:

• resonance frequency close to the asymptotic cutoff frequency ν′
t ,

• damping factor close to half of the value, in radians, of the phase margin.
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• in G1(s) a “low-pass” effect is introduced, defined by a factor of the type:

Tb

T ′
b

1 + sT ′
b

1 + sTb

with Tb > T ′
b > 0, and Tb and T ′

b are chosen to adequately increase the
low-frequency gain, without practically worsening the phase margin (1/T ′

b

must be smaller enough than the first-attempt cutoff frequency νt(1));
• a possible “high-pass” effect is introduced into G1(s), defined by a factor

of the type:
1 + sT ′

a

1 + sTa

with T ′
a > Ta > 0, and T ′

a and Ta (with 1/T ′
a in the order of νt(1)) are chosen

to increase the cutoff frequency (νt > νt(1)), still keeping the phase margin
γ at an acceptable value(9).

A typical example of the procedure application is reported in Figure A.5.
Whenever the measures described up to now (or similar ones) are not suffi-

cient, it is suitable to consider modifications in the control scheme, which, for
example, may include (Fig. A.6):

• a “feed-forward” action, defined by the transfer function Ga(s), starting
from the reference r;

• a “compensation” of the disturbance d , defined by the transfer function
Gc(s) (it is, however, necessary that the disturbance is measurable in some
way).

Instead of Equations [A3.4.1], it is then derived:


F(s) = (G1 + Ga)G2

1 + G1G2H
(s)

Fd(s) = Gd − GcG2

1 + G1G2H
(s)

(9) In particular, if a low-pass effect is introduced with Tb = ∞, it follows:

G1(s) = Kp + Ki

s

with Kp = K1, Ki = K1/T
′
b , i.e., a controlling system of the proportional-integral type (PI).

Similarly, if a high-pass effect is added with Ta → 0, it follows:

G1(s) −−−−→ Kp + Ki

s
+ Kds

with Kp = K1(1 + T ′
a/T

′
b), Ki = K1/T

′
b, Kd = K1T

′
a , i.e., a controlling system of the proportional-

integral-derivative type (PID).
In the previous expressions, Kp , Ki , and Kd , respectively, represent the “proportional,” “integral,”

and “derivative” gains.
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Figure A.5. Typical example of application of the synthesis procedure.

from which: {
F(s) −−−→ Fdes(s)

Fd(s) −−−→ 0

by respectively assuming:

{
Ga −−−→ Fdes/G2, H −−−→ 1/Fdes

Gc −−−→ Gd/G2
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Figure A.6. Example of a general control system.

These last conditions are often nonachievable, but they can be usefully approx-
imated (for s = ̃ ν), at least for the frequency ranges that are mostly interested,
respectively, by the spectra of r and d .

Other measures may consist in the preliminary realization of one or more “auxiliary”
feedbacks around the block G2 (and possibly G1) or a part of it, to obtain a better
system (from the point of view of the control synthesis) with respect to the original
system.

In fact, similar to information already discussed for the control loop, the closure of
auxiliary loops can improve the dynamic response to the variables used for the control,
reduce the effect of disturbances or even, in some cases, “stabilize” the system (recall the
Nyquist criterion, with P(+) > 0).

If the transfer function of the generic loop is expressed in the form µg(s) (Fig. A.7), the
choice of the gain µ must consider the effect of µ on the closed-loop characteristic roots,
which are the solutions of the equation:

0 = 1 + µg(s)

Figure A.7. Closure of a loop through a block with gain µ.
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In this concern, some useful indications can be obtained by analyzing the case µ → 0; if
ph is the generic pole of g(s), it can be found that:

• for each simple pole ph there is, correspondingly, a (closed-loop) characteristic root
rh which is approximable by:

rh ∼= ph − µCh

where Ch is the “residual” of g(s) at ph, i.e.,

Ch � ((s − ph)g(s))s=ph

• for each multiple pole ph, having a multiplicity m, there are, correspondingly, m
(closed-loop) characteristic roots which are approximable by the m solutions:

ph + (−µChm)
1/m

where:
Chm � ((s − ph)

mg(s))s=ph

The previous relationships allow definition of the “sensitiveness” of the characteristic
roots with respect to µ (for µ → 0); in particular, the sensitiveness in correspondence of
a simple pole is equal to:

drh
dµ

= −Ch [A3.6.1]

i.e., equal to the residual with inverted sign. This last result is particularly important, as
each single residual can be evaluated experimentally, by tests on the open-loop system,
without previous knowledge of the analytical expression of g(s).

If there are more output variables to be controlled (y1, . . . , yq), it is pos-
sible to reference the scheme in Figure A.8a, where (under the hypothesis of
linearity and stationarity) G1, G2, H , Gd are suitable transfer matrices, func-
tions of s.

Generally, each of the “controlling” variables u1, . . . , um may influence all
output variables y1, . . . , yq , and this circumstance must be considered in the
synthesis of the controlling system.

Assuming for simplicity that H(s) is diagonal, each “error” ei = ri − βi is
sensitive, through the feedback variable βi , to the only output yi . A rather sponta-
neous synthesis criterion consists into imposing (if possible) the “noninteraction”
of the controls, i.e., each reference ri (i = 1, . . . , q) influences only the corre-
sponding output yi , without any effect on the yj ’s, j �= i. Thus operating, in fact,
ri acquires a precise meaning in terms of yi , and by varying ri no disturbance
is caused to the control of the other outputs. Moreover, the control becomes q
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Figure A.8. Control system in the multivariable case: (a) transfer matrices of the
different parts; (b) transfer functions corresponding, for m = q, to the generic
control loop (i = 1, . . . , q) in case of noninteraction.

noninteracting loops, for each one of which it is possible to apply the synthesis
criteria already seen, relative to the control of a single variable.

The noninteraction criterion is satisfied if, and only if, the matrix G2G1(s) is
diagonal, i.e.,:

G2G1(s) = G(s)

where G(s) is a suitable (q, q) diagonal matrix.
On the other hand, G(s) must be nonsingular (otherwise, some of the (G)ii

elements would be null, and the corresponding yi’s could not be controlled), and
thus G2(s) must have a rank q (and this implies, in particular, m ≥ q).

If such an hypothesis is satisfied, it is possible to derive the matrix G1(s) and to
define, under feasibility conditions, the whole controlling system. In particular, for
m = q, it can be derived (omitting for simplicity the indication of the variable s)
G1 = (G2)

−1G, and thus:

(G1)ii = [(G2)
−1]ii (G)ii
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Therefore, the block diagram in Figure A8.b can be derived, in everything similar
to that in Figure A3.b, further than the following conditions:

(G1)ji = [(G2)
−1]ji (G)ii = [(G2)

−1]ji

[(G2)−1]ii
(G1)ii (j �= i)

relative to the nondiagonal elements of the matrix G1 (i, j = 1, . . . , q).

ANNOTATED REFERENCES
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78. CAHEN F., ROBERT R., FAVEZ B., La détermination expérimentale du temps de lancer
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des réseaux électriques, CIGRE 32–12, 1970.

139. GALLI F., SACCOMANNO F., SCHIAVI A., VALTORTA M., Prospettive offerte dai col-
legamenti in corrente continua nel controllo delle reti elettriche interconnesse, AEI
Annual Meeting No. 2.4.01, 1970.

140. Di CAPRIO U., SACCOMANNO F., Non-linear stability analysis of multimachine elec-
tric power systems, Ricerche di Automatica, vol. 1, No. 1, 1970.
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accipiency, 634
additional signals, 591, 667, 672
angle

firing, 421
margin, 424
overlapping, 421

armature reaction, 294
armature reaction coefficient, 323
asynchronous machine, 442, 459
attenuation constant, 393
automatic generation control, 243
autonomy, 267, 269, 276
autotransformer, 373
axis

direct, 292
quadrature, 292

backswing, 348
Bode

criterion, 698
diagrams, 693

boiler following mode, 225
braking coefficients, 669
branch

series, 37
shunt, 37

capacitor (or condenser), 4, 358,
493

ceiling, 499
voltages, 517

characteristic
equation, 690
roots, 690

compensation, 36
series, 487, 604

compensator, 4
static, 493, 534, 601, 604
synchronous, 493, 580, 594

compound, 517
condenser, see capacitor
contingency analysis, 69
control
f/P (frequency and active power), 10,

11, 173
v/Q (voltage and reactive power), 11,

486
coordinated, 225
emergency, 277
primary, 225, 513
secondary, 163, 237, 520
tertiary, 162

converter, 417, 419, 429
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cost
for startup and/or shutdown, 125,

153
generation, 71, 75, 125
incremental, at an area node, 135,

139
incremental, at generation, 79
incremental, at load, 89, 139
specific, 127

counter-excitation, 334

damping
factor, 692
windings, 319, 579

diagnosis, 30, 163, 278, 281
direct current link, 4, 235, 417
dispatcher, 237
dispatching, 58, 247

active, 75, 161
over time, 100
reactive, 75, 161

distribution, 4, 30, 34
dynamic order, 688

economic optimization, 77, 100
economy, 8
electrical center, 25, 611
electrical distance, 652
emergency, 29, 277
emf

behind the transient reactance, 315
motional, 310
pendular, 316
synchronous, 314
transformer, 309
transient, 314

equal area criterion, 24, 612
error

exported energy, 270
network, 261
phase, 270

excitance, 634
excitation

rotating, 513, 514
static, 513, 516
transverse, 317

facts, 4
fast reclosure, 615
fast-valving, 279, 617
Ferranti effect, 400, 406
filter, 417, 418, 419, 610
filtering, 7, 488
firing command, 428
flicker, 9
frequency

at any operating condition,
687

bias, 223
critical, 693
cutoff, 698
mean, 630
network, 5
resonance, 692

gate governing (or valve positioning)
system, 174, 176, 194,
213

generation, 3
assigned, 148
hydro, 160
thermal, 160

harmonic, 8, 457, 537
homopolar variable, 681
hydraulic inflows, 141

impedance
characteristic, 385
fault, 464
wave, 386

inductor, 356
smoothing, 419, 429

inertance, 199
inertia

center of, 657
coefficient, 175, 248

infinite power network, 563
instability

aperiodic-type, 575, 601
dynamic, 26
frequency, 18
oscillatory-type, 589, 601
static, 26
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transient, 26
voltage, 18, 527, 542

interconnections, 4, 12, 132, 259

level
of the secondary regulation, 237

limit
active power, 56
active power transmissibility, 18
admissibility, 12, 57
reactive power, 57, 528,

543
voltage supportability, 17

line
alternating current (ac), 381
nondissipative, 385
nondistorting, 385

load
balancing of

on the three phases, 490
composite, 441
conform, 86, 134
demands, 140
electromechanical, 188
equivalent, 35, 56, 455
nonlinear, 440, 529, 543
sharing, 75, 230, 248
single, 439
static, 188

load-flow, 58
decoupled, 66
fast decoupled, 66
nonlimited, 59

load-rejection, 30
load-shedding, 30, 278
load-skipping, 279
long-term dynamics, 658
loss

formula, 87
active power, 53, 74, 76

Lyapunov function, 24, 642

magnetic saturation, 321, 338,
370, 445

in the rotor, 326
in the stator teeth, 322

maintenance, 144
margin

of current, 426
phase, 698

matrix
admittance, 40
branch admittance, 38
connection, 38
impedance, 42

minimum-phase function, 692
model

“area”, multiarea, 651
direct current, 50
of modal type, 661

mode
aperiodic, 691
oscillatory, 692

motion
mean, 631, 665
relative, 624, 630, 634, 641, 665

node
area, 134
boundary, 36, 57
generation, 35, 56
internal, 37
load, 36, 56
pilot, 521
PQ, 61
Pv, 61
reactive compensation, 36, 57
slack, 61, 67
stronger, 465
terminal, 36

noninteraction, 274, 276, 704
Nyquist

criterion, 697
diagram, 693

office
central dispatching, 163
centralized coordination, 132
peripheral, 163

opening
single-phase, 461, 473, 479, 480
three-phase, 461, 465
two-phase, 461, 474, 480
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operation
at constant slip, 338
equilibrium, 5
of the asynchronous machine, 447
of the synchronous machine, 331
nonexistence of the equilibrium, 14
synchronous, 5

oscillation
electromechanical, 19, 575, 631, 667
damping of the electromechanical, 25,

589, 591
over- and underexcitation limiters,

517

Park’s
transformation, 680
vector, 680

participation factor, 80, 248
penalty factor, 89
per unit, 299, 302, 336, 370
perturbation

multiple, 23, 461
nonsymmetrical, 461, 469
structural, 253
symmetrical, 461

phase constant, 393, 487
phase-shifters, 39
phasor, 307, 676
phenomena (predominantly electrical,

predominantly mechanical, strictly
electrochemical), 33

Potier construction, 325
power

characteristic, 402, 487
exchange, 147, 160
exchanged, 132, 159
exported, 259
rotating, 6
short-circuit, 465
stimulation, 278

power factor correction, 489
propagation

function, 385
propagation speed

in a line, 386
in a penstock, 202

protection, 13, 458, 612, 615
pump-storage, 122, 157,

595

quality of operation, 8

reactance
direct, quadrature
• subtransient, 319
• synchronous, 306, 319
• transient, 306, 319
homopolar, 306
negative-sequence, 345
Potier, 327

reactor, 4, 493
controlled, 536
saturated, 534

redispatching, 93, 98
redistribution coefficient

branch-to-branch, of the active power
flow, 53, 99

node-to-node, of the injected active
power, 97

reflection time, 203
regulating energy

permanent, 179, 184
transient, 180

regulation
current, 433
current (or power), 432
energy, 11
margin angle, 432
phase, 11, 47
speed, 173, 584, 664

regulator
power, 223
primary frequency, 193
secondary, 237
with tachoaccelerometer, 207
with transient feedback, 207

reserve
cold, 145, 152
energy, 147
quick, 29, 145, 152
spinning, 6, 96, 151, 160
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resistor, 353
braking, 279, 617
preinsertion, 464

resonance
electromechanical, 629
in a line, 409
in a penstock, 202
subsynchronous, 607, 608, 610
torsional, 329, 595, 610

response
forced, 688
free, 688
frequency, 692

restoration of the configuration, 28
Routh-Hurwitz criterion, 690

scheduling
long-term, 142, 144
medium-term, 142, 147
operational, of thermal plants, 122, 152
previsional, 10, 139, 163
real-time, 10, 161
short-term, 142, 159

secondary regulating power band, 249
security, 8, 160

conditioned, 648
quasistatic, 658
static, 70, 95
total, 648

self-excitation, 505
sensitivity coefficient

of characteristic roots, 671, 704
to an injection shifting, 52

short-circuit
ratio, 336, 337
single-phase, 461, 474, 480, 481
three-phase, 464, 465, 469
Two-phase isolated, 461, 475, 481
Two-phase to earth, 461, 475, 481

solid rotor, 320
speed droop

permanent, 180, 184, 232, 248
transient, 180, 248

stability
asymptotic, 690
region, 644
weak, 690

start-up time, 176, 301
state, 689
state estimation, 28, 161
static gain, 692
subnetwork

generation-load, 135, 139
interconnection, 136, 139

subtransmission, 4, 30, 35
symmetrical components, 470, 490, 678
synchronism, 19, 25, 611, 614, 615
synchronizing

actions, 19
coefficients, 625, 669

synchronous machine, 289, 458, 562

technical minimum, 57
teletransmission, 162
Thoma condition, 204
time constant, 691

of the asynchronous machine:
transient (open-circuit, short-circuit),

450
of the reheater, 217
of the synchronous machine:
armature, 349
field, 301
subtransient (open-circuit, short-circuit;

direct, quadrature), 319
transient (open-circuit, short-circuit;

direct, quadrature), 306, 319
torque

electromagnetic, 296, 297, 445
reluctance, 296

transfer
function, 689
matrix, 690

transformer, 37, 367
regulating, 4, 41, 46, 48, 378
tap-changing, 4, 493, 522, 601, 603

transmission, 3

unavailability, 139, 140
unidirectional component, 348, 349, 469,

482
uniformity of the response of ∆Ω , 273
unit commitment, 147
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valve positioning system, see gate
governing system, 174, 176,
194, 213

voltage support, 9, 527, 547, 604

water
hammer number, 203
inertia time, 199
storage, 145, 148

wavelength, 388, 394
waves

incident, 389
reflected, 389
refracted, 389
traveling(direct, inverse),

388
working point

steady-state, 34
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